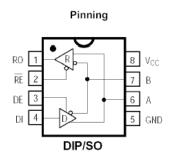


Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers

General Description


The MAX485 is low-power transceivers for RS-485 and RS-422 communication. IC contains one driver and one receiver. The driver slew rates of the MAX485 is not limited, allowing them to transmit up to 2.5Mbps.

These transceivers draw between 120µA and 500µA of supply current when unloaded or fully loaded with disabled drivers. All parts operate from a single 5V supply. Drivers are short-circuit current limited and are protected against excessive power dissipation by thermal shutdown circuitry that places the driver outputs into a high-impedance state. The receiver input has a fail-safe feature that guarantees a logic-high output if the input is open circuit. The MAX485 is designed for half-duplex applications.

Features

- Low Quiescent Current: 300µA
- -7V to +12V Common-Mode Input Voltage Range
- Three-State Outputs
- 30ns Propagation Delays, 5ns Skew
- Full-Duplex and Half-Duplex Versions Available
- Operate from a Single 5V Supply
- Allows up to 32 Transceivers on the Bus
- Data rate: 2,5 Mbps
- Current-Limiting and Thermal Shutdown for Driver Overload Protection

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V_{CC}) 12V Control Input Voltage -0.5V to (V_{CC} + 0.5V)

Driver Input Voltage (DI) -0.5V to (V_{CC}+ 0.5V)

Driver Output Voltage (A, B) -8V to +12.5V Receiver Input Voltage (A, B) -8V to +12.5V Receiver Output Voltage (RO) -0.5V to $(V_{\rm CC}+0.5V)$

Continuous Power Dissipation (T_A= +70°C) 8-Pin Plastic DIP (derate 9.09mW/°C above +70°C) 727mW

8-Pin SO (derate 5.88mW/°C above +70°C) 471mW

Operating Temperature Ranges0°C to +70°C Storage Temperature Range -65°C to +160°C Lead Temperature (soldering, 10sec) +300°C

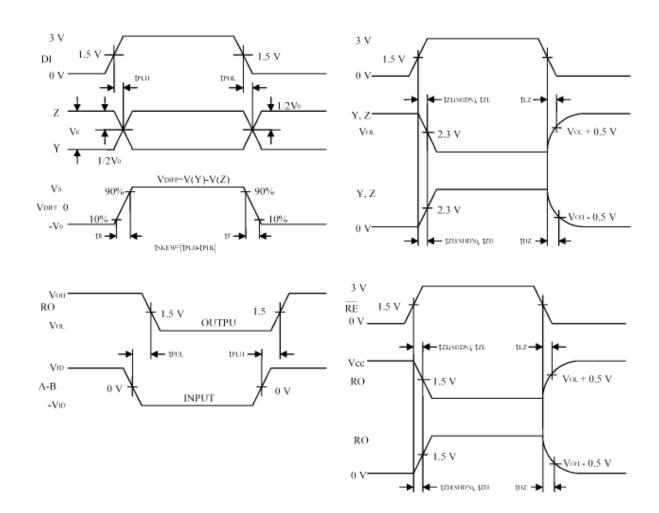
DC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = 5V \pm 5\%, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.})$ (Notes 1, 2)

PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS	
Differential Driver Output (no load)	V _{OD1}				5	V	
Differential Driver Output	V _{OD2}	$R = 50\Omega (RS-422)$		2			V
(with load)		$R = 27\Omega (RS-485), F$	igure 4	1.5		5	
Change in Magnitude of Driver Differential Output Voltage for Complementary Output States	ΔVod	R = 27 Ω or 50 Ω , Figu			0.2	V	
Driver Common-Mode Output Voltage	Voc	R = 27 Ω or 50 Ω , Figu			3	V	
Change in Magnitude of Driver Common-Mode Output Voltage for Complementary Output States	ΔVod	R = 27Ω or 50Ω , Figu			0.2	V	
Input High Voltage	ViH	DE, DI, RE	2.0			V	
Input Low Voltage	VIL	DE, DI, RE			0.8	V	
Input Current	l _{IN1}	DE, DI, RE			±2	μA	
Input Current	I _{IN2}	DE = 0V;	V _{IN} = 12V			1.0	mA
(A, B)		$V_{CC} = 0V \text{ or } 5.25V,$	V _{IN} = -7V			-0.8]
Receiver Differential Threshold Voltage	Vтн	-7V ≤ V _{CM} ≤12V		-0.2		0.2	V
Receiver Input Hysteresis	ΔV th	V _{CM} = 0V		70		mV	
Receiver Output High Voltage	Vон	Io = -4mA, VID = 200	3.5			V	
Receiver Output Low Voltage	Vol	Io = 4mA, VID = -200mV				0.4	V
Three-State (high impedance) Output Current at Receiver	lozr	0.4V ≤ Vo ≤ 2.4V			±1	μA	
Receiver Input Resistance	RIN	$-7V \le V_{CM} \le 12V$				kΩ	

DC ELECTRICAL CHARACTERISTICS (continued) (Vcc = 5V ±5%, Ta = Tmin to Tmax, unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
No-Load Supply Current	Icc	DE = V _{CC}		500	900	
(Note 3)		RE = 0V or Vcc		300	500	μA
		DE = 0V				
Driver Short-Circuit Current,						
	losd1	-7V ≤ Vo ≤ 12V (Note 4)	35		250	mA
Vo = High						
Driver Short-Circuit Current,						
	losd2	-7V ≤ Vo ≤12V (Note 4)	35		250	mA
Vo = Low						
Receiver Short-Circuit Current	Iosr	0V ≤ Vo ≤ Vcc	7		95	mA


SWITCHING CHARACTERISTICS

(Vcc = 5V ±5%, T_A = T_{MIN} to T_{MAX}, unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Driver Input to Output	t PLH	RDIFF = 54Ω	10	30	60	ns
	t PHL	C _{L1} = C _{L2} = 100pF	10	30	60	
Driver Output Skew to Output	t skew	R _{DIFF} = 54Ω , CL1 = CL2 = 100 pF		5	10	ns
Driver Enable to Output High	tzн	C _L = 100pF, S2 closed		40	70	ns
Driver Enable to Output Low	t zL	C _L = 100pF, S1 closed		40	70	ns
Driver Disable Time from Low	t LZ	C _L = 15pF, S1 closed		40	70	ns
Driver Disable Time from High	t HZ	C _L = 15pF, S2 closed		40	70	ns
tPLH - tPHL Differential	t skD	RDIFF = 54Ω		13		ns
Receiver Skew		C _{L1} = C _{L2} = 100pF				
Receiver Enable to Output Low	t zL	C _{RL} = 15pF, S1 closed		20	50	ns
Receiver Enable to Output High	tzн	C _{RL} = 15pF, S2 closed		20	50	ns
Receiver Disable Time from Low	t LZ	C _{RL} = 15pF, S1 closed		20	50	ns
Receiver Disable Time from High	t HZ	C _{RL} = 15pF, S2 closed		20	50	ns
Maximum Data Rate	fmax		2.5			Mbps

Operation timing diagrams of MAX 485

Table of MAX 485 operation

Transmission				Receipt				
	Inputs		Outp	uts X	Inputs			Outputs
RE	DE	DI	Z	Y	RE	DE	A-B	RO
Х	1	1	0	1	0	0	+0.2V	1
Х	1	0	1	0	0	0	-0.2V	0
0	0	Х	Z	Z	0	0	open	1
1	0	Χ	Z	Z	1	0	Χ	Z

X-don't care Z-high resistance

Important statement:

Huaguan Semiconductor Co,Ltd. reserves the right to change the products and services provided without notice. Customers should obtain the latest relevant information before ordering, and verify the timeliness and accuracy of this information.

Customers are responsible for complying with safety standards and taking safety measures when using our products for system design and machine manufacturing to avoid potential risks that may result in personal injury or property damage.

Our products are not licensed for applications in life support, military, aerospace, etc., so we do not bear the consequences of the application of these products in these fields.

Our documentation is only permitted to be copied without any tampering with the content, so we do not accept any responsibility or liability for the altered documents.

http://www.hgsemi.com.cn 5 2018 AUG

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RS-422/RS-485 Interface IC category:

Click to view products by HGSEMI manufacturer:

Other Similar products are found below:

402824F 702835FB MAX488ECPA MAX3491CSDT MAX3490AEGSA+ MAX3483AEASA+ MAX3491EESDT MAX3488AEGSA+
MAX3083CSD MAX487CSA SP3071EEN-L SP3072EEN-L/TR SP3075EEN-L SP3075EEN-L/TR SP3077EEN-L SP3078EEN-L/TR SP3078EEN-L/TR SP3082EEN-L SP3088EEN-L SP3483CN-L SP3483CN-L/TR SP3483EN-L SP3485CN-L SP3485CN-L/TR SP3485EN-L/TR SP3490EN-L/TR SP3490EN-L/TR SP3490EN-L/TR SP3490EN-L/TR SP3490EN-L/TR SP3082EEN-L/TR SP330EEY-L/TR MAX14783EATA+T MAX3098EBCEE+T MAX3045BESE+T MAX22501EATA+T

MAX22502EATC+T MAX3042BCSE+T SP3077EEN-L/TR MAX487ESA+TCBX MAX1483CUA+T MAX487CUA+T CA-IS3082W CA-IS3088W SP3074EEN-L/TR SP3483EN-L/TR NSI83085