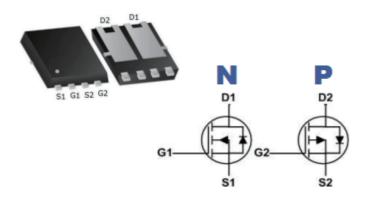


Features

Description


★ Green Device Available

- ★ Super Low Gate Charge
- ★ Excellent CdV/dt effect decline
- ★ Advanced high cell density Trench technology
- ★ 100% EAS Guaranteed

Product Summery		RoHS
BVDSS	RDSON	ID
30V	14mΩ	16A
-30V	25mΩ	-14A

PDFN3x3 Pin Configuration

The 30G20D is th high performance complementary N-ch and P-ch MOSFETs with high cell density, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications. The 30G20D meet the RoHS and Green Product requirement 100% EAS guaranteed with full function reliability approved.

Absolute Maximum Ratings

Symbol	Parameter	Ra	Rating	
Symbol	Parameter	N-Channel	P-Channel	Units
Vds	Drain-Source Voltage	30	-30	V
Vgs	Gate-Source Voltage	±20	±20	V
lo@Tc=25°C	Continuous Drain Current, Vcs@10V ¹	16	-14	A
I _D @T _C =100°C	Continuous Drain Current, Vcs@10V ¹	5	-4	A
ID@TA=25°C	Continuous Drain Current, Vcs@10V ¹	2.3	-1.8	A
ID@TA=70°C	Continuous Drain Current, V _{GS} @ 10V ₁	1.8	-1.5	A
Ідм	Pulsed Drain Current₂	40	-40	A
EAS	Single Pulse Avalanche Energy ₃	26.6	110	mJ
las	Avalanche Current	8.7	-20	A
P _D @T _C =25°C	Total Power Dissipation ⁴	10.8	10.8	W
PD@Ta=25°C	Total Power Dissipation ⁴	2	2	W
Тѕтс	Storage Temperature Range	-55 to 150	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	-55 to 150	°C

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
Reja	Thermal Resistance Junction-Ambient ¹	-	62	°C/W
Rejc	Thermal Resistance Junction-Case ¹	-	6	°C/W

N-Channel Electrical Characteristics TJ=25°C unless otherwise s ecified

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Units
BVDSS	Drain-Source Breakdown Voltage	Vgs=0V, Ib=250uA	30			V
$\Delta BV_{DSS} / \Delta T_{J}$	BVDSS Temperature Coefficient	Reference to 25°C , I⊳=1mA		0.023		V/°C
Rds(on)	Static Drain-Source On-Resistance ₂	Vgs=10V , ID=10A		14	20	mΩ
NDS(ON)		V _{GS} =4.5V , I _D =6A		20	25	11152
VGS(th)	Gate Threshold Voltage		1		2.5	V
$\triangle V_{GS(th)}$	VGs(th) Temperature Coefficient	$V_{GS}=V_{DS}$, $I_{D}=250$ uA		-4.2		mV/℃
DSS	Drain-Source Leakage Current	V_{DS} =24V , V_{GS} =0V , T_{J} =25°C			1	
ID SS	Dialii-Source Leakage Current	V_{DS} =24V , V_{GS} =0V , T_J =55°C			5	uA
lgss	Gate-Source Leakage Current	$V_{GS} = \pm 20V$, $V_{DS} = 0V$			±100	nA
gfs	Forward Transconductance	VDS=5V, ID=10A		14		S
Rg	Gate Resistance	VDS=0V, VGS=0V, f=1MHz		2.3		Ω
Qg	Total Gate Charge (4.5V)			5		
Qgs	Gate-Source Charge	V_{DS} =20V , V_{GS} =4.5V , I_{D} =10A		1.11		nC
Qgd	Gate-Drain Charge			2.61		
Td(on)	Turn-On Delay Time			7.7		
Tr	Rise Time	V_{DD} =12V, V_{GS} =10V, R_{G} =3.3 Ω		46]
Td(off)	Turn-Off Delay Time	l⊳=6A		11		ns
T _f	Fall Time			3.6		
Ciss	Input Capacitance			416		
Coss	Output Capacitance	Vos=15V, Vos=0V, f=1MHz		62		рF
Crss	Reverse Transfer Capacitance			51		

Diode Characteristics

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Units
ls	Continuous Source Current _{1,5}	Vg=VD=0V. Force Current			16	A
lsм	Pulsed Source Current ^{2,5}	vg-vb-ov, Force Current			30	A
Vsd	Diode Forward Voltage ²	Vgs=0V, Is=1A, TJ=25°C			1.2	V

Note :

1. The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper.

2.The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%

3.The EAS data shows Max. rating . The test condition is VDD=25V,VGs=10V,L=0.1mH,IAS=12.7A

4.The power dissipation is limited by 150°C junction temperature

5. The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation.

P-Channel Electrical Characteristics (TJ=25°Cunless otherwise specified)

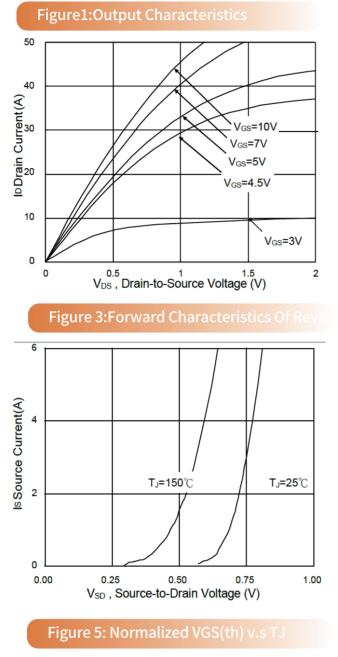
Symbol	Parameter	Test condition	Min.	Тур.	Max.	Units
BVDSS	Drain-Source Breakdown Voltage	V _G s=0V , I _D =-250uA	-30			V
$\Delta BV_{DSS} / \Delta T_{J}$	BVbss Temperature Coefficient	Reference to 25°C,lo=-1mA		-0.021		V/°C
Provous	Static Drain-Source On-Resistance ₂	Vgs=-10V, Id=-8A		25	30	mΩ
RDS(ON)	Static Drain-Source On-Resistance2	Vgs=-4.5V , Id=-6A		30	35	11152
VGS(th)	Gate Threshold Voltage	Vgs=Vbs, lb =-250uA	-1		-2.5	V
$\triangle V_{GS(th)}$	VGs(th) Temperature Coefficient	VGS-VDS, ID2300A		-4.2		m V/°C
IDSS	Drain-Source Leakage Current	VDs=-24V, VGs=0V, TJ=25°C			1	uA
1055	Dialin-Source Leakage Guitent	Vbs=-24V , Vgs=0V , TJ=55°C			5	ч <u>л</u>
lgss	Gate-Source Leakage Current	$V_{GS} = \pm 20V$, $V_{DS} = 0V$			±100	nA
gfs	Forward Transconductance	V _{DS} =-5V , I _D =-8A		12.6		S
Rg	Gate Resistance	VDS=0V, VGS=0V, f=1MHz		15		Ω
Q _g	Total Gate Charge (-4.5V)			9.8		
Qgs	Gate-Source Charge	Vds=-20V, Vgs=-4.5V, Id=-6A		2.2		nC
Qgd	Gate-Drain Charge			3.4		
Td(on)	Turn-On Delay Time			16.4		
Tr	Rise Time	V_{DD} =-24V, V_{GS} =-10V, R_{G} =3.3 Ω ,		20.2		
Td(off)	Turn-Off Delay Time	I _D =-1A		55		ns
Tf	Fall Time			10		
Ciss	Input Capacitance			930		
Coss	Output Capacitance	Vos=-15V, Vos=0V, f=1MHz		148		pF
Crss	Reverse Transfer Capacitance			115		

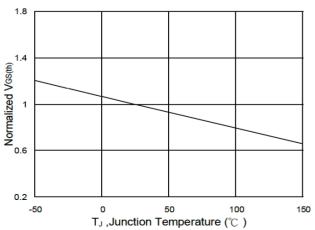
Diode Characteristics

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Units
ا _s	Continuous Source Current ^{1,5}				-14	А
lsм	Pulsed Source Current _{2,5}	V _G =V _D =0V , Force Current			-24	Α
Vsd	Diode Forward Voltage ₂	V _{GS} =0V , I _S =-1A , T _J =25°C			-1.2	V

Note :

1. The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper.


2.The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%


3.The EAS data shows Max. rating . The test condition is VDD=-25V,VGs=-10V,L=0.1mH,IAS=-30A

4.The power dissipation is limited by 150°C junction temperature

5. The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation.

N-Channel Typical Performance Characteristics

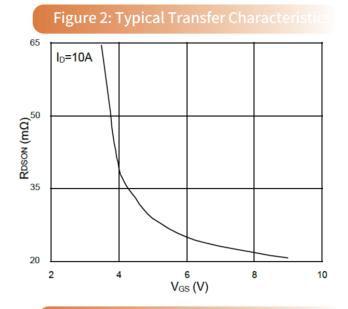


Figure 4: Gate-Charge Characteristics

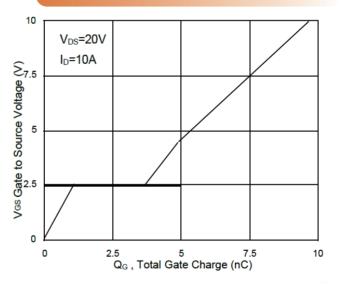
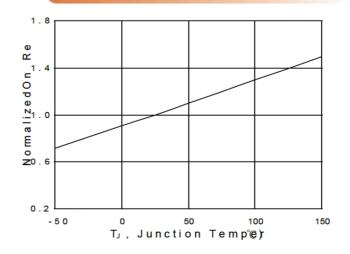
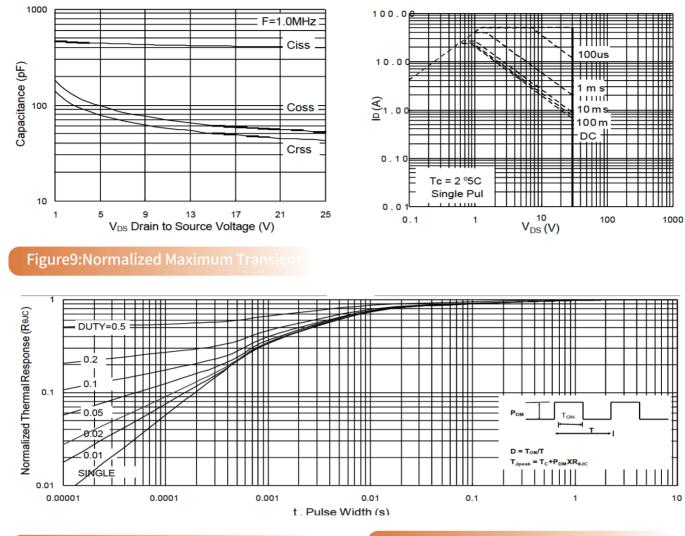



Figure 6: Normalized RDSON v.s TJ



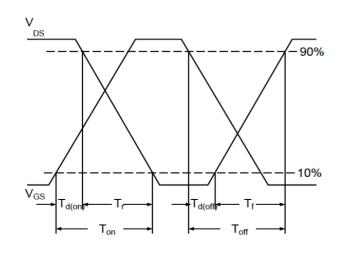

N-Channel Typical Performance Characteristics

Figure7:Capacitance

Figure 8:Safe Operating Areaature

Figure11:Unclamped Inductive Switching

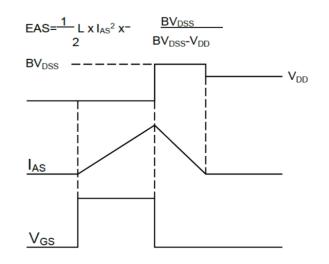


Figure1:Capacitance

P-Channel Typical Performance Characteristics

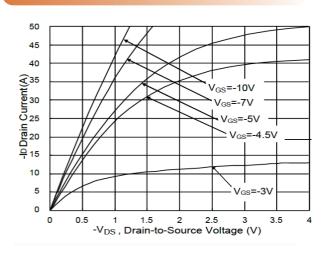


Figure3:Forward Characteristics Of Reve

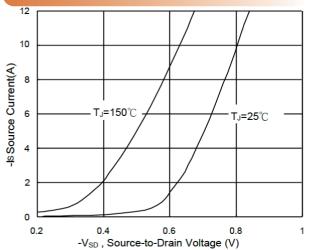


Figure5:Normalized VGS(th) v.s TJ

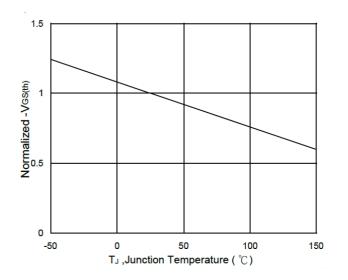


Figure 2: On-Resistance v.s Gate-Source

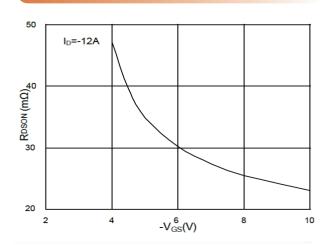
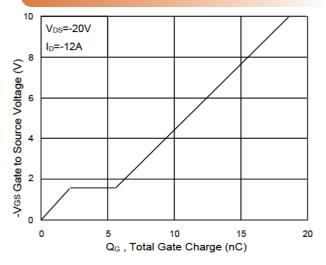
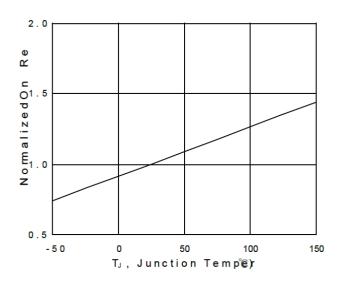
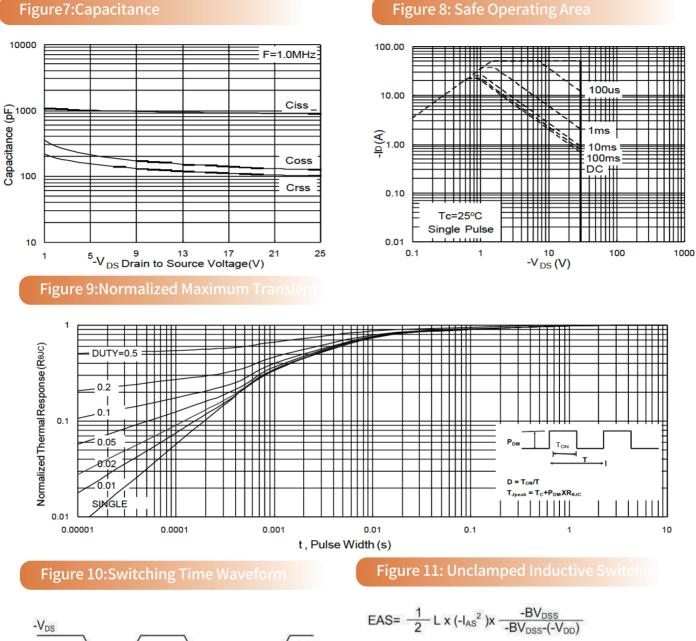
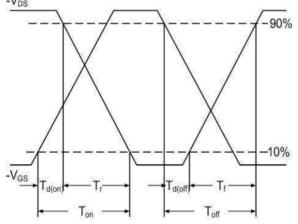
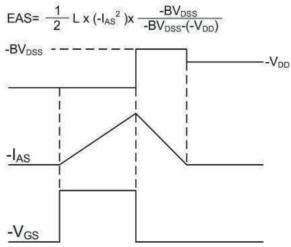


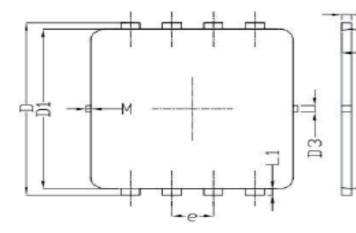
Figure4:Gate-Charge Characteristics

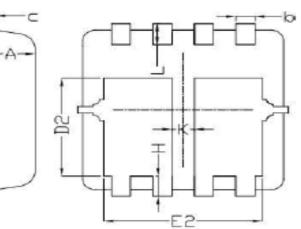




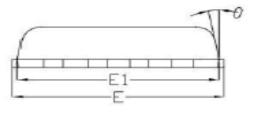

Figure 6: Normalized RDSON v.s TJ

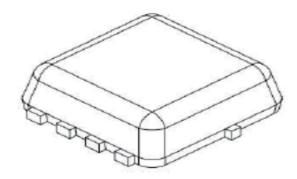


P-Channel Typical Performance Characteristics






07



Package Mechanical Data- PDFN3X3

Symbol	Dimens	ions (un	it: mm)
Symbol	Min	Тур	Max
Α	0.70	0.75	0.80
b	0.25	0.30	0.35
c	0.10	0.15	0.25
D	3.25	3.35	3.45
D1	3.00	3.10	3.20
D2	1.78	1.88	1.98
D3		0.13	-
E	3.20	3.30	3.40
E1	3.00	3.15	3.20
E2	2.39	2.49	2.59
e	0	0.65 BSC	
н	0.30	0.39	0.50
L	0.30	0.40	0.50
L1		0.13	-
к	0.30		
θ		10°	12°
м	*	*	0.15
* Not Spe	ecified		

Notes:

1. Refer to JEDEC MO-240 variation CA. 2. Dimensions "D1" and "E1" do NOT include mold flash protrusions or gate

burrs.

3. Dimensions "D1" and "E1" include interterminal flash or protrusion.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by HL manufacturer:

Other Similar products are found below :

IRFD120 JANTX2N5237 BUK455-60A/B MIC4420CM-TR VN1206L NDP4060 SI4482DY IPS70R2K0CEAKMA1 SQD23N06-31L-GE3 TK16J60W,S1VQ(O 2SK2614(TE16L1,Q) DMN1017UCP3-7 DMN1053UCP4-7 SQJ469EP-T1-GE3 NTE2384 DMC2700UDMQ-7 DMN2080UCB4-7 DMN61D9UWQ-13 US6M2GTR DMN31D5UDJ-7 DMP22D4UFO-7B DMN1006UCA6-7 DMN16M9UCA6-7 STF5N65M6 IRF40H233XTMA1 STU5N65M6 DMN6022SSD-13 DMN13M9UCA6-7 DMTH10H4M6SPS-13 DMN2990UFB-7B IPB80P04P405ATMA2 2N7002W-G MCAC30N06Y-TP MCQ7328-TP NTMC083NP10M5L BXP7N65D BXP4N65F AOL1454G WMJ80N60C4 BXP2N20L BXP2N65D BXT1150N10J BXT1700P06M TSM60NB380CP ROG RQ7L055BGTCR DMNH15H110SK3-13 SLF10N65ABV2 BSO203SP BSO211P IPA60R230P6