1/8 to 1/16 Duty VFD Controller

Features

- Logic voltage: 3.0V~5.5V
- High-voltage output: VDD-35V max.
- Multiple display
(12-segment \& 16-digit to 20 -segment \& 8 -digit)
- 12×4 matrix key scanning
- 8 steps dimmer circuit
- 5 LED output ports (20mA max.)

Applications

- Consumer products panel function control
- Industrial measuring instrument panel function control

General Description

HT16511 is a VFD (Vacuum Fluorescent Display) controller/driver that is driven on a $1 / 8$ to $1 / 16$ duty factor. It consists of 12 segment output lines, 8 grid output lines, 8 segment/grid output drive lines, 5 LED output ports, a control circuit, a display memory, and a key scan circuit.

- 4-bit general purpose input port
- No external resistors necessary for driver output (provides PMOS open-drain and pull-low resistor output)
- Serial interface with MCU (CLK, $\overline{\mathrm{CS}}, \mathrm{DI}, \mathrm{DO})$
- 52-pin LQFP package
- Other similar application panel function control

Serial data inputs to the HT16511 through a three-line serial interface. This VFD controller/driver is ideal as a peripheral device for an MCU.

Block Diagram

Pin Assignment

Pad Assignment

Chip Size: $1920 \times 1599(\mu \mathrm{~m})^{2}$

* The IC substrate should be connected to VSS in the PCB layout artwork.

Pad Coordinates
Unit: $\mu \mathrm{m}$

Pad No.	\mathbf{X}	\mathbf{Y}	Pad No.	\mathbf{X}	\mathbf{Y}
1	-796.450	472.350	27	729.900	-618.350
2	-796.450	380.350	28	729.900	-533.350
3	-796.450	284.350	29	729.900	-448.350
4	-796.450	192.350	30	729.900	-363.350
5	-796.450	96.350	31	729.900	-278.350
6	-796.450	4.350	32	729.900	-193.350
7	-796.450	-91.650	33	729.900	-108.350
8	-796.450	-183.650	34	729.900	-23.600
9	-796.450	-279.650	35	729.900	61.650
10	-796.450	-371.650	36	729.900	146.650
11	-796.450	-467.650	37	729.900	231.650
12	-796.450	-559.650	38	808.200	569.900
13	-796.450	-655.650	39	723.200	569.900
14	-590.150	-570.250	40	638.200	569.900
15	-504.400	-570.250	41	553.200	569.900
16	-419.400	-570.250	42	468.200	569.900
17	-334.400	-570.250	43	383.200	569.900
18	-249.400	-570.250	44	298.200	569.900
19	-164.400	-570.250	45	213.200	569.900
20	-79.400	-570.250	46	102.900	633.950
21	5.600	-570.250	47	10.900	633.950
22	90.600	-570.250	48	-85.100	633.950
23	175.600	-570.250	49	-177.100	633.950
24	260.600	-570.250	50	-273.100	633.950
25	345.600	-570.250	51	-374.950	660.400
26	430.600	-570.250			

Pin Description

Pin No.	Pin Name	I/O	Description
$1 \sim 4$	SW1~SW4	I	4-bit general purpose input port
5	DO	O	Output serial data at the falling edge of the shift clock, starting from low order bit. This is an NMOS open-drain output pin.
6	DI	I	Input serial data at the rising edge of the shift clock, starting from the low order bit.
7	NC	-	No connection
8	CLK	I	Reads serial data at the rising edge, and outputs data at the falling edge.
9	K0~K3	Initializes serial interface at the rising or falling edge of the HT16511. Then it waits to receive a command. Data input after CS has fallen is processed as a command. While command data is processed, current processing is stopped, and the serial interface is initialized. While $\overline{\text { CS is high, CLK is ignored. }}$	
$10 \sim 13$	I	Keying data input to these pins is latched at the end of the display cycle.	
$14,33,45$	VDD	-	Positive power supply
$15 \sim 26$	S1/K1~S12/K12	O	Segment or key source output pins (dual function). This is PMOS open-drain and pull-low resistor output.
$27 \sim 32$,	S13/G16~S20/G9	O	Segment or Grid driver output pins. These pins are selectable for segment or grid driving. This is PMOS open-drain and pull-low resistor output.
$35 \sim 36$	VEE	-	VFD power supply 34
$37 \sim 44$	G8~G1	O	Grid driver output pins (Grid only). This is PMOS open-drain and pull-low re- sistor output.
$46 \sim 50$	LED4~LED0	O	LED driver output ports. This is a CMOS output pin.
51	VSS	-	Negative power supply, ground
52	OSC	I	Connected to an external resistor or an RC oscillator circuit.

Approximate Internal Connections

NMOS OUT	PMOS OUT	CMOS OUT
OVDI		

Absolute Maximum Ratings

Supply Voltage .	. $\mathrm{V}_{\text {SS }}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\text {SS }}+6.0 \mathrm{~V}$	Operating Temperature........................ $-25^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$
Input Voltage	.. $\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$	Storage Temperature $-50^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.
D.C. Characteristics
$\mathrm{Ta}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
		VDD	Conditions				
$V_{D D}$	Logic Supply Voltage	3.3V	-	3.0	3.3	3.6	V
		5.0 V		4.5	5.0	5.5	V
V_{EE}	VFD Supply Voltage	-	-	0	-	$V_{D D}-35$	V
fosc	Oscillation Frequency	3.3 V	$\mathrm{R}_{\text {OSC }}=51 \mathrm{k} \Omega$	480	565	650	kHz
		5.0 V		465	545	630	kHz
$\mathrm{R}_{\text {PL }}$	Output Pull-low Resistor	3.3 V	Driver output	50	100	150	$\mathrm{k} \Omega$
		5.0 V					
I_{DD}	Operating Current	3.3V	No load, VFD display off	-	-	3	mA
		5.0V		-	-	5	mA
loL	Driver Leakage Current	3.3V	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}-35 \mathrm{~V}$, VFD driver off	-	-	-5	$\mu \mathrm{A}$
		5.0 V		-	-	-10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OL1 }}$	LED Sink Current	3.3V	$\mathrm{V}_{\mathrm{OL}}=1.0 \mathrm{~V}, \mathrm{LED} 0 \sim \mathrm{LED} 4$	10	-	-	mA
		5.0 V		20	-	-	mA
$\mathrm{l}_{\mathrm{OH} 1}$	LED Source Current	3.3 V	$\mathrm{V}_{\mathrm{OH}}=0.9 \mathrm{~V}_{\mathrm{DD}}$, LED0~LED4	-0.5	-	-	mA
		5.0V		-1.0	-	-	mA
$\mathrm{IOH21}$	Segment/Key Source Current	3.3V	$\begin{aligned} & \mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-2 \mathrm{~V} \\ & \mathrm{~S} 1 / \mathrm{K} 1 \sim \mathrm{~S} 12 / \mathrm{K} 12 \end{aligned}$	-1.5	-	-	mA
		5.0 V		-3.0	-	-	mA
IOH 22	Segment/Grid Source Current	3.3 V	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-2 \mathrm{~V}$	-7.5	-	-	mA
		5.0 V		-15.0	-	-	mA
Iol3	DO Sink Current	3.3 V	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	2	-	-	mA
		5.0V		4	-	-	mA

Symbol	Parameter		Test Conditions	Min.	Typ.	Max.	Unit
		V ${ }_{\text {D }}$	Conditions				
V_{IH}	"H" Input Voltage	-	-	$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	$V_{D D}$	V
$\mathrm{V}_{\text {IL }}$	"L" Input Voltage	-	-	0	-	$0.3 \mathrm{~V}_{\text {DD }}$	V
$\mathrm{V}_{\mathrm{OH} 1}$	High-level Output Voltage	3.3 V	LED0~LED4, $\mathrm{I}_{\mathrm{OH} 1}=-0.5 \mathrm{~mA}$	$0.9 \mathrm{~V}_{\mathrm{DD}}$	-	$V_{D D}$	V
		5.0 V	LED0~LED4, $\mathrm{I}_{\mathrm{OH} 1}=-1 \mathrm{~mA}$				
$\mathrm{V}_{\text {OL1 }}$	Low-level Output Voltage	3.3 V	LED0~LED4, $\mathrm{I}_{\mathrm{OL} 1}=10 \mathrm{~mA}$	0	-	1	V
		5.0 V	LED0~LED4, $\mathrm{I}_{\mathrm{OL} 1}=20 \mathrm{~mA}$				
$\mathrm{V}_{\text {OL2 }}$	Low-level Output Voltage	3.3 V	$\mathrm{DO}, \mathrm{I}_{\mathrm{OL} 2}=2 \mathrm{~mA}$	0	-	0.4	V
		5.0 V	$\mathrm{DO}, \mathrm{I}_{\mathrm{OL} 2}=4 \mathrm{~mA}$				

A.C. Characteristics

$\mathrm{Ta}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
		V ${ }_{\text {D }}$	Conditions				
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time	3.3 V	$\begin{aligned} & \mathrm{CLK} \rightarrow \mathrm{DO} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	-	-	200	ns
		5.0 V		-	-	100	ns
$\mathrm{t}_{\text {PLH }}$		3.3 V		-	-	600	ns
		5.0 V		-	-	300	ns
$\mathrm{tr}_{\text {1 }}$	Rise Time	3.3 V	$\mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}, \mathrm{S} 0 \sim S 12$	-	-	4.0	$\mu \mathrm{s}$
		5.0V		-	-	2.0	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{r} 2}$		3.3 V	$\mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}, \mathrm{G} 0 \sim \mathrm{G} 16$	-	-	1.0	$\mu \mathrm{s}$
		5.0 V		-	-	0.5	$\mu \mathrm{s}$
t_{f}	Fall Time	3.3 V	$\mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}, \mathrm{Sn}, \mathrm{Gn}$	-	-	240	$\mu \mathrm{s}$
		5.0 V		-	-	120	$\mu \mathrm{s}$
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency	3.3 V	Duty=50\%	-	-	0.5	MHz
		5.0 V		-	-	1.0	MHz
C_{i}	Input Capacitance	3.3 V	-	-	-	15	pF
		5.0 V		-	-	15	pF
t_{cW}	Clock Pulse Width	3.3 V	-	800	-	-	ns
		5.0 V		400	-	-	ns
$t_{\text {sw }}$	Strobe Pulse Width	3.3 V	-	2	-	-	$\mu \mathrm{s}$
		5.0 V		1	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {Su }}$	Data Setup Time	3.3 V	-	200	-	-	ns
		5.0 V		100	-	-	ns
$t_{\text {h }}$	Data Hold Time	3.3 V	-	200	-	-	ns
		5.0 V		100	-	-	ns
t_{CS}	Clock-Strobe Time	3.3 V	CLK rising edge to CS rising edge	2	-	-	$\mu \mathrm{s}$
		5.0 V		1	-	-	$\mu \mathrm{s}$
$t_{\text {w }}$	Wait Time	3.3 V	CLK rising edge to CLK falling edge	2	-	-	$\mu \mathrm{s}$
		5.0 V		1	-	-	$\mu \mathrm{s}$

Functional Description

Display RAM and Display Mode

The static display RAM is organized into 40×8 bits and stores the data transmitted from an external device to the HT16511 through a serial interface. The contents of the RAM are directly mapped to the contents of the VFD driver. Data in the RAM can be accessed through the data setting, address setting and display control commands. It is assigned addresses in 8-bit unit as follows:

SEG4		SEG8	SEG12 S	2 SEG16 SEG20	
00 HL	00 Hu	01HL	01Hu	02HL	DIG1
03HL	03Hu	04HL	04Hu	05 HL	DIG2
06HL	06Hu	07HL	07Hu	08 HL	DIG3
09HL	09Hu	0AHL	0AHu	OBHL	DIG4
0 CHL	0CHu	ODHL	ODHu	0EHL	DIG5
0FHL	OFHu	10 HL	10 Hu	11 HL	DIG6
12 HL	12 Hu	13 HL	13 Hu	14 HL	DIG7
15 HL	15 Hu	16 HL	16 Hu	17 HL	DIG8
18 HL	18 Hu	19 HL	19 Hu	1 AHL	DIG9
1BHL	1 BHu	1 CHL	1 CHu	1DHL	DIG10
1EHL	1EHu	1FHL	1 FHu	20 HL	DIG11
21 HL	21 Hu	22 HL	22 Hu	23 HL	DIG12
24 HL	24 Hu	25 HL	25 Hu	26 HL	DIG13
27 HL	27 Hu	28 HL	28 Hu	29 HL	DIG14
2AHL	2 AHu	2BHL	2 BHu	2 CHL	DIG15
2DHL	2DHu	2EHL	2EHu	2 FHL	DIG16

b0	b3b4
XXHL	XXHU
Lower	Higher
4 bits	4 bits

Note: Only the lower 4 bits of the addresses assigned to SEG17 through SEG20 are valid, the higher 4 bits are ignored.

Dimming Control

HT16511 provides 8-step dimmer function on display by controlling the 3 -bit binary command code. The full pulse width of grid signal is divides into 16 uniform sections by PWM (pulse width modulation) technology.

The 16 uniform sections available form 8 steps dimmer via 3-bit binary code. The 8 -step dimmer includes $1 / 16$, $2 / 16,4 / 16,10 / 16,11 / 16,12 / 16,13 / 16$ and $14 / 16$. The $1 / 16$ pulse width indicates minimum lightness. The 14/16 pulse width represents maximum lightness (Refer to the display control command).

Key Matrix and Key-Input Data Storage RAM

The key matrix scans the series key states at each level of the key strobe signal (S1/K1~S12/K12) output of the HT16511. The key strobe signal outputs are time-multiplexed signals from S1/K1~S12/K12. The states of inputs K0~K3 are sampled by strobe signal S1/K1~S12/K12 and latched into the register.

The key matrix is made up of a 12×4 matrix, as shown below.

HT16511

The data of each key is stored as illustrated below, and is read with the read command, starting from the least significant bit.

LED Port

The LED port belongs to the CMOS output configuration.

Data is written to the LED port with the write command, starting from the least port's least significant bit. In our application (see application circuits), the user adopts an internal NMOS device to a driver LED component by connecting VDD. When a bit of this port is 0 , the corresponding LED lights; when the bit is 1 , the LED turns off. The data of bits 6 through 8 are ignored.

SW Data

The HT16511 provides an extra 4-bit general input port. The SW data is provided with available binary code. The SW data is read with the read command, starting from the least significant bit. Bits 5 through 8 of the SW data are 0 .

Commands

Commands set the display mode and status of the VFD driver.

The first 1 byte input to the HT16511 through the DI pin after the $\overline{\mathrm{CS}}$ pin has fallen, is regarded as a command. If $\overline{\mathrm{CS}}$ is set high while commands/data are transmitted, serial communication is initialized, and the commands/ data being transmitted are not valid (however, the commands/data previously transmitted remains valid).

- Display mode setting commands

These commands initialize the HT16511 and select the number of segments and the number of grids (1/8~1/16 duty, 12 segments to 20 segments).
When these commands are executed, the display is forcibly turned off, and key scanning is also stopped. To resume display, the display command "ON" must be executed. If the same mode is selected, nothing happens.

Selects display mode
0xxx: 8 digits, 20 segments 1000: 9 digits, 19 segments 1001: 10 digits, 18 segments 1010: 11 digits, 17 segments 1011: 12 digits, 16 segments 1100: 13 digits, 15 segments 1101: 14 digits, 14 segments 1110: 15 digits, 13 segments 1111: 16 digits, 12 segments
Note: Power-on status: 16 -digit, 12 segment mode is selected.

- Data setting commands

These commands set the data write and data read modes.

Note: power-on status: normal mode operation and address increment mode are set.

- Address setting commands

These commands set the address of the display memory.

If address 30 H or higher is set, data is ignored until a valid address is set. Note: power-on status: the address is set to 00 H .

- Display control commands

Note: power-on status: 1-16 pulse width is set and the display is turned off. Key scanning will be stopped during power

Timing Diagrams

Key Scanning and Display Timing

Note: One cycle of key scan consists of two frames, and data of 12×4 matrixes is stored in RAM.

Serial Communication Format

- Reception (command/data write)

- Transmission (data read)

DO must be sure to connect an external pull-high resistor to this pin ($1 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$).
Note: When data is read, a wait time " tw " of $1 \mu \mathrm{~s}$ is necessary.

- Updating display memory by incrementing address

Note: Command 1: sets display mode
Command 2: sets data
Command 3: sets address
Data 1 to n : transfers display data (48 bytes max.)
Command 4: controls display

- Updating specific addresses

Note: Command 1: sets data
Command 2: sets address
Data: display data

Application Circuits

Note: $\quad R_{\mathrm{OSC}}=51 \mathrm{k} \Omega$ for oscillator resistor
R1=1~10k Ω for external pull-high resistor
R2~R6=750 $2 \sim 1.2 \mathrm{k} \Omega$
R7~R10=10k Ω for external pull-low resistor D1~D12=1N4001
$\mathrm{Ef}=$ Filament voltage for VFD

Package Information

Note that the package information provided here is for consultation purposes only. As this information may be updated at regular intervals users are reminded to consult the Holtek website for the latest version of the Package/Carton Information.

Additional supplementary information with regard to packaging is listed below. Click on the relevant section to be transferred to the relevant website page.

- Further Package Information (include Outline Dimensions, Product Tape and Reel Specifications)
- Packing Meterials Information
- Carton information

52-pin LQFP ($14 \mathrm{~mm} \times 14 \mathrm{~mm}$) Outline Dimensions

Symbol	Dimensions in inch		
	Min.	Nom.	Max.
A	0.622	0.630	0.638
B	0.547	0.551	0.555
C	0.622	0.630	0.638
D	0.547	0.551	0.555
E	-	0.039 BSC	-
F	0.015	-	0.019
G	0.053	0.055	0.057
H	-	-	0.063
J	0.002	-	0.008
K	0.018	-	0.030
α	0.005	-	0.007

Symbol	Dimensions in mm		
	Min.	Nom.	Max.
A	15.80	16.00	16.20
B	13.90	14.00	14.10
C	15.80	16.00	16.20
D	13.90	14.00	14.10
E	-	1.0 BSC	-
F	0.39	-	0.48
G	1.35	-	1.40
H	-	-	1.60
J	0.05	-	0.20
K	0.45	-	0.75
α	0.13	-	0.18

Copyright © 2013 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Gate Drivers category:
Click to view products by Holtek manufacturer:
Other Similar products are found below :
$\underline{00028} \underline{00053 \mathrm{P} 0231} \underline{8967380000} 56956$ CR7E-30DB-3.96E(72) 57.404.7355.5 LT4936 57.904.0755.0 5801-0903 5803-0901 5811-0902

1003W-10/32-15 LTILA6E-1S-WH-RC-FN12VXCR1 0131700000 00-2240 LTP70N06 LVP640 0158-624-00 5J0-1000LG-SIL 020017-13
LY1D-2-5S-AC120 LY2-0-US-AC120 LY2-US-AC240 LY3-UA-DC24 00-5150 00576P0020 00600P0010 LZNQ2M-US-DC5 LZNQ2-
US-DC12 LZP40N10 00-8196-RDPP 00-8274-RDPP 00-8275-RDNP 00-8609-RDPP 00-8722-RDPP 00-8728-WHPP 00-8869-RDPP 00-9051-RDPP 00-9091-LRPP 00-9291-RDPP

