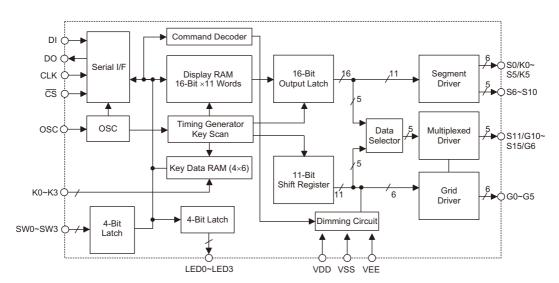


Features

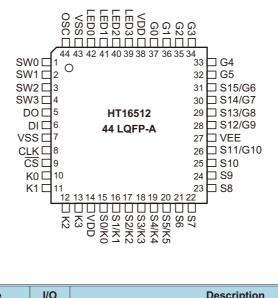
- Logic voltage: 3.0V~5.5V
- High-voltage output: V_{DD}-35V max.
- Multiple display (11-segment & 11-digit to 16-segment & 6-digit)
- 6×4 matrix key scanning
- 8 steps dimmer circuit
- 4 LED output ports


Applications

- Consumer products panel function control
- Industrial measuring instrument panel function control

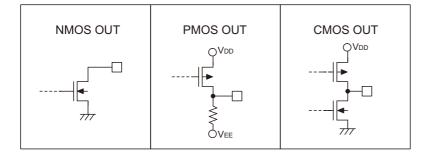
- 4-bit general purpose input port
- No external resistors necessary for driver output (provides PMOS open-drain and pull-low resistor output)
- Serial interface with MCU (CLK, CS, DI, DO)
- 44-pin LQFP package
- Other similar application panel function control

General Description


HT16512 is a VFD (Vacuum Fluorescent Display) controller/driver that is driven on a 1/4 to 1/11 duty factor. It consists of 11 segment output lines, 6 grid output lines, 5 segment/grid output drive lines, 4 LED output ports, a control circuit, a display memory, and a key scan circuit. Serial data inputs to the HT16512 through a three-line serial interface. This VFD controller/driver is ideal as a peripheral device for an MCU.

Block Diagram

Pin Assignment



Pin Description

Pin No.	Pin Name	I/O	Description	
1~4	SW0~SW3	I	4-bit general purpose input port Whether these pins are used or not, they should be connected to VDD or VSS.	
5	DO	0	Output serial data at the falling edge of the shift clock, starting from low order bit. This is an NMOS open-drain output pin.	
6	DI	I	Input serial data at the rising edge of the shift clock, starting from the low order bit.	
7, 43	VSS		Negative power supply, ground Both of the VSS (pin 7 and pin 43) should be connected to ground.	
8	CLK	I	Reads serial data at the rising edge, and outputs data at the falling edge.	
9	cs	I	Initializes serial interface at the rising or falling edge of the HT16512. Then it waits to receive a command. Data input after \overline{CS} has fallen is processed as a command. While command data is processed, current processing is stopped, and the serial interface is initialized. While \overline{CS} is high, CLK is ignored.	
10~13	K0~K3	I	Keying data input to these pins is latched at the end of the display cycle.	
14, 38	VDD		Posistive power supply	
15~20	S0/K0~S5/K5	0	Segment or key source output pins (dual function). This is PMOS open-drain and pull-low resistor output.	
21~25	S6~S10	0	Segment driver output pins (segment only). This is PMOS open-drain and pull-low resistor output.	
26, 28~31	S11/G10~S15/G6	0	Segment or Grid driver output pins. These pins are selectable for seg- ment or grid driving. This is PMOS open-drain and pull-low resistor output.	
27	VEE	_	VFD power supply	
37~32	G0~G5	0	Grid driver output pins (Grid only). This is PMOS open-drain an pull-low resistor output.	
42~39	LED0~LED3	0	LED driver output ports. This is a CMOS output pin.	
44	OSC	I	Connected to an external resistor or an RC oscillator circuit.	

Approximate Internal Connections

Absolute Maximum Ratings

Supply Voltage	V _{SS} –0.3V to V _{SS} +5.5V	Operating Temperature	–25°C to 75°C
Input Voltage	$V_{SS}0.3V$ to $V_{DD}\text{+-}0.3V$	Storage Temperature	–50°C to 125°C

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

D.C. Characteristics

Ta=25°C

Symbol	Parameter	Test Conditions		Min.	True		Ilmit
Symbol	Parameter	V _{DD}	Conditions	wiin.	Тур.	Max.	Unit
V		3.3V		3.0	3.3	3.6	V
V _{DD}	Logic Supply Voltage	5.0V		4.5	5.0	5.5	V
V_{EE}	VFD Supply Voltage	_		0		V _{DD} -35	V
4		3.3V	D -5440	480	565	650	kHz
f _{OSC}	Oscillation Frequency	5.0V	R _{OSC} =51kΩ	465	545	630	kHz
D		3.3V	Driver to t	50	100	150	kΩ
R _{PL}	Output Pull-low Resistor	5.0V	Driver output	50	100		
		3.3V				3	mA
I _{DD}	Operating Current	5.0V	No load, VFD display off	_		5	mA
		3.3V	Vo=VDD-35V, VFD driver			-5	μA
I _{OL}	DL Driver Leakage Current		off	_		-10	μA
		3.3V		10			mA
I _{OL1}	LED Sink Current		V _{OL} =1V, LED0~LED3	20			mA
			V _{OH} =0.9V _{DD}	-0.5			mA
I _{OH1}	LED Source Current	5.0V	LED0~LED3	-1.0			mA
		3.3V	<u> </u>	-1.5			mA
I _{OH21}	Segment/Key Source Current	5.0V	V _{OH} =V _{DD} -2V S0/K0~S5/K5, S6~S10	-3.0			mA
		3.3V		-7.5			mA
I _{OH22}	Segment/Grid Source Current	5.0V	V _{OH} =V _{DD} -2V G0~G5, S11/G10~S15/G6	-15.0			mA
		3.3V		2			mA
I _{OL3}	DO Sink Current		V _{OL} =0.4V				
		5.0V		4			mA

Symbol	Parameter	Test Conditions		Min.	Turn	Max.	Unit
Symbol	Farameter	V _{DD}	Conditions		Тур.	wax.	Unit
VIH	"H" Input Voltage			0.7V _{DD}	_	V _{DD}	V
VIL	"L" Input Voltage			0		$0.3V_{DD}$	V
N/	High-level Output Voltage	3.3V	LED0~LED3, I _{OH1} =-0.5mA	- 0.9V _{DD}		V _{DD}	V
V _{OH1}		5.0V	LED0~LED3, I _{OH1} =-1mA		_		
V	V _{OL1} Low-level Output Voltage		LED0~LED3, I _{OL1} =10mA			4	V
VOL1			LED0~LED3, I _{OL1} =20mA	0		1	
V _{OL2}	Low-level Output Voltage	3.3V	DO, I _{OL2} =2mA		0.4	V	
		5.0V	DO, I _{OL2} =4mA	- 0 -			

A.C. Characteristics

Ta=25°C

Sumbol	Parameter	Test Conditions			True	Marr	Unit
Symbol	Parameter	V _{DD}	Conditions	Min.	Тур.	Max.	Unit
t		3.3V				200	ns
t _{PHL}			CLK→DO			100	ns
t	Propagation Delay Time	3.3V	$C_L=15pF, R_L=10k\Omega$			600	ns
t _{PLH}		5.0V		_		300	ns
t.		3.3V	C _L =300pF, S0~S10	_	—	4.0	μs
t _{r1}	Rise Time	5.0V	0L-300pr , 30*310			2.0	μs
t .	Rise filme	3.3V	C _L =300pF, G0~G5, S11/G10~		_	1.0	μs
t _{r2}		5.0V	S15/G6	_	_	0.5	μs
t.	Fall Time	3.3V	C _L =300pF, Sn, Gn		_	240	μs
t _f		5.0V				120	μs
f	Maximum Clack Fraguanay	3.3V	Duty=50%	_		0.5	MHz
Imax	f _{max} Maximum Clock Frequency	5.0V	Duty-50%	_	—	1.0	MHz
Ci	Input Capacitance			_	—	15	pF
U _i				_		15	pF
tour				800	_	_	ns
t _{CW}	Clock Pulse Width	5.0V	_	400	_	_	ns
t	Strobe Pulse Width	3.3V		2		_	μs
t _{SW}	Strobe Pulse Width	5.0V	_	1		_	μs
tau	Data Setup Time	3.3V		200	—		ns
t _{SU}	Data Setup Time	5.0V		100			ns
t _h	Data Hold Time	3.3V		200		_	ns
ฑ				100			ns
t _{cs}	Clock-Strobe Time	3.3V	CLK rising edge to CS rising edge	2		_	μs
ⁱ CS		5.0V		1			μs
t.,	Wait Time	3.3V	CLK rising adap to CLK falling adap	2			μs
' W	t _w Wait Time		CLK rising edge to CLK falling edge		_	_	μs

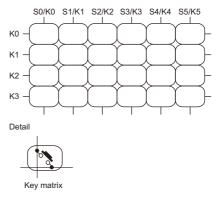
Functional Description

Display RAM and Display Mode

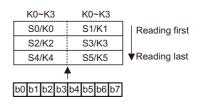
The static display RAM is organized into 22×8 bits and stores the data transmitted from an external device to the HT16512 through a serial interface. The contents of the RAM are directly mapped to the contents of the VFD driver. Data in the RAM can be accessed through the data setting, address setting and display control commands. It is assigned addresses in 8-bit unit as follows:

S0 ~ S3 S4 ~ S7	S8 ~ S11 S12 ~ S15	
Address: 00H	01H	Digit0
02H	03H	Digit1
04H	05H	Digit2
06H	07H	Digit3
08H	09H	Digit4
0AH	0BH	Digit5
0CH	0DH	Digit6
0EH	0FH	Digit7
10H	11H	Digit8
12H	13H	Digit9
14H	15H	Digit10
_	≜	
b0 b1 b2 b3 b4 b5 b6 b7	b0 b1 b2 b3 b4 b5 b6 b7	

Dimming Control

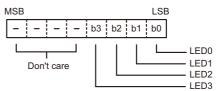

HT16512 provides 8-step dimmer function on display by controlling the 3-bit binary command code. The full pulse width of grid signal is divides into 16 uniform sections by PWM (pulse width modulation) technology.

The 16 uniform sections available form 8 steps dimmer via 3-bit binary code. The 8-step dimmer includes 1/16, 2/16, 4/16, 10/16, 11/16, 12/16, 13/16 and 14/16. The 1/16 pulse width indicates minimum lightness. The 14/16 pulse width represents maximum lightness. (Refer to the display control command).


Key Matrix and Key-Input Data Storage RAM

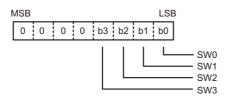
The key matrix scans the series key states at each level of the key strobe signal (S0/K0~S5/K5) output of the HT16512. The key strobe signal outputs are time-multiplexed signals from S0/K0~S5/K5. The states of inputs K0~K3 are sampled by strobe signal S0/K0~S5/K5 and latched into the register.

The key matrix is made up of a 6×4 matrix, as shown below.


The data of each key is stored as illustrated below, and is read with the read command, starting from the least significant bit.

LED Port

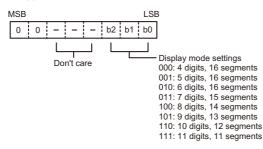
The LED port belongs to the CMOS output configuration.


Data is written to the LED port with the write command, starting from the least port's least significant bit. In our application (see application circuits), the user adopts an internal NMOS device to a driver LED component by connecting VDD. When a bit of this port is 0, the corresponding LED lights; when the bit is 1, the LED turns off. The data of bits 5 through 8 are ignored.

SW Data

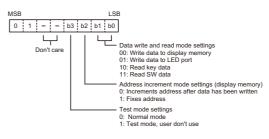
HT16512 provides an extra 4-bit general input port. The SW data is provided with available binary code. The SW data is read with the read command, starting from the least significant bit. Bits 5 through 8 of the SW data are 0.

Commands

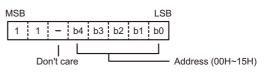

Commands set the display mode and status of the VFD driver.

The first 1 byte input to the HT16512 through the DI pin after the $\overline{\text{CS}}$ pin has fallen, is regarded as a command. If $\overline{\text{CS}}$ is set high while commands/data are transmitted, serial communication is initialized, and the commands/data being transmitted are not valid (however, the commands/data previously transmitted remains valid).

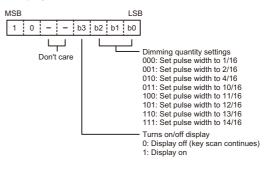
Display mode setting commands


These commands initialize the HT16512 and select the number of segments and the number of grids $(1/4 \sim 1/11 \text{ duty}, 11 \text{ segments to 16 segments}).$

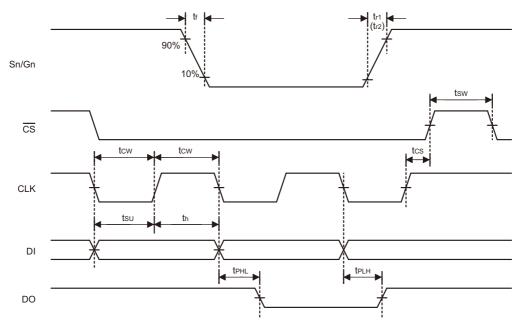
When these commands are executed, the display is forcibly turned off, and key scanning is also stopped. To resume display, the display command "ON" must be executed. If the same mode is selected, nothing happens.


Data setting commands

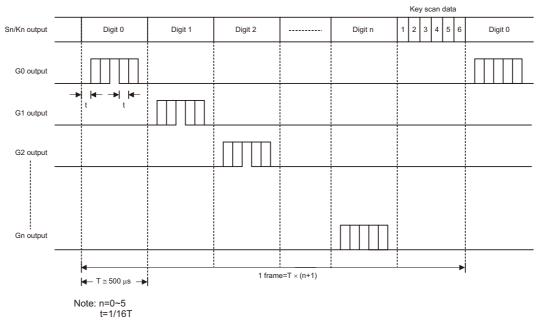
These commands set the data write and data read modes.


· Address setting commands

These commands set the address of the display memory.

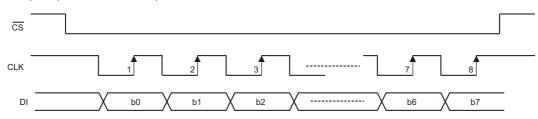

If address 16H or higher is set, data is ignored until a valid address is set.

· Display control commands

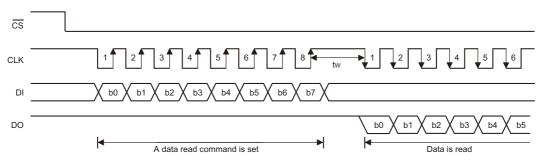


Timing Diagrams

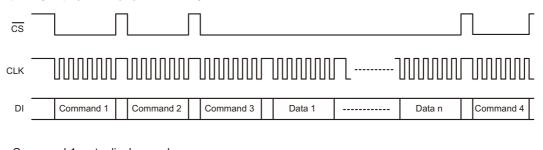
Key Scanning and Display Timing



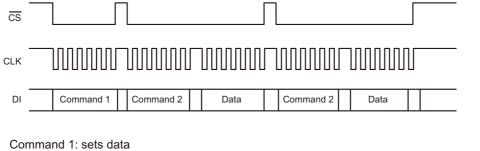
T: pulse width of segment signal is decided by oscillator frequency One cycle of key scanning consists of one frame.



Serial Communication Format

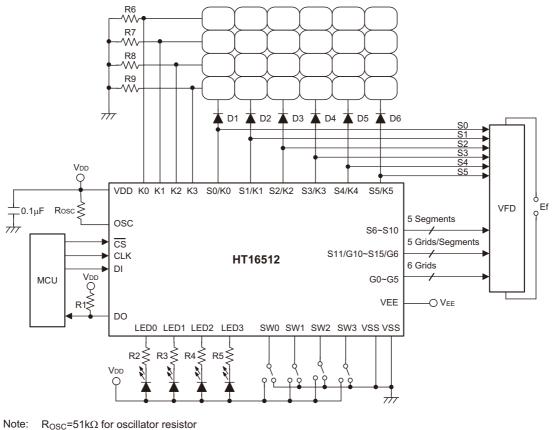


• Transmission (data read)


DO must be sure to connect an external pull-high resistor to this pin $(1k\Omega \text{ to } 10k\Omega)$. Note: When data is read, a wait time "t_w" of 1µs is necessary.

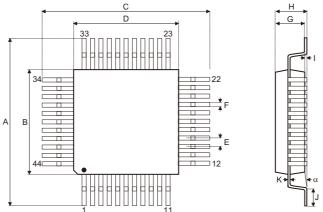
[•] Updating display memory by incrementing address

Command 1: sets display mode Command 2: sets data Command 3: sets address Data 1 to n: transfers display data (22 bytes max.) Command 4: controls diplay


• Updating specific addresses

Command 2: sets address Data: display data

Application Circuits


R_{OSC}=51kΩ for oscillator resistor
R1=1~10kΩ for external pull-high resistor
R2~R5=750Ω~1.2kΩ
R6~R9=10kΩ for external pull-low resistor
D1~D6=1N4001
Ef=Filament voltage for VFD
Both of the VSS (pin 7 and pin 43) should be connected to ground.

Package Information

Note that the package information provided here is for consultation purposes only. As this information may be updated at regular intervals users are reminded to consult the Holtek website or the latest version of the package information.

Symbol	Dimensions in inch				
Symbol	Min.	Nom.	Max.		
А	0.469	_	0.476		
В	0.390	_	0.398		
С	0.469		0.476		
D	0.390		0.398		
E		0.031	_		
F		0.012	_		
G	0.053	_	0.057		
Н			0.063		
I		0.004	_		
J	0.018		0.030		
К	0.004		0.008		
α	0°		7 °		

Symbol	Dimensions in mm				
Symbol	Min.	Nom.	Max.		
А	11.90		12.10		
В	9.90		10.10		
С	11.90		12.10		
D	9.90		10.10		
E		0.80	_		
F	_	0.30	_		
G	1.35		1.45		
Н			1.60		
I		0.10	_		
J	0.45		0.75		
К	0.10	—	0.20		
α	0°		7 °		

Holtek Semiconductor Inc. (Headquarters) No.3, Creation Rd. II, Science Park, Hsinchu, Taiwan Tel: 886-3-563-1999 Fax: 886-3-563-1189 http://www.holtek.com.tw

Holtek Semiconductor Inc. (Taipei Sales Office)

4F-2, No. 3-2, YuanQu St., Nankang Software Park, Taipei 115, Taiwan Tel: 886-2-2655-7070 Fax: 886-2-2655-7373 Fax: 886-2-2655-7383 (International sales hotline)

Holtek Semiconductor (China) Inc.

Building No. 10, Xinzhu Court, (No. 1 Headquarters), 4 Cuizhu Road, Songshan Lake, Dongguan, China 523808 Tel: 86-769-2626-1300 Fax: 86-769-2626-1311

Holtek Semiconductor (USA), Inc. (North America Sales Office) 46729 Fremont Blvd., Fremont, CA 94538 Tel: 1-510-252-9880 Fax: 1-510-252-9885 http://www.holtek.com

Copyright © 2012 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Display Drivers & Controllers category:

Click to view products by Holtek manufacturer:

Other Similar products are found below :

ICB2FL01G LC74761M-9006-E MP3360DG-LF-P HV5812PJ-G-M904 TW8813-LB2-GR TW8819AT-NA2-GR TW8811-PC2-GR MAX1839EEP+ TW9907-TA1-GR S1D13503F00A200 MAX7370ETG+T LX27901IDW STVM100DC6F DS3994Z+T&R S1D13515F00A100 LX1686EIPW AM26C32IDR MAX7370ETG+ LX1688IPW MAX1739EEP+ MAX17126BETM+ MAX14515AEWA+T DS3992Z-18P BTM7710GXUMA1 DS3881E+C S1D13742F01A200 LX1688CPW MAX17126AETM+ MAX8729EEI+ MAX7370ETG TIOS1013DMWR TLD5097EL HV857LK7-G TLD5097ELXUMA1 AAT2823IBK-1-T1 DLPA1000YFFT ICB2FL01GXUMA2 DLP2000FQC SC401U IR2117PBF PAD1000YFFR S1D13746F01A600 S1D13748B00B100 FIN324CMLX STVM100DS6F HV850MG-G AD8138ARZ-R7 AD8387JSVZ ADDI9023BBCZ ADM3202ARUZ-REEL7