Features

• Low startup voltage: 0.85V (Typical)

• High efficiency up to 85%

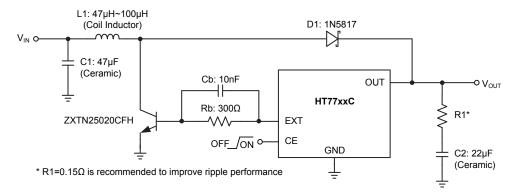
· Ultra low no load input current

• High output voltage accuracy: ±2.5%

 Fixed output voltage: 1.8V, 2.2V, 2.7V, 3.0V, 3.3V, 3.7V and 5.0V

Ultra low shutdown current: 0.1μA (Typical)
Package type: 3-pin SOT89 and 5-pin SOT23

Applications


- One, two and three cell alkaline and NiMH/NiCd bettery powered portable products
- Portable equipment/handheld devices

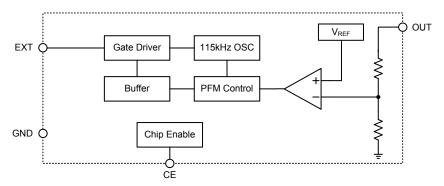
General Description

The HT77xxC series is a set of PFM step-up DC/DC converters with high efficiency and low ripple. The series features extremely low start-up voltage and high output voltage accuracy. They require only few external components to provide a fixed output voltage of 1.8V, 2.2V, 2.7V, 3.0V, 3.3V, 3.7V and 5.0V. CMOS technology ensures low supply current and makes them ideal for battery-operated applications powered from one or more cells.

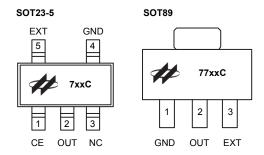
The HT77xxC series consist of an oscillator, a PFM control circuit, a gate driver, a reference voltage unit and a high speed comparator. They employ pulse frequency modulation (PFM) for minimum supply current and ripple at light output loading. These devices are available in space saving 3-pin SOT89 and 5-pin SOT23 packages. For the 5-pin SOT23 package, it also contains a chip enable function to reduce power consumption during shutdown mode.

Typical Application Circuits

Selection Table


Part No.	Output Voltage	Packages	Markings
HT7718C	1.8V		
HT7722C	2.2V		
HT7727C	2.7V		
HT7730C	3.0V		77xxC marking for SOT89 type 7xxC marking for SOT23-5 type
HT7733C	3.3V		7XXO Marking for GO 125-5 type
HT7737C	3.7V		
HT7750C	5.0V		

Note: "xx" stands for output voltages.


Rev. 1.10 1 August 01, 2018

Block Diagram

Pin Assignment

Pin Description

Pin No.		Pin Name	Din Description	
SOT89	SOT23-5	Pin Name	Pin Description	
_	1	CE	Chip enable pin, high active.	
2	2	OUT	Output voltage pin	
_	3	NC	No connection	
1	4	GND	Ground pin	
3	5	EXT	Gate driver output pin	

Rev. 1.10 2 August 01, 2018

Absolute Maximum Ratings

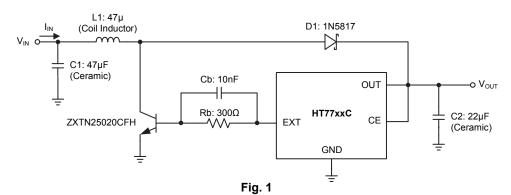
Parameter	Value	Unit	
OUT		-0.3 to +6.0	V
EXT and CE		-0.3 to +6.0	V
Maximum Junction Temperature		+150	°C
Storage Temperature Range		-65 to +150	°C
Lead Temperature (Soldering 10sec)	+260	°C	
Human Body Mode		5000	V
ESD Susceptibility	Machine Mode	400	V
Junetics to Ambient Thermal Desigtance O	200	°C/W	
Junction-to-Ambient Thermal Resistance, θ _{JA}	500		
SOT89		0.625	10/
Power Dissipation, P _D	SOT23-5	0.25	W

Recommended Operating Ratings

Parameter	Value	Unit
V _{IN}	0.85 to 5	V
Operating Temperature Range	-40 to +85	°C

Note that Absolute Maximum Ratings indicate limitations beyond which damage to the device may occur. Recommended Operating Ratings indicate conditions for which the devices are intended to be functional, but do not guarantee specified performance limits.

Rev. 1.10 3 August 01, 2018

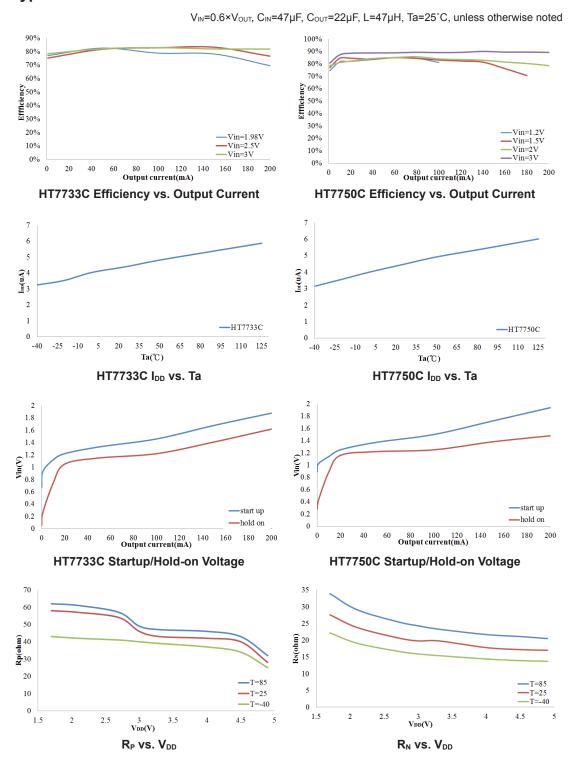


Electrical Characteristics

V_{IN}=0.6×V_{OUT}, I_{OUT}=10mA and Ta=+25°C, unless otherwise specified

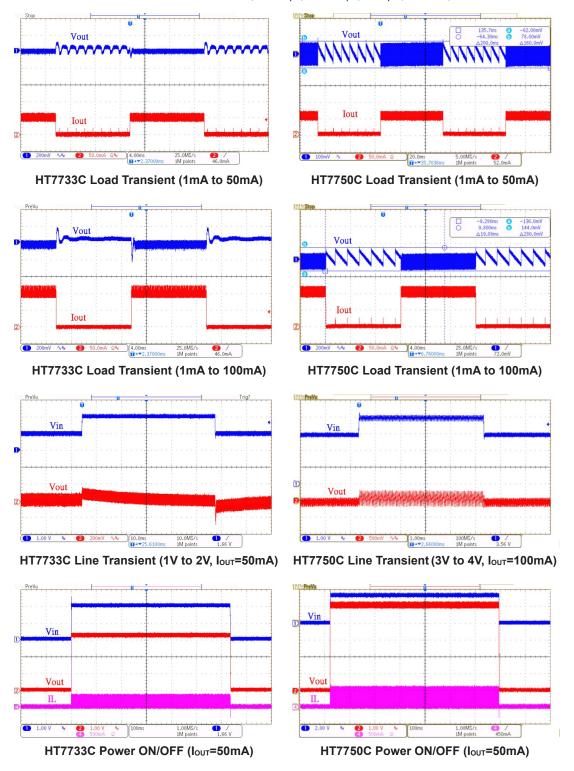
Symbol	Parameter	Test Condition		Min	Тур	Max	Unit
V _{IN}	Input Voltage Range	_		_	_	5.5	V
ΔV_{OUT}	Output Voltage Accuracy	_		-2.5	_	+2.5	%
V _{ST}	Startup Voltage (Fig.1)	V_{IN} : 0V \rightarrow 2V, I_{OUT} =1mA		_	0.85	1	V
V _{HOLD}	Hold on Voltage (Fig.1)	V_{IN} : 2V \rightarrow 0V, I_{OUT} =1mA		_	_	0.7	V
I _{IN}	No Load Input Current (Fig.1)	I _{OUT} =0mA		8	10	20	μA
I _{DD}	Non-switching Current (Fig.2)	V _{DD} =V _{OUT} +0.5V		_	5	10	μA
I _{SHDN}	Shutdown Current (Fig.1)	CE=GND	CE=GND		0.1	1	μΑ
		V _{DD} =1.7V, I _{EXT} =10mA	V _{OUT} =1.8V	_	46	_	
R _{P(ON)}	High Side On Resistance (Fig.3)	V _{DD} =3.2V, I _{EXT} =10mA	V _{OUT} =3.3V	_	37	_	Ω
		V _{DD} =4.85V, I _{EXT} =10mA	V _{OUT} =5.0V	_	30	_	
		V _{DD} =1.7V, I _{EXT} =-10mA	V _{OUT} =1.8V	_	25	_	
R _{N(ON)}	Low Side On Resistance (Fig.3)	V _{DD} =3.2V, I _{EXT} =-10mA	V _{OUT} =3.3V	_	17	_	Ω
		V _{DD} =4.85V, I _{EXT} =-10mA	V _{OUT} =5.0V	_	15	_	
V _{IH}	CE High Threshold	_		1.6	_	_	V
VIL	CE Low Threshold	_		_	_	0.4	V
fosc	Maximum Oscillator Frequency (Fig.2)	V _{DD} =0.9×V _{OUT} , measured at EXT pin		_	115	_	kHz
Dosc	Oscillator Duty Cycle (Fig.2)	V _{DD} =0.9×V _{OUT} , measured at EXT pin		65	75	85	%
η	Efficiency	_			85		%

Note: Absolute maximum ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the devices are intended to be functional, but do not guarantee specific performance limits. The guaranteed specifications apply only for the test conditions listed.



EXT OUT
HT77xxC
GND
CE
GND
GND
Fig. 2

Fig. 3



Typical Performance Characteristics

 V_{IN} =0.6× V_{OUT} , C_{IN} =47 μ F, C_{OUT} =22 μ F, L=47 μ H, Ta=25°C, unless otherwise noted

 $V_{\text{IN}}\text{=}0.6\times V_{\text{OUT}},\,C_{\text{IN}}\text{=}47\mu\text{F},\,C_{\text{OUT}}\text{=}22\mu\text{F},\,L\text{=}47\mu\text{H},\,Ta\text{=}25^{\circ}\text{C},\,unless\,otherwise\,noted}$ Vin Vin LX LX Vout Vout HT7733C Operation (I_{OUT}=0mA) HT7750C Operation (I_{OUT}=0mA) Vin Vin Vout HT7733C Operation (IouT=100mA) HT7750C Operation (IouT=100mA) Vin Vin Vout Vout EN EN

HT7733C Chip Enable/Disable

Rev. 1.10 7 August 01, 2018

HT7750C Chip Enable/Disable

Component Selection

Power Inductor

It's recommended to use a $47\mu H$ or higher inductance to remain low output ripple voltage in most applications. Increasing the inductance gains lower output ripple voltage. It is suggested that to choose lower DCR to reduce the efficiency loss, typically DCR<1 Ω . Otherwise, the chosen saturation current of the inductor should be greater than its peak current in applications, typically 1A or higher.

Schottky Diode

The breakdown voltage rating of the diode should be higher than the maximum output voltage. The current rating for the diode is suggested to use 1A or higher rating.

Input Capacitor

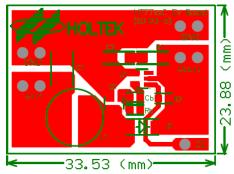
A low ESR ceramic capacitor ($C_{\rm IN}$) is needed between the VIN pin and GND pin. Use ceramic capacitors with X5R or X7R dielectrics for their low ESRs and small temperature coefficients. For most applications, a $47\mu F$ capacitor will suffice.

Output Capacitor

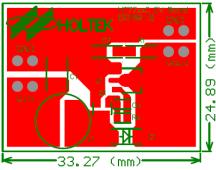
The selection of C_{OUT} is driven by the maximum allowable output voltage ripple. Use ceramic capacitors with X5R or X7R dielectrics for their low ESR characteristics. Capacitors in the range of $22\mu\text{F}$ to $100\mu\text{F}$ are a good starting point with an ESR of 0.1Ω or less. Usually, it's suggested to $22\mu\text{F}$ in most applications.

Ripple Improved Resistor When No Load Condition

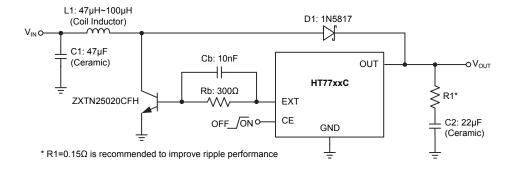
It's strong suggested to add a ripple improved resistor, R1, to keep the switching stability when no load condition. It is recommended to set R1 to 0.15Ω . Notice that this extra resistor improves the ripple performance under no load conditions, but induces higher ripple voltage when load is heavy.


External Power Elements

Lower $R_{\rm DS(ON)}$ of power elements gain better transferred efficiency. It's recommended to use ZXMN2B14FH or AFN2306A for the external MOSFETs and ZXTN25020CFH for the external Bipolar Junction Transistor.


PCB Layout Suggestion

To reduce problems with conducted noise, there are some important points to note on the PCB layout.

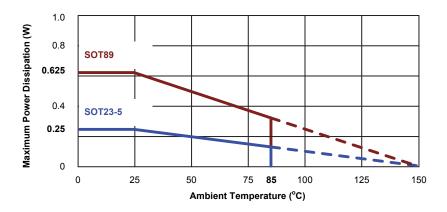

- The input bypass capacitor must be placed close to the VIN pin
- The inductor, schottky diode and output capacitor trace should be as short as possible to reduce conducted and radiated noise and increase overall efficiency.

SOT23-5 PCB Layout Example

SOT89 PCB Layout Example

Thermal Consideration

The maximum power dissipation depends upon the thermal resistance of the IC package, PCB layout, rate of surrounding airflow and difference between the junction and ambient temperature. The maximum power dissipation can be calculated by the following formula:

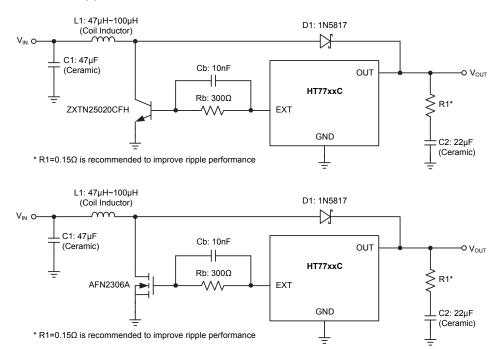

$$P_{D(MAX)} = (T_{J(MAX)} - Ta) / \theta_{JA}....(W)$$

Where $T_{J(MAX)}$ is the maximum junction temperature, Ta is the ambient temperature and θ_{JA} is the junction to ambient thermal resistance.

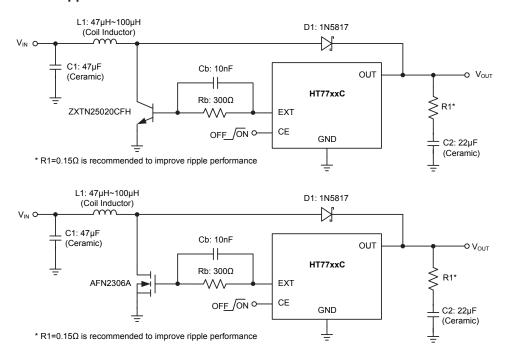
For maximum operating rating conditions, the maximum junction temperature is 150°C. However, it's recommended that the maximum junction temperature does not exceed 125°C during normal operation to maintain high reliability. The de-rating curve of the maximum power dissipation is show below:

$$P_{D(MAX)} = (150^{\circ}C - 25^{\circ}C) / (500^{\circ}C/W) = 0.25W$$

For a fixed $T_{J(MAX)}$ of 150°C, the maximum power dissipation depends upon the operating ambient temperature and the package's thermal resistance, θ_{JA} . The derating curve below shows the effect of rising ambient temperature on the maximum recommended power dissipation.



Rev. 1.10 9 August 01, 2018



Application Circuits

Without CE Pin Application Circuits

With CE Pin Application Circuits

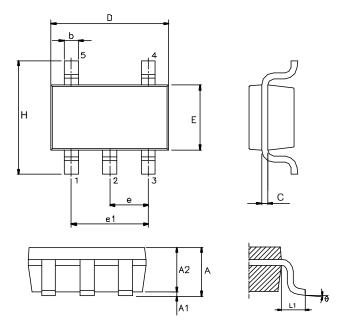
Note: 1. When CE='0', the device internal circuits such as the bandgap reference, gain block and all feedback and control circuitry will be switched off.

- 2. When CE='0', the output voltage, V_{OUT} , is almost equal to V_{IN} .
- 3. If the CE pin is not used, it should be externally connected to the OUT pin.

Rev. 1.10 10 August 01, 2018

Package Information

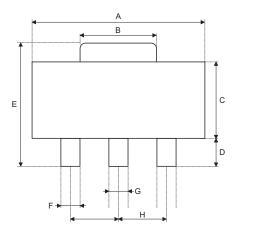
Note that the package information provided here is for consultation purposes only. As this information may be updated at regular intervals users are reminded to consult the <u>Holtek website</u> for the latest version of the <u>package information</u>.

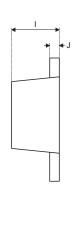

Additional supplementary information with regard to packaging is listed below. Click on the relevant section to be transferred to the relevant website page.

- Further Package Information (include Outline Dimensions, Product Tape and Reel Specifications)
- Packing Meterials Information
- Carton information

Rev. 1.10 11 August 01, 2018

5-pin SOT23 Outline Dimensions


Cumbal	Dimensions in inch			
Symbol	Min.	Nom.	Max.	
A	_	_	0.057	
A1	_	_	0.006	
A2	0.035	0.045	0.051	
b	0.012	_	0.020	
С	0.003	_	0.009	
D	_	0.114 BSC	_	
E	_	0.063 BSC	_	
е	_	0.037 BSC	_	
e1	_	0.075 BSC	_	
Н	_	0.110 BSC	_	
L1	_	0.024 BSC	_	
θ	0°	_	8°	


Symbol	Dimensions in mm			
Symbol	Min. Nom.		Max.	
A	_	_	1.45	
A1	_	_	0.15	
A2	0.90	1.15	1.30	
b	0.30	_	0.50	
С	0.08	_	0.22	
D	_	2.90 BSC	_	
E	_	1.60 BSC	_	
е	_	0.95 BSC	_	
e1	_	1.90 BSC	_	
Н	_	2.80 BSC	_	
L1	_	0.60 BSC	_	
θ	0°	_	8°	

Rev. 1.10 12 August 01, 2018

3-pin SOT89 Outline Dimensions

Cumbal	Dimensions in inch			
Symbol	Min.	Nom.	Max.	
A	0.173	_	0.185	
В	0.053	_	0.072	
С	0.090	_	0.106	
D	0.031	_	0.047	
E	0.155	_	0.173	
F	0.014	_	0.019	
G	0.017	_	0.022	
Н	_	0.059 BSC	_	
I	0.055	_	0.063	
J	0.014	_	0.017	

Symbol	Dimensions in mm			
Symbol	Min. Nom.		Max.	
A	4.40	_	4.70	
В	1.35	_	1.83	
С	2.29	_	2.70	
D	0.80	_	1.20	
E	3.94	_	4.40	
F	0.36	_	0.48	
G	0.44	_	0.56	
Н	_	1.50 BSC	_	
I	1.40	_	1.60	
J	0.35	_	0.44	

Copyright[©] 2018 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw/en/home.

Rev. 1.10 14 August 01, 2018

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Isolated DC/DC Converters category:

Click to view products by Holtek manufacturer:

Other Similar products are found below:

FMD15.24G PSL486-7LR Q48T30020-NBB0 18362 JAHW100Y1 SPB05C-12 SQ24S15033-PS0S 18952 19-130041 CE-1003 CE-1004 RDS180245 MAU228 J80-0041NL DFC15U48D15 XGS-1205 NCT1000N040R050B SPB05B-15 SPB05C-15 L-DA20 DCG40-5G QME48T40033-PGB0 AK1601-9RT DPA423R VI-R5022-EXWW PSC128-7iR RPS8-350ATX-XE DAS1004812 PQA30-D24-S24-DH vi-m13-cw-03 VI-LN2-EW VI-PJW01-CZY CK2540-9ERT AK-1615-7R 700DNC40-CON-KIT-8G 350DNC40-CON-KIT-9G 088-101348-G VI-L52-EW VI-L53-CV PQA30-D48-S12-TH VI-L50-IY VI-LC63-EV AM2D-051212DZ 24IBX15-50-0ZG HZZ01204-G SPU02L-09 SPU02M-09 SPU02N-09 UNO-PS/350-900DC/24DC/60W QUINT4-BUFFER/24DC/20