

1. Scope

This specification is applied to Multilayer Ceramic Chip Capacitor (MLCC) for use in electric equipment for the voltage is ranging from 100V to 1.5 KV (not Include).

The MLCC support for Lead-Free wave and reflow soldering, and electrical characteristic and reliability are same as before. (This product is compliant with the RoHS & HF.)

2. Parts Number Code

X. If there is a decimal point, it shall be expressed by an English capital letter R

3. Nominal Capacitance and Tolerance

3.1 Standard Combination of Nominal Capacitance and Tolerance

Class	Characteristic	Tolerance		Nominal Capacitance
Ι	NPO	More Than 10 pF	J (± 5.00 %)	E-12, E-24 series

3.2 E series(standard Number)

Standard No.		Application Capacitance										
E- 3	1.0			2.2			4.7					
E- 6	1	.0	1	.5	2	.2	3	.3	4	.7	6	.8
E-12	1.0	1.2	1.5	1.8	2.2	2.7	3.3	3.9	4.7	5.6	6.8	8.2
E-24	1.0	1.2	1.5	1.8	2.2	2.7	3.3	3.9	4.7	5.6	6.8	8.2
	1.1	1.3	1.6	2.0	2.4	3.0	3.6	4.3	5.1	6.2	7.5	9.1

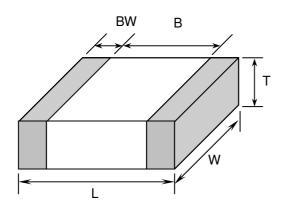
4. Operation Temperature Range

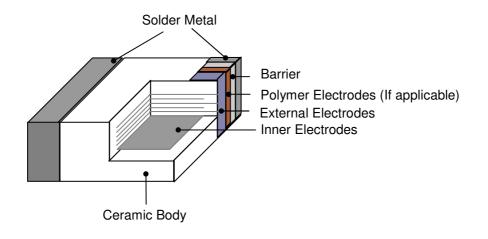
Class	Characteristic	Temperature Range	Reference Temp.
Ι	NPO	-55℃ ~ +125℃	25°C

5. Storage Condition

Storage Temperature : 5 to 40 $^\circ\!{\rm C}$

Relative Humidity : 20 to 70 %


Storage Time: 12 months max.


6. Dimensions

6.1 Configuration and Dimension :

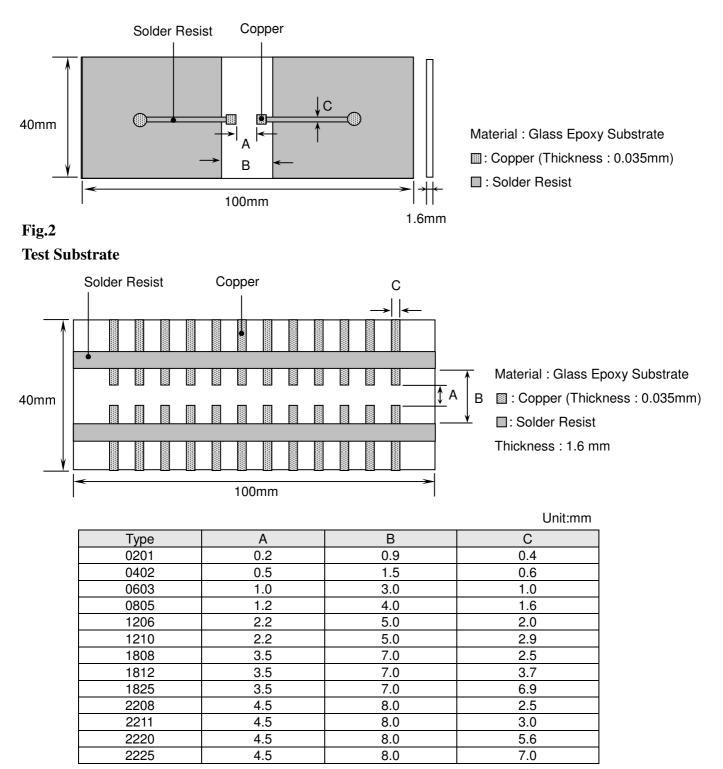
					Unit:mm
TYPE	L	W	Т	B (min)	BW (min)
1206	3.20± 0.30	1.60± 0.20	1.25± 0.20	1.50	0.30

6.2 Termination Type :

7. Performance

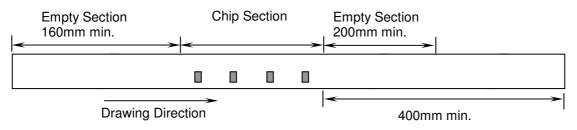
No.	Item		Specification	Test Condition
1	Visua	ıl	No abnormal exterior appearance	Visual inspection
2	Dimens	ion	See Page 2	Visual inspection
3		Resistance		V>500V, Applied 500Vdc Charge Time : 60sec. Is applied less than 50mA current.
4	Capacitance	Class I NPO	Within The Specified Tolerance	Class I : Capacitance Frequency Voltage NPO 1KHz±10% 1.0±0.2Vrms Perform a heat temperature at 150±5°C for 30min. then place room temp. for 24±2hr.
5	Q	Class I NPO	More Than 30pF : $Q \ge 1000$	
6	Withstan Voltag	-	No dielectric breakdown or mechanical breakdown	500V≦V<1000V: 150% Rated Voltage Voltage ramp up rate≦500v/sec for 1~5 sec. charge/discharge Current is less than 50mA.
7	Temperature Capacitance Coefficient	Class I	Char.Temp. RangeCap. Change(%)NPO-55°C∼+125°C± 30 ppm/°C	Class I : [C2-C1/C1(T2-T1)] × 100% T1: Standard temperature (25°C) T2: Test temperature C1:Capacitance at standard temperature(25°C) C2: Capacitance at test temperature (T2)
8	8 Adhesive Strength of Termination		No indication of peeling shall occur on the terminal electrode.	Pull force shall be applied for 10± 1 second. ≦ 06035N(≒ 0.5 Kg·f) > 060310N(≒ 1.0 Kg·f) N·f
9	to	Appear- ance		Bending shall be applied to the 1.0 mm with 1.0 mm/sec.
	Flexure of Substrate	C-Meter	Capacitance ChangeChar.Cap. ChangeNPO≤ ± 5.0%	The duration of the applied forces shall be $5 \pm 1 \text{sec}$ Bending Limit $45 \pm 1 \text{mm}$ $45 \pm 1 \text{mm}$

No.	lte	em	Speci	fication	Test Condition		
10	Solde	rability	More than 90% of the terminal surface is to be soldered newly, so metal part does not come out or dissolve .		Solder Temperature : $245\pm5^{\circ}$ C Dip Time : 5 ± 0.5 sec. Immersing Speed : $25\pm10^{\circ}$ mm/s Solder : Lead Free Solder Flux :Rosin Preheat : At 80~120 °C for 10~30sec.		
11	Resistance To Soldering Heat	ance Capacit- ance Q Class I Insulation Resistance	No mechanical dan Characteristic Class I (NPO) To satisfy the speci To satisfy the speci	Cap. Change Within ± 2.5% or ±0.25pFwhichever is larger of initial value fied initial value	Class II capacitor shall be set for 48±4 hours room temperature after one hour heat treatment at 150 +0/-10°C before initial measure.		
12	Tempera	Withstand Voltage Appear-	To satisfy the speci No mechanical dan		Class I : 24 \pm 2 Hours Class II capacitor shall be set for 48 \pm 4 hours at		
	ture Cycle	ance Capacit- ance	Characteristic Class I (NPO)	Cap. Change Within ± 2.5% or ±0.25pFwhichever is larger of initial value	room temperature after one hour heat treatment at 150 +0/-10 °C before initial measure. Capacitor shall be subjected to five cycles of the temperature cycle as following:		
		Q Class I Insulation Resistance	To satisfy the speci	fied initial value fied initial value	StepTemp.($^{\circ}$ C)Time(min)1Min Rated Temp. +0/-33022533Max Rated Temp. +3/-0304253Measure at room temperature after cooling for Class I :24 ± 2 Hrs Solder the capacitor on P.C. board shown in Fig 2. before testing.		
13		Appear- ance Capacit- ance Q Class I Insulation Resistance	(NPO)	Cap. Change Within ± 5.0% or ±0.5pF whichever is larger of initial value	Class II capacitor shall be set for 48 ± 4 hours at room temperature after one hour heat treatment at $150+0/-10$ °C before initial measure. Temperature : 40 ± 2 °C		



No.	lte	m	Specifi	cation	Test Condition
14	High Temperature Load (Life Test)	Appear- ance Capacit- ance Q Class I Insulation Resistance	No mechanical dar Characteristic Class I (NPO) More Than 30pF : 1,000MΩmin.	Cap. Change Within ±3.0% or ± 0.3pFwhichever is larger	Class II capacitors applied DC voltage (following table) is applied for one hour at maximum operation temperature $\pm 3^{\circ}$ C then shall be set for 48±4 hours at room temperature and the initial measurement shall be conducted. Applied Voltage : 120%Rated Voltage Test Time : 1000 +12/-0Hr Current Applied : 50 mA Max. Measure at room temperature after cooling for Class I : 24 ± 2 Hours
15	Vibration	Appear- ance Capacit- ance Q Class I Insulation Resistance	No mechanical dat Characteristic Class I (NPO) To satisfy the spec To satisfy the spec	Cap. Change Within ± 2.5% or ± 0.25pFwhichever is larger ified initial value	Solder the capacitor on P.C. Board shown in Fig 2. before testing. Vibrate the capacitor with amplitude of 1.5mm P-P changing the frequencies from 10Hz to 55Hz and back to 10Hz in about 1 min. Repeat this for 2 hours each in 3perpendicular directions.

Fig.1 P.C. Board for Bending Strength Test



8. Packing

8.1 Bulk Packing

According to customer request.

8.2 Chip Capacitors Tape Packing

8.3 Material And Quantity

Tape	0201	0402	0603/	0805
Material	T≦0.39mm	T≦0.70mm	T≦1.00mm	T>1.00mm
Paper	15,000 pcs/Reel	10,000 pcs/Reel	4,000 pcs/Reel	NA
Plastic	NA	NA	NA	3,000 pcs/Reel

Tape		1206	
Material	T≦1.00mm	1.00 mm $<$ T \leq 1.25 mm	T>1.25mm
Paper	4,000 pcs/Reel	NA	NA
Plastic	NA	3,000 pcs/Reel	2,000 pcs/Reel

Tape	1808/1210					
Material	T≦1.25mm	1.25 mm $<$ T \leq 2.40 mm	T>2.40mm			
Paper	NA	NA	NA			
Plastic	3,000 pcs/Reel	1,000/2,000 pcs/Reel	500/700/1,000 pcs/Reel			

Tape	1812/2211/2220		1825/2	2208	
Material	T≦2.20mm	T>2.20mm	T≦2.20mm	T>2.20mm	T≦2.20mm
Paper	NA	NA	NA	NA	NA
Plastic	1,000 pcs/Reel	700 pcs/Reel	700 pcs/Reel	400 pcs/Reel	1,000 pcs/Reel

NA : Not Available

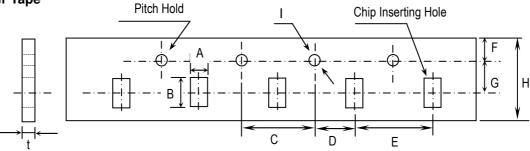
HHEC

8.4 Cover Tape Reel Off Force

8.4.1 Peel-Off Force

5 g·f \leq Peel-Off Force \leq 70 g·f

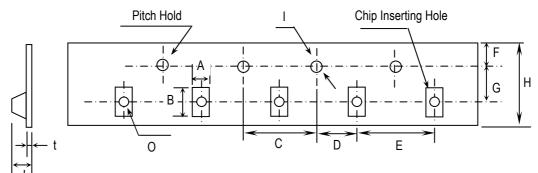
8.4.2 Measure Method



MULTILAYER CERAMIC CHIP CAPACITORS

HVC-024-2208

8.5 Paper Tape



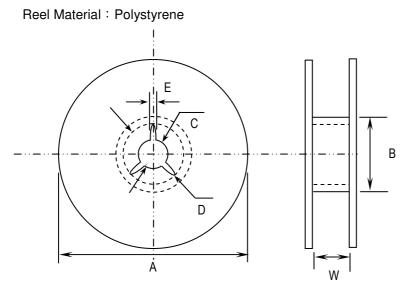
Unit:mm

TYPE	А	В	С	D	E
0201	0.37± 0.1	0.67± 0.1	4.00± 0.1	2.00± 0.05	2.00± 0.1
0402	0.61± 0.1	1.20± 0.1			
0603	1.10± 0.2	1.90± 0.2			4.00± 0.1
0805	1.50± 0.2	2.30± 0.2			
1206	1.90± 0.2	3.50± 0.2			
1210	2.90± 0.2	3.60± 0.2			

TYPE	F	G	Н		t
0201	1.75± 0.10	3.50± 0.05	8.0± 0.30	<i>φ</i> 1.50 +0.10/-0	1.10 max.
0402					
0603					
0805					
1206					
1210					

8.6 Plastic Tape

Unit:mm


Туре	А	В	С	D	E	F
0805	1.5±0.2	2.3±0.2	4.0± 0.1	2.0± 0.05	4.0± 0.1	1.75± 0.1
1206	1.9±0.2	3.5±0.2				
1210	2.9±0.2	3.6±0.2				
	2.95±0.2	3.65±0.2		2.0± 0.10	8.0± 0.1	
1808	2.5±0.2	4.9±0.2		2.0± 0.05	4.0± 0.1	
1812	3.6±0.2	4.9±0.2			8.0± 0.1	
1825	6.9±0.2	4.9±0.2				
2208	2.5±0.2	6.1±0.2				
2211	3.2±0.2	6.1±0.2				
2220	5.4±0.2	6.1±0.2				
2225	6.9±0.2	6.1±0.2				

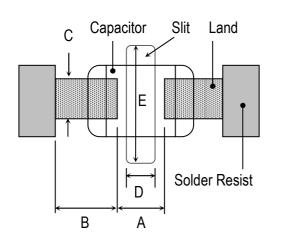
Туре	G	Н		J	t	0
0805	3.5± 0.05	8.0± 0.3	<i>φ</i> 1.5+0.1/-0	3.0 max.	0.3 max.	1.0± 0.1
1206						
1210						
	5.5± 0.10	12.0 ± 0.3			0.35 ± 0.05	NA
1808	5.5± 0.05			4.0 max.	0.3 max.	1.5± 0.1
1812						
1825						
2208						
2211						
2220						
2225						

8.7 Reel Dimensions

Unit:mm

Туре	А	В	С	D	E	W
0201	φ 382 max	arphi 50 min	φ 13± 0.5	φ 21± 0.8	2.0±0.5	10± 0.15
0402						
0603						
0805						
1206						
1210						
1808	φ 178±2.0	arphi 60±2.0				13±0.3
1812						
1825						
2208						
2211						
2220						
2225						

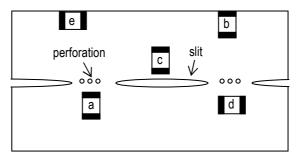
Precautionary Notes:


1. Storage

Store the capacitors where the temperature and relative humidity don't exceed 40 °C and 70%RH. We recommend that the capacitors be used within 12 months from the date of manufacturing. Store the products in the original package and do not open the outer wrapped, polyethylene bag, till just before usage. If it is open, seal it as soon as possible or keep it in a desiccant with a desiccation agent.

2. Construction of Board Pattern

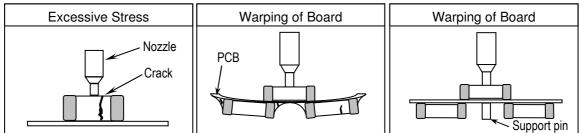
Improper circuit layout and pad/land size may cause excessive or not enough solder amount on the PC board. Not enough solder may create weak joint, and excessive solder may increase the potential of mechanical or thermal cracks on the ceramic capacitor. Therefore we recommend the land size to be as shown in the following table:


2.1 Size and recommend land dimensions for reflow soldering .

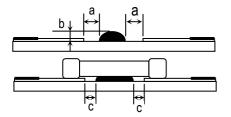
EIA Code Chip (mn		(mm)	Land (mm)					
EIA Coue	L	W	А	В	С	D	E	
0201	0.60	0.30	0.2~0.3	0.2~0.4	0.2~0.4			
0402	1.00	0.50	0.3~0.5	0.3~0.5	0.4~0.6			
0603	1.60	0.80	0.4~0.6	0.6~0.7	0.6~0.8			
0805	2.00	1.25	0.7~0.9	0.6~0.8	0.8~1.1			
1206	3.20	1.60	2.2~2.4	0.8~0.9	1.0~1.4	1.0~2.0	3.2~3.7	
1210	3.20	2.50	2.2~2.4	1.0~1.2	1.8~2.3	1.0~2.0	4.1~4.6	
1808	4.60	2.00	2.8~3.4	1.8~2.0	1.5~1.8	1.0~2.8	3.6~4.1	
1812	4.60	3.20	2.8~3.4	1.8~2.0	2.3~3.0	1.0~2.8	4.8~5.3	
1825	4.60	6.35	2.8~3.4	1.8~2.0	5.1~5.8	1.0~4.0	7.1~8.3	
2208	5.70	2.00	4.0~4.6	2.0~2.2	1.5~1.8	1.0~4.0	3.6~4.1	
2211	5.70	2.80	4.0~4.6	2.0~2.2	2.0~2.6	1.0~4.0	4.4~4.9	
2220	5.70	5.00	4.0~4.6	2.0~2.2	3.5~4.8	1.0~4.0	6.6~7.1	
2225	5.70	6.35	4.0~4.6	2.0~2.2	5.1~5.8	1.0~4.0	7.1~8.3	

2.2 Mechanical strength varies according to location of chip capacitors on the P.C. board. Design layout of components on the PC board such a way to minimize the stress imposed on the components, upon flexure of the boards in depanelization or other processes.

Component layout close to the edge of the board or the "depanelization line" is not recommended. Susceptibility to stress is in the order of: a>b>c and d>e


HVC-024-2208

2.3 Layout Recommendation


Example	Use of Common Solder Land	Solder With Chassis	Use of Common Solder Land With Other SMD
Need to Avoid	Lead Wire Chip Solder	Chassis \downarrow Excessive Solder \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	Solder Land
Recommendation	Lead Wire Chip Solder Resist Adhesive PCB Solder Land	Solder Resist	

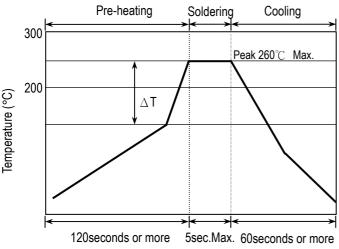
3. Mounting

3.1 Sometimes crack is caused by the impact load due to suction nozzle in pick and place operation. In pick and place operation, if the low dead point is too low, excessive stress is applied to component. This may cause cracks in the ceramic capacitor, therefore it is required to move low dead point of a suction nozzle to the higher level to minimize the board warp age and stress on the components. Nozzle pressure is typically adjusted to 1N to 3N (static load) during the pick and place operation.

3.2 Amount of Adhesive

Example : 0805 & 1206

a	0.2mm min.
b	70 ~ 100 μm
С	Do not touch the solder land



4. Soldering

4.1. Wave Soldering

Most of components are wave soldered with solder at Peak Temperature.. Adequate care must be taken to prevent the potential of thermal cracks on the ceramic capacitors. Refer to the soldering methods below for optimum soldering benefits.

Recommend flow soldering temperature Profile

Soldering Method	Peak Temp.($^{\circ}$ C) / Duration (sec)
1206/0805/0603	∆ T ≤ 100~150°C max.
Pb-Sn Solder	250°C (max.) / 3sec(max.)
Lead Free Solder	260°C (max.) / 5sec(max.)

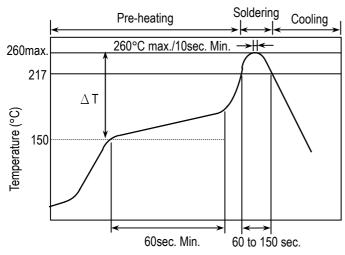
Recommended solder compositions

Sn-37Pb (Pb - Sn Solder)

Sn-3.0Ag-0.5Cu (Lead Free Solder)

To optimize the result of soldering, proper preheating is essential:

- 1) Preheat temperature is too low
 - a. Flux flows to easily
 - b. Possibility of thermal cracks
- 2) Preheat temperature is too high
 - a. Flux deteriorates even when oxide film is removed
 - b. Causes warping of circuit board
 - c. Loss of reliability in chip and other components


Cooling Condition:

Natural cooling using air is recommended. If the chips are dipped into a solvent for cleaning, the temperature difference (Δ T) between the solvent and the chips must be less than 100 °C.

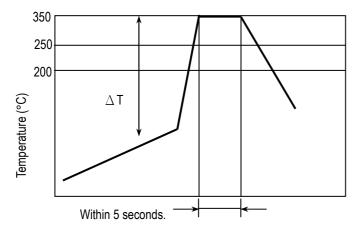
4.2 Reflow Soldering

Preheat and gradual increase in temperature to the reflow temperature is recommended to decrease the potential of thermal crack on the components. The recommended heating rate depends on the size of component, however it should not exceed 3 °C/Sec.

Recommend reflow profile for Lead-Free soldering temperature Profile (J-STD-020E)

Soldering Method	Change in Temp.(°C)
1206 and Under	$\Delta T \leq 190 \ ^{\circ}C$
1210 and Over	∆ T ≦ 130 °C

* The cycles of soldering : Three times (max.)


Maximum Ramp-up = 3 °C/Sec.

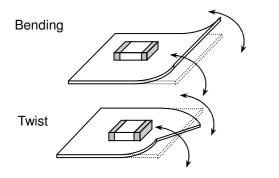
Maximum Ramp-down Rate = 6 °C/Sec.

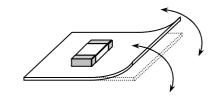
4.3 Hand Soldering

Sudden temperature change in components, results in a temperature gradient recommended in the following table, and therefore may cause internal thermal cracks in the components. In general a hand soldering method is not recommended unless proper preheating and handling practices have been taken. Care must also be taken not to touch the ceramic body of the capacitor with the tip of solder Iron.

Soldering Method	Change in Temp.(℃)
1206 and Under	$\Delta T \leq 150 \ ^{\circ}C$
1210 and Over	Δ T \leq 130 $^{\circ}$ C

How to Solder Repair by Solder Iron


- 1) Selection of the soldering iron tip
 - The required temperature of solder iron for any type of repair depends on the type of the tip, the substrate material, and the solder land size.
- 2) recommended solder iron condition
 - a.) Preheating Condition : Board and components should be preheated sufficiently at 150 ℃ or over, and soldering should be conducted with soldering iron as boards and components are maintained at sufficient temperatures.
 - b.) Soldering iron power shall not exceed 30 W.
 - c.) Soldering iron tip diameter shall not exceed 3mm.
 - d.) Temperature of iron tip shall not exceed 350 °C., and the process should be finished within 5 seconds. (refer to MIL-STD-202G)
 - f.) Do not touch the ceramic body with the tip of solder iron. Direct contact of the soldering iron tip to ceramic body may cause thermal cracks.
 - g.) After soldering operation, let the products cool down gradually in the room temperature.

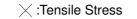

5. Handling after chip mounted

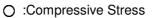
5.1 Proper handling is recommended, since excessive bending and twist of the board, depends on the orientation of the chip on the board, may induce mechanical stress and cause internal crack in the capacitor.

Higher potential of crack

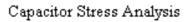
Lower potential of crack

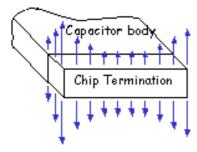
5.2 There is a potential of crack if board is warped due to excessive load by check pin

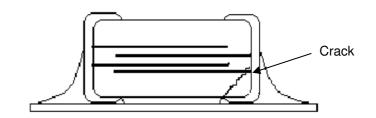




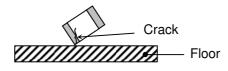
IHHEC is a trademark of Holy Stone Enterprise Co., Ltd

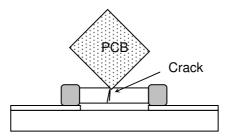

- 5.3 Mechanical stress due to warping and torsion.
 - (a) Crack occurrence ratio will be increased by manual separation.
 - (b) Crack occurrence ratio will be increased by tensile force , rather than compressive force.





TN





6. Handling of Loose Chip Capacitor

6.1 If dropped the chip capacitor may crack.

6.2 In piling and stacking of the P.C. boards after mounting for storage or handling, the corner of the P.C. board may hit the chip capacitor mounted on another board to cause crack.

7. Safekeeping condition and period

For safekeeping of the products, we recommend to keep the storage temperature between +5 to +40 $^{\circ}$ C and under humidity of 20 to 70% RH. The shelf life of capacitors is 12 months.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Multilayer Ceramic Capacitors MLCC - SMD/SMT category:

Click to view products by Holy Stone manufacturer:

Other Similar products are found below :

M39014/02-1225V M39014/22-0631 D55342E07B523DR-T/R NCA1206X7R103K50TRPF NCA1206X7R104K16TRPF NIN-FB391JTRF NIN-FC2R7JTRF NMC0201X5R474K4TRPF NMC0402NPO220J50TRPF NMC0402X5R105K6.3TRPF NMC0402X5R224K6.3TRPF NMC0402X7R103J25TRPF NMC0402X7R153K16TRPF NMC0603NPO1R8C50TRPF NMC0603NPO201J50TRPF NMC0603NPO330G50TRPF NMC0603X5R475M6.3TRPF NMC0805NPO270J50TRPF NMC0805NPO820J50TRPF NMC0805X7R224K16TRPLPF NMC0805X7R224K25TRPF NMC1206X7R102K50TRPF NMC1206X7R475K10TRPLPF NMC-L0402NPO7R0C50TRPF NMC-L0603NPO2R2B50TRPF NMC-Q0402NPO8R2D200TRPF C1206C101J1GAC C1608C0G2A221J C1608X7R1E334K C2012C0G2A472J 2220J2K00562KXT 1812J2K00332KXT CDR31BX103AKWR CDR33BX104AKUR CDR33BX683AKUS CGA2B2C0G1H010C CGA2B2C0G1H040C CGA2B2C0G1H050C CGA2B2C0G1H060D CGA2B2C0G1H070D CGA2B2C0G1H120J CGA2B2C0G1H151J CGA2B2C0G1H181JT0Y0F CGA2B2C0G1H1R5C CGA2B2C0G1H2R2C CGA2B2C0G1H390J CGA2B2C0G1H391J CGA2B2C0G1H3R3C CGA2B2C0G1H680J CGA2B2C0G1H688D