ASDX Series Silicon Pressure Sensors

DESCRIPTION

The ASDX Series is a Silicon Pressure Sensor offering either an $I^{2} \mathrm{C}$ or SPI digital interface for reading pressure over the specified full scale pressure span and temperature range.

The ASDX is fully calibrated and temperature compensated for sensor offset, sensitivity, temperature effects and non-linearity using an on-board Application Specific Integrated Circuit (ASIC). Calibrated output values for pressure are updated at approximately 1 kHz .

The standard ASDX is calibrated over the temperature range of $0{ }^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}\left[32{ }^{\circ} \mathrm{F}\right.$ to $\left.185^{\circ} \mathrm{F}\right]$. The sensor is characterized for operation from a single power supply of either 3.3 Vdc or 5.0 Vdc.

FEATURES

- Output options: $I^{2} \mathrm{C}$ - or SPI-compatible 12-bit digital
- Precision ASIC conditioning and temperature compensated over $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}\left[32^{\circ} \mathrm{F}\right.$ to $\left.185^{\circ} \mathrm{F}\right]$ temperature range
- Low operating voltage
- Absolute, differential and gage types
- Pressure ranges from 10 inches $\mathrm{H}_{2} \mathrm{O}$ to 100 psi
- Standard calibrations in inches $\mathrm{H}_{2} \mathrm{O}, \mathrm{cm} \mathrm{H}_{2} \mathrm{O}$, psi, mbar, bar, kPa
- Total error band of $\pm 2.0 \%$ of full scale span maximum
- RoHS compliant

These sensors are available to measure absolute, differential and gage pressures. The absolute versions have an internal vacuum reference and an output value proportional to absolute pressure. Differential versions allow application of pressure to either side of the sensing diaphragm. Gage versions are referenced to atmospheric pressure and provide an output proportional to pressure variations from atmosphere.

The ASDX Series sensors are intended for use with noncorrosive, non-ionic working fluids such as air and dry gases. They are designed and manufactured according to standards in ISO 9001.

POTENTIAL APPLICATIONS

- Flow calibrators
- Ventilation and air flow monitors
- Gas flow instrumentation
- Sleep apnea monitoring and therapy equipment
- Barometry
- Pneumatic controls
- HVAC

ASDX Series Silicon Pressure Sensors

Table 1. Absolute Maximum Ratings ${ }^{1}$

Parameter	Min	Max	Unit
Supply voltage (Vsupply)	-0.3	6.0	Vdc
Voltage to any pin	-0.3	Vsupply +0.3	Vdc
Digital clock frequency:			
I'C $^{2} \mathrm{CPI}$	100	400	kHz
ESD susceptibility (human body model)	50	800	
Storage temperature	3	-	kV
Lead temperature (2 s to 4 s)	$-50[-58]$	$125[257]$	${ }^{\circ} \mathrm{C}\left[{ }^{\circ} \mathrm{F}\right]$
External capacitance between $\mathrm{V}_{\text {supply }}$ and ground ${ }^{2}$	-	$250[482]$	${ }^{\circ} \mathrm{C}\left[{ }^{\circ} \mathrm{F}\right]$

Table 2. Operating Specifications

Parameter	Min.	Typ.	Max.	Unit
$\begin{aligned} & \text { Supply voltage: }\left(\mathrm{V}_{\text {supply }}\right)^{3} \\ & 3.3 \mathrm{Vdc} \\ & 5.0 \mathrm{Vdc} \end{aligned}$	$\begin{gathered} 3.0 \\ 4.75 \end{gathered}$	$\begin{aligned} & 3.3^{4} \\ & 50^{4} \end{aligned}$	$\begin{gathered} 3.6 \\ 5.25 \end{gathered}$	Vdc
Sensors are either 3.3 Vdc or 5.0 Vdc per the Order Guide (see Figure 1).				
Supply current	2.0	3.5	5.0	mA
Compensated temperature range ${ }^{5}$	0 [32]	-	85 [185]	${ }^{\circ} \mathrm{C}\left[{ }^{\circ} \mathrm{F}\right]$
Operating temperature range ${ }^{\text {b }}$	-20 [-4]	-	105 [221]	${ }^{\circ} \mathrm{C}\left[{ }^{\circ} \mathrm{F}\right]$
Overpressure ${ }^{\text {a }}$	2 X operating pressure range minimum			
Burst pressure ${ }^{8}$	3 X operating pressure range minimum			
Startup time (power up to data ready)	-	2.8	7.3	ms
Response time	-	0.46	-	ms
$\mathrm{I}^{2} \mathrm{C}$ or SPI voltage level low	-	-	0.2	$\mathrm{V}_{\text {supply }}$
$I^{2} \mathrm{C}$ or SPI voltage level high	0.8	-	-	$\mathrm{V}_{\text {supply }}$
Pull-up on SDA and SCL (${ }^{2} \mathrm{C}$ output only)	1	-	-	kOhm
Total error band ${ }^{9}$	-	-	2.0	\%FSS ${ }^{10}$
Output resolution	12	-	-	bits

Table 3. Environmental Specifications

Parameter	Characteristic
Humidity	0% to 95% RH non-condensing
Vibration	10 G at 20 Hz to 2000 Hz
Shock	100 G for 11 ms
Life	1 million cycles minimum

Table 4. Wetted Materials ${ }^{11}$

Parameter	Port 1 (Pressure Port) ${ }^{12}$	Port 2 (Reference Port) 12
Covers	glass-filled PBT	glass-filled PBT
Adhesives	silicone	silicone and epoxy
Electronic components	silicon and glass	silicon, glass, and gold

Notes:

1. Absolute maximum ratings are the extreme limits that the device will withstand without damage to the device.
2. An external bypass capacitor is required across the supply voltage (Pins 6 and 3 -see Figure 4) as close to the sensor supply pin as possible for correct sensor operation.
3. Ratiometricity of the sensor (the ability of the output to scale to the input voltage) is achieved within the specified operating voltage for each option. Other custom supply voltages are available, please contact Honeywell Customer Service.
4. The sensor is not reverse polarity protected. Incorrect application of excitation voltage or ground to the wrong pin may cause electrical failure.
5. The compensated temperature range is the temperature range (or ranges) over which the sensor will produce an output proportional to pressure within the specified performance limits.
6. The operating temperature range is the temperature range over which the sensor will produce an output proportional to pressure but may not remain within the specified performance limits.
7. Overpressure is the maximum pressure which may safely be applied to the product for it to remain in specification once pressure is returned to the operating pressure range. Exposure to higher pressures may cause permanent damage to the product.
8. Burst pressure is the maximum pressure that may be applied to any port of the product without causing escape of pressure media. Product should not be expected to function after exposure to any pressure beyond the burst pressure.
9. Total error band is the maximum deviation in output from ideal transfer function over the entire compensated temperature and pressure range. Includes all errors due to offset, full scale span, pressure non-linearity, pressure hysteresis, repeatability, thermal effect on offset, thermal effect on span and thermal hysteresis. Specification units are in percent of full scale span (\%FSS).
10. Full scale span (FSS) is the algebraic difference between the output signal measured at the maximum (Pmax.) and minimum (Pmin.) limits of the pressure range.
11. Consult Honeywell Customer Service for detailed material information.
12. For AC pressure port configuration, the "pressure" and "reference" ports are reversed.

Low and Ultra-Low Pressure Digital Output

Figure 1. Nomenclature and Order Guide

Notes:

13. Other package combinations are possible, please contact Honeywell Customer Service.
14. The transfer function limits define the output of the sensor at a given pressure input. By specifying the output signal at the maximum (Pmax.) and minimum (Pmin.) limits of the pressure range, the complete transfer curve for the sensor is defined. See Figure 2 for a graphical representation of each calibration. For the 12 -bit digital output, Table 6 provides the output of the sensor at significant percentages. These outputs are valid at the rated input voltage of the sensor.
15. The output type defines which communication protocol the sensor uses to communicate. Available protocols are $\mathrm{I}^{2} \mathrm{C}$ or half duplex SPI (sensor acts only as a slave). This communication protocol is not field selectable, and must be defined when ordering the sensor.
16. Custom pressure ranges are available, please contact Honeywell Customer Service.
17. The pressure units (inches $\mathrm{H}_{2} \mathrm{O}, \mathrm{cm}_{2} \mathrm{O}, \mathrm{psi}, \mathrm{mbar}$, bar, kPa) define the units used during calibration and in the application.
18. See Table 5 for an explanation of sensor types.

ASDX Series Silicon Pressure Sensors

Table 5. Sensor Types

Type	Description
Absolute	Output is proportional to difference between applied pressure and built-in reference to vacuum (zero pressure).
Gage	Output is proportional to difference between applied pressure and atmospheric (ambient) pressure.
Differential	Output is proportional to difference between pressure applied to each of the pressure ports (Port 1-Port 2).

Figure 2. Transfer Functions and Limits

A Calibration, 10\% to 90\%

Output $\left(\%\right.$ of 2^{14} counts $)=\frac{80 \%}{P_{\text {max }}-P_{\text {min }}} \cdot\left(\right.$ Pressure $\left._{\text {applied }}-P_{\text {min }}\right)+10 \%$

B Calibration, 5\% to 95\%

Output (\% of 2^{14} counts) $=\frac{90 \%}{P_{\max }-P_{\min }} \cdot\left(\right.$ Pressure $\left._{\text {applied }}-P_{\text {min }}\right)+5 \%$

Table 6. Sensor Output at Significant Percentages

\% Output	Digital Counts (dec)	Digital Counts (hex)
0%	0	0×0000
5%	819	0×0333
10%	1638	0×0666
50%	8192	0×2000
90%	14746	$0 \times 399 \mathrm{~A}$
95%	15565	$0 \times 3 \mathrm{CCD}$
100%	16383	$0 \times 3 \mathrm{FFF}$

Figure 3. Completed Catalog Listing Example

Low and Ultra-Low Pressure Digital Output

Figure 4. Dimensional Drawings (For reference only: mm [in].)

Table 7. Pinout

$\mathrm{I}^{2} \mathrm{C}$				SPI			
Pin	Definition	Type	Description	Pin	Definition	Type	Description
1	SDA	digital I/O	serial bidirectional data; data is clocked in or out on clock edge of SCL	1	MISO	digital output	"Master In Slave Out" - serial output data; data is clocked out on clock edge of SCK
2	SCL	digital input	serial clock input; used to clock data on SDA	2	SCK	digital input	serial clock input; used to clock data on MISO
3	GND	supply	power supply ground	3	GND	supply	power supply ground
4	N/C	not used	do not connect in the application	4	N/C	not used	do not connect in the application
5	SS	digital output	interrupt signal (conversion complete output)	5	SS	digital input	slave select
6	Vsupply	supply	power supply source	6	Vsupply	supply	power supply source
7	N/C	not used	do not connect in the application	7	N/C	not used	do not connect in the application
8	N/C	not used	do not connect in the application	8	N/C	not used	do not connect in the application

A WARNING

PERSONAL INJURY

DO NOT USE these products as safety or emergency stop devices or in any other application where failure of the product could result in personal injury.
Failure to comply with these instructions could result in death or serious injury.

WARRANTY/REMEDY

Honeywell warrants goods of its manufacture as being free of defective materials and faulty workmanship. Honeywell's standard product warranty applies unless agreed to otherwise by Honeywell in writing; please refer to your order acknowledgement or consult your local sales office for specific warranty details. If warranted goods are returned to Honeywell during the period of coverage, Honeywell will repair or replace, at its option, without charge those items it finds defective. The foregoing is buyer's sole remedy and is in lieu of all other warranties, expressed or implied, including those of merchantability and fitness for a particular purpose. In no event shall Honeywell be liable for consequential, special, or indirect damages.

While we provide application assistance personally, through our literature and the Honeywell web site, it is up to the customer to determine the suitability of the product in the application.

Specifications may change without notice. The information we supply is believed to be accurate and reliable as of this printing. However, we assume no responsibility for its use.

A WARNING

MISUSE OF DOCUMENTATION

- The information presented in this product sheet is for reference only. Do not use this document as a product installation guide.
- Complete installation, operation, and maintenance information is provided in the instructions supplied with each product.
Failure to comply with these instructions could result in death or serious injury.

SALES AND SERVICE

Honeywell serves its customers through a worldwide network of sales offices, representatives and distributors. For application assistance, current specifications, pricing or name of the nearest Authorized Distributor, contact your local sales office or:

E-mail: info.sc@honeywell.com

Internet: sensing.honeywell.com
Phone and Fax:

Asia Pacific $\quad+656355-2828 ;+656445-3033$ Fax	
Europe $\quad+44(0) 1698481481 ;+44(0) 1698481676$ Fax	
Latin America	$+1-305-805-8188 ;+1-305-883-8257$ Fax
USA/Canada	$+1-800-537-6945 ;+1-815-235-6847$
	$+1-815-235-6545$ Fax

Sensing and Control
Honeywell
1985 Douglas Drive North
Golden Valley, MN 55422
sensing.honeywell.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Board Mount Pressure Sensors category:
Click to view products by Honeywell manufacturer:

Other Similar products are found below :
6407-249V-17343P 6407-250V-09273P 80527-25.0H2-05 $\frac{80541-\mathrm{B} 00000150-01}{80541-\mathrm{B} 00000200-05}$ 80554-00700100-05 80568 -
00300050-01 $\underline{93.631 .4253 .0} \underline{93.731 .4353 .0} \underline{93.932 .4553 .0} \underline{136 \mathrm{PC} 150 \mathrm{G} 2} \underline{136 \mathrm{PC} 15 \mathrm{~A} 1}$ 142PC95AW71 142PC05DW70 15PSI-G-4V 1805-
01A-L0N-B 26PCBKT 26PCCFA6D26 26PCCFS2G 26PCCVA6D 93.632.7353.0 93.731.3653.0 93.931.4853.0 93.932.4853.0 SCDA120-
XSC05DC 185PC30DH 20INCH-G-MV-MINI 26PCAFJ3G 26PCCEP5G24 26PCDFA3G 26PCJEU5G19 ASCX15AN-90
TSCSAAN001PDUCV DCAL401DN DCAL401GN XZ202798SSC XZ203676HSC 6407-249V-09343P 6407-250V-17343P SP370-25-116-
$\underline{0}$ 81794-B00001200-01 HSCDLNN100PGAA5 82681-B00000100-01 81618-B00000040-05 SSCDJNN015PAAA5 TSCDLNN100MDUCV
TSCSAAN100PDUCV NBPDANN015PGUNV NBPLLNS150PGUNV 142PC100D

