Series CC9318

The CLAROCHIP CC9318 Digital Trimming Potentiometer is an 8-bit nonvolatile DAC designed to replace mechanical trimmers. It includes a unity-gain amplifier to buffer the DAC output and enables Vout to swing from rail to rail. The Digital Trimming Potentiometer operates over a supply voltage range of 2.7 V to 5.5 V . The simple up/down counter input provides an ideal interface for automatic test equipment to dither and monitor the Vout voltage. This interface allows for quick and consistent calibration of even the most sophisticated systems. The CC9318 is a pin-compatible performance upgrade for other industry nonvolatile potentiometers. The adjustable CLAROCHIP CC9318 offers double the resolution of these devices and provides "clickless" transitions of Vout.

Features

- Digitally Controlled Electronic Potentiometer • Unity Gain Op Amp Drives up to 1mA
- 8-Bit Digital-to-Analog Converter (DAC)
- Independent Reference Inputs
- Differential Non-Linearity - ± 0.5 LSB max
- Integral Non-Linearity - ± 1 LSB max
- Vout Value in EEPROM for Power-On Recall
- Equivalent to 256-Step Potentiometer
- Simple Trimming Adjustment - Up/Down Counter Style Operation
- Low Noise Operation
- Make-Before-Break Contact for "Clickless" Transitions between DAC Steps
- Operation from +2.7V to +5.5V Supply
- Low Power, 1 mW max at +5 V
- No Mechanical Wearout Problem
- 1,000,000 Stores (typical)
- 100 Year Data Retention
- Fool-proof, Set-and-Forget Calibrations

Functional Block Diagram

Telephone: 800.874.1874 Fax: 800.223.5138

Symbol	Description
$\overline{\text { INC }}$	Increment Input, High to Low Edge Trigger
UP/DN	Up/Down Input controlling relative Vout movement
V_{H}	V+ reference input
GND	Analog and Digital Ground
$V_{\text {OUT }}$	Trimmed Voltage Output
V_{L}	V- reference input
$\overline{C S}$	Active low chip select input
$V_{\text {DD }}$	Supply Voltage (2.7V to 5.5 V$)$

Analog Section

The CC9318 is an 8-bit, voltage output digital-to-analog converter (DAC). The DAC consists of a resistor network that converts an 8-bit value into equivalent analog output voltages in proportion to the applied reference voltage.

Reference Inputs

The voltage differential between the V_{L} and V_{H} inputs sets the fullscale output voltage range. V_{L} must be equal to or greater than ground (i.e. a positive voltage). V_{H} must be greater than VL and less than or equal to $V_{D D}$. See table on page 3 for guaranteed operating limits.

Output Buffer Amplifier

The voltage output is a precision unity-gain follower that can slew up to $1 \mathrm{~V} / \mu \mathrm{s}$.

Digital Interface

The interface is designed to emulate a simple up/down counter, but instead of a parallel count output, a ratiometric voltage output is provided.
Chip Select ($\overline{\mathrm{CS}}$) is an active low input. Whenever $\overline{\mathrm{CS}}$ is high the CC9318 is in standby mode and consumes the least power. This mode is equivalent to a potentiometer that is adjusted to the required setting. When $\overline{C S}$ is low the CC9318 will recognize transitions on the $\overline{\text { INC }}$ input and will move the Vout either toward the V_{H} reference or toward the V_{L} reference depending upon the state of the UP/ $\overline{D N}$ input.
The host may exit an adjustment routine in two ways: deselecting the CC9318 while INC is low will not perform a store operation (a subsequent power cycle will recall the original data); deselecting the CC9318 while INC is high will store the current Vout setting into nonvolatile memory.
Increment ($\overline{\mathrm{INC}}$) is an edge triggered input. Whenever $\overline{\mathrm{CS}}$ is low and a high to low transition occurs on the INC input, the Vout

ABSOLUTE MAXIMUM RATINGS*	
Temperature Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on pins with reference to GND:	
Analog Inputs	
Digital Inputs	
Analog Outputs	
Digital Outputs	
Lead Solder Temperature (10 secs $)$	-0.5 V to $\mathrm{V}_{\mathrm{DDD}}+.5 \mathrm{~V}+.5 \mathrm{~V}$

voltage will either move toward V_{H} or V_{L} depending upon the state of the UP/ $\overline{D N}$ input.
Up/Down (UP/ $\overline{\operatorname{DN}}$) is an input that will determine the Vout movement relative to V_{H} and V_{L}. When $\overline{C S}$ is low, UP/ $\overline{D N}$ is high and there is a high to low transition on $\overline{\mathrm{INC}}$, the Vout voltage will move $\left(1 / 256\right.$ th $\left.\times V_{H}-V_{L}\right)$ toward V_{H}. When $\overline{C S}$ and UP/ $\overline{D N}$ are low, and there is a high to low transition on $\overline{\mathrm{INC}}$, the Vout will move $(1 / 256$ th $\times \mathrm{V}_{\mathrm{H}}-\mathrm{V}_{\mathrm{L}}$) toward V_{L}.

Power-Up/Power-Down Conditions

On power-up the CC9318 loads the value of EEPROM memory into the wiper position register. The value in the register is changed using the $\overline{C S}, \overline{I N C}$, and UP/ $\overline{\operatorname{DN}}$ pins. The new data in the register will be lost at power-down unless $\overline{C S}$ was brought high, with INC high, to initiate a store operation after the last increment or decrement. On the next device power-up, the value of EEPROM memory will be loaded into the wiper position register. During power-up the CC9318 is write-protected in two ways:

1) A power-on reset, that trips at approximately 2.5 V , holds $\overline{\mathrm{CS}}$ and $\overline{\mathrm{INC}}$ high internally.
2) Resistor pull-ups on all logic inputs prevent data change if the inputs are floating.

Data Retention

The CC9318 is guaranteed to perform at least $1,000,000$ writes to EEPROM before a wear-out condition can occur. After EEPROM wearout, the CC9318 continues to function as a volatile digital potentiometer.
The wiper position can be changed during powered conditions using the digital interface. However, on power-up the wiper position will be indeterminate.

On shipment from the factory, CLAROSTAT does not specify any EEPROM memory value. The value must be set by the customer as needed.

*COMMENT

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions outside those listed in the operation sections of this specification is not implied. Exposure to any absolute maximum rating for extended periods may affect device performance and reliability.

RECOMMENDED OPERATING CONDITIONS

Condition	Min	Max
Temperature	$-40^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$
$V_{D D}$	+2.7 V	5.5 V

DAC DC ELECTRICAL CHARACTERISTICS
$V_{D D}=+2.7 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\text {refH }}=\mathrm{V}_{\text {DD }}, \mathrm{V}_{\text {refl }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless specified otherwise

	Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
Accuracy	INL	Integral Non-Linearity	$\mathrm{I}_{\text {LOAD }}=100 \mu \mathrm{~A}$	-	0.5	± 1	LSB
	DNL	Differential Non-Linearity	$I_{\text {LOAD }}=100 \mu \mathrm{~A}$ Guaranteed but not tested	-	0.1	± 0.5	LSB
References	V_{H}	Vreft Input Voltage		$\mathrm{V}_{\text {refL }}$	-	VDD	V
	V_{L}	$V_{\text {refl }}$ Input Voltage		Gnd	-	$V_{\text {refH }}$	V
	RIN	$V_{\text {reff }}$ to VrefL Resistance		-	38K	-	Ω
	TCRIN	Temperature Coefficient of Rin	$V_{\text {refH }}$ to $V_{\text {refL }}$	-	600	-	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Analog Output	GEFS	Full-Scale Gain Error	DATA $=$ FF	-	-	± 1	LSB
	VoutZS	Zero-Scale Output Voltage	DATA $=00$	0		20	mV
	TCV ${ }_{\text {OUT }}$	Vout Temperature Coefficient	$\begin{aligned} & V_{D D}=+5, I_{L O A D}=50 \mu A, \\ & V_{\text {refH }}=+5 V, V_{\text {refL }}=0 V \end{aligned}$ Guaranteed but not tested	-	-	50	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	IL	Amplifier Output Load Current		-200		+1000	$\mu \mathrm{A}$
	Rout	Amplifier Output Resistance	$\begin{aligned} \mathrm{I}_{\mathrm{L}}=100 \mu \mathrm{~A} \mathrm{~V}_{\mathrm{DD}} & =+5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}} & =+3 \mathrm{~V} \end{aligned}$	-	$\begin{aligned} & 10 \\ & 20 \\ & \hline \end{aligned}$		$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
	PSRR	Power Supply Rejection	$\mathrm{ILOAD}=10 \mu \mathrm{~A}$	-	-	1	LSB/V
	e_{N}	Amplifier Output Noise	$\mathrm{f}=1 \mathrm{KHz}, \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$	-	90	-	$\mathrm{nV} / \sqrt{\mathrm{HZ}}$
	THD	Total Harmonic Distortion	$\mathrm{V}_{\text {IN }}=1 \mathrm{~V} \mathrm{rms}, \mathrm{f}=1 \mathrm{KHz}$	-	0.08	-	\%
	BW	Bandwidth - 3dB	Vin $=100 \mathrm{mV} \mathrm{rms}$	-	300	-	kHz

RELIABILITY CHARACTERISTICS (over recommended operating conditions unless otherwise specified)

Symbol	Parameter	Min	Max	Unit	Test Method
VZAP	ESD Susceptibility	2000		V	MS-883, TM 3015
ILTH	Latch-Up	100		mA	JEDEC Standard 17
TDR	Data Retention	100		Years	MS-883, TM 1008
NEND $^{\text {Endurance }}$	$1,000,000$	Stores	MS-883, TM 1033		

DC ELECTRICAL CHARACTERISTICS

$V_{D D}=+2.7 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{H}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{L}}=\mathrm{O} \mathrm{V}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise specified

Symbol	Parameter	Conditions	Min	Max	Units
IDD	Supply Current during store, note 1	$\begin{gathered} \mathrm{CS}=\mathrm{V}_{\mathrm{IL}} \text { to } \mathrm{V}_{\mathrm{IH}} \\ \mathrm{~W} / \mathrm{INC} \mathrm{HI} \\ \hline \end{gathered}$		1.2	mA
ISB	Supply Standby Current	$\mathrm{CS}=\mathrm{V}_{\mathrm{IH}}$		200	$\mu \mathrm{A}$
IIH	Input Leakage Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$		10	$\mu \mathrm{A}$
IIL	Input Leakage Current, note 2	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		-25	$\mu \mathrm{A}$
VIH	High Level Input Voltage		2	VDD	V
VIL	Low Level Input Voltage	$\mathrm{V}_{\mathrm{DD}} \geq 4.5 \mathrm{~V}$	0	0.8	V
Notes: 1. IDD is the supply current drawn while the EEPROM is being updated. IDD does not include the current that flows through the Reference resistor chain. 2. $\overline{C S}, \mathrm{UP} / \overline{\mathrm{DN}}$ and $\overline{\mathrm{INC}}$ have internal pull-up resistors of approximately $200 \mathrm{k} \Omega$. When the input is pulled to ground the resulting output current will be $\mathrm{V}_{\mathrm{DD}} / 200 \mathrm{k} \Omega$.					

OPERATIONAL TRUTH TABLE

$\overline{\text { INC }}$	$\overline{\text { CS }}$	UP/D̄	Operation
HITOLO	L	H	Vout toward VH
HItoLO	L	L	Vout toward VL
H	LOTOHI	X	Store Setting
L	LOTOHI	X	Maintain Setting, NO Store
X	H	X	Standby, note 1

Notes: 1. The Standby or Operating current will be lowest with INC and UP/DN pins at H due to weak internal pull-ups that draw current when connected LO.

AC TIMING CHARACTERISTICS VDD $=+4.5 \mathrm{~V}$ to +5.5 V

Symbol	Parameter	Min	Max	Units
tclil	$\overline{\mathrm{CS}}$ to INC Setup	100		ns
timdi	$\overline{\text { INC }}$ High to UP/ $\overline{\text { DN }}$ Change	100		ns
$\mathrm{t}_{\text {dCiL }}$	UP/ $\overline{\text { DN }}$ to $\overline{\text { INC Setup }}$	100		ns
til	$\overline{\overline{I N C}}$ Low Period	200		ns
t_{I}	$\overline{\text { INC }}$ High Period	200		ns
tiHCH	$\overline{\mathrm{INC}}$ Inactive to $\overline{\mathrm{SS}}$ Inactive	100		ns
twp	Write Cycle Time		5	ms
tilvout	$\overline{\text { INC }}$ to Vout Delay		5	$\mu \mathrm{s}$

8 Pin DIP (Type P) Package JEDEC (250 mil body width)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Digital to Analog Converters - DAC category:
Click to view products by Honeywell manufacturer:

Other Similar products are found below :
5962-8871903MYA 5962-8876601LA 5962-89697013A 5962-89932012A 5962-9176404M3A PM7545FPCZ AD5311BRMZ-REEL7
AD5311RBRMZ-RL7 AD558SE/883B AD5681RBCPZ-1RL7 AD664TE/883B AD667SE AD7845SE/883B AD9115BCPZRL7 AD9162BBCA DAC08RC/883C JM38510/11302BEA AD5449YRUZ-REEL7 AD664AJ AD664BJ AD667SE/883B AD7534JPZ TCC-103A-RT 057536E 5962-87700012A 5962-87700032A 5962-87789022A 5962-89657023A 702423BB AD664BE MAX5853ETL+T MAX5801AUB+ AD9116BCPZRL7 MAX5110GTJ+ MAX5702BAUB+ DS4412U+T\&R MAX5364EUT+T MAX5858AECM+D AD5821ABCBZ-REEL7 MX7528KP+ MAX5858ECM+D MAX5138BGTE+T MAX5856AECM+D AD9164BBCA AD7545AUE $\underline{\text { MX7528JP+ TCC-303A-RT MAX5112GTJ+ DS3911T+T MAX5805BAUB+T }}$

