PNP Silicon Epitaxial Planar Transistor

for switching and amplifier applications

Marking Code: 3N

1.Base 2.Emitter 3.Collector SOT-323 Plastic Package

Absolute Maximum Ratings (T_a = 25 °C)

Parameter	Symbol	Value	Unit
Collector Base Voltage	-V _{CBO}	40	V
Collector Emitter Voltage	-V _{CEO}	40	V
Emitter Base Voltage	-V _{EBO}	5	V
Collector Current	-I _C	200	mA
Total Power Dissipation	P _{tot}	200	mW
Junction Temperature	T _j	150	°C
Storage Temperature Range	T _{stg}	- 55 to +150	°C

Page 1 of 4 10/28/2013

Characteristics at T_a = 25 °C

Characteristics at T _a = 25 °C	1		ı	T
Parameter	Symbol	Min.	Max.	Unit
DC Current Gain at $-V_{CE} = 1 \text{ V}$, $-I_{C} = 0.1 \text{ mA}$ at $-V_{CE} = 1 \text{ V}$, $-I_{C} = 1 \text{ mA}$ at $-V_{CE} = 1 \text{ V}$, $-I_{C} = 10 \text{ mA}$ at $-V_{CE} = 1 \text{ V}$, $-I_{C} = 50 \text{ mA}$ at $-V_{CE} = 1 \text{ V}$, $-I_{C} = 100 \text{ mA}$	h _{FE} h _{FE} h _{FE} h _{FE}	60 80 100 60 30	- 300 -	- - - -
Collector Emitter Cutoff Current at -V _{CE} = 30 V	-I _{CES}	-	50	nA
Emitter Base Cutoff Current at $-V_{EB} = 3 \text{ V}$	-I _{EBO}	-	50	nA
Collector Base Breakdown Voltage at $-I_C = 10 \mu A$	-V _{(BR)CBO}	40	-	V
Collector Emitter Breakdown Voltage at -I _C = 1 mA	-V _{(BR)CEO}	40	-	V
Emitter Base Breakdown Voltage at - I_E = 10 μ A	-V _{(BR)EBO}	5	-	V
Collector Emitter Saturation Voltage at $-I_C = 10$ mA, $-I_B = 1$ mA at $-I_C = 50$ mA, $-I_B = 5$ mA	-V _{CE(sat)}	-	0.25 0.4	V
Base Emitter Saturation Voltage at $-I_C = 10$ mA, $-I_B = 1$ mA at $-I_C = 50$ mA, $-I_B = 5$ mA	-V _{BE(sat)}	0.65 -	0.85 0.95	V
Transition Frequency at $-V_{CE} = 20 \text{ V}$, $I_E = 10 \text{ mA}$, $f = 100 \text{ MHz}$	f _T	250	-	MHz
Collector Output Capacitance at $-V_{CB} = 10 \text{ V}$, f = 100 KHz	C _{ob}	-	4.5	pF
Delay Time at $-V_{CC} = 3 \text{ V}$, $-V_{BE(OFF)} = 0.5 \text{ V}$, $-I_C = 10 \text{ mA}$, $-I_{B1} = 1 \text{ mA}$	t _d	-	35	ns
Rise Time at $-V_{CC} = 3 \text{ V}$, $-V_{BE(OFF)} = 0.5 \text{ V}$, $-I_C = 10 \text{ mA}$, $-I_{B1} = 1 \text{ mA}$	t _r	-	35	ns
Storage Time at $-V_{CC} = 3 \text{ V}$, $-I_C = 10 \text{ mA}$, $I_{B1} = -I_{B2} = -1 \text{ mA}$	t _{stg}	-	225	ns
Fall Time at $-V_{CC} = 3 \text{ V}$, $-I_C = 10 \text{ mA}$, $I_{B1} = -I_{B2} = -1 \text{ mA}$	t _f	-	75	ns

Page 2 of 4 10/28/2013

Fig.2 Collector-emitter saturation voltage vs. collector current

Fig.3 DC current gain vs.collector current (I)

Fig.4 DC current gain vs. collector current (II)

Page 3 of 4 10/28/2013

Ta=25°C | lo / =l9=10 | lo / =

Fig.8 Turn-on time vs. collector current

Fig.9 Rise time vs. collector current

Fig.10 Storage time vs. collector current

Fig.11 Fall time vs. collector current

Fig.6 Base-emitter saturation voltage vs. collector current

Fig.10 Power Dissipation vs Ambient Temperature

Page 4 of 4 10/28/2013

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by Hong Kong Chuangji manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H MMBT-2369-TR BC546/116 BC557/116 BSW67A NJVMJD148T4G NTE123AP-10 NTE153MCP NTE16

NTE195A NTE92 2N4401-A 2N6728 2SA1419T-TD-H 2SA2126-E 2SB1204S-TL-E 2SC2712S-GR,LF SP000011176 2N2907A 2N3904
NS 2N5769 2SC2412KT146S CPH6501-TL-E MCH4021-TL-E MJE340 Jantx2N5416 US6T6TR NJL0281DG 732314D CPH3121-TL-E

CPH6021-TL-H 873787E IMZ2AT108 MMST8098T146 UMX21NTR MCH6102-TL-E NJL0302DG 30A02MH-TL-E NTE13 NTE26

NTE282 NTE323 NTE350 NTE81 STX83003-AP JANTX2N2920L JANSR2N2222AUB CMLT3946EG TR 2SA1371D-AE