
MMBTSC2412 TRANSISTOR (NPN)

FEATURES

· Low C_{ob} , C_{ob} = 2.0 pF (Typ).

MARKING: BR

MAXIMUM RATINGS (T_A=25℃ unless otherwise noted)

Symbol	Parameter	Value	Units	
V _{CBO}	Collector-Base Voltage	60	V	
V _{CEO}	Collector-Emitter Voltage	50	V	
V _{EBO}	Emitter-Base Voltage	7	V	
Ic	Collector Current -Continuous	150	mA	
Pc	Collector Power Dissipation	200	mW	
TJ	Junction Temperature	150	°C	
T _{stg}	Storage Temperature	-55-150	$^{\circ}$	

ELECTRICAL CHARACTERISTICS (Tamb=25°C unless otherwise specified)

LLCTRIOAL CHARACTERIOTICS (Tamb-23 C unless otherwise specified)									
Parameter	Symbol	Test conditions	MIN	TYP	MAX	UNIT			
Collector-base breakdown voltage	V _{(BR)CBO}	I _C =50μA, I _E =0	60			V			
Collector-emitter breakdown voltage	V _{(BR)CEO}	I _C =1mA, I _B =0	50			V			
Emitter-base breakdown voltage	V _{(BR)EBO}	I _E =50μA, I _C =0	7			V			
Collector cut-off current	I _{CBO}	V _{CB} =60V, I _E =0			0.1	μA			
Emitter cut-off current	I _{EBO}	V _{EB} =7V, I _C =0			0.1	μA			
DC current gain	h _{FE}	V _{CE} =6V, I _C =1mA	180		390				
Collector-emitter saturation voltage	V _{CE(sat)}	I_C =50mA, I_B =5mA			0.4	V			
Transition frequency	f⊤	V _{CE} =12V, I _C =-2mA, f=100MHz		160		MHz			
Collector output capacitance	C _{ob}	V _{CB} =12V, I _E =0, f=1MHz		2.0	3.5	pF			

Page 1 of 4

Typical Characteristics

SO VŒ=6V VŒ=6V VŒ=6V O 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fig.1 Grounded emitter propagation characteristics

BASE TO EMITTER VOLTAGE: VBE (V)

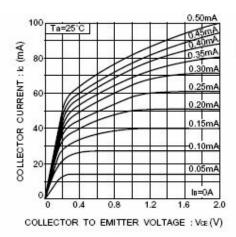


Fig.2 Grounded emitter output characteristics (1)

MMBTSC2412

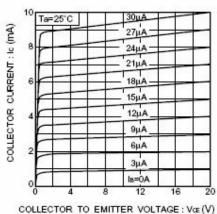


Fig.3 Grounded emitter output characteristics (II)

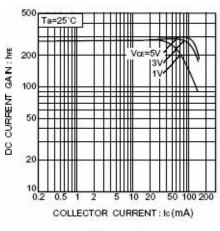


Fig.4 DC current gain vs. collector current (1)

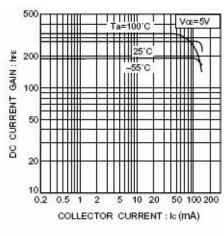


Fig.5 DC current gain vs. collector current (II)

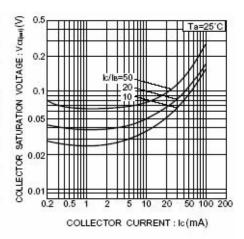


Fig. 6 Collector-emitter saturation voltage vs. collector current

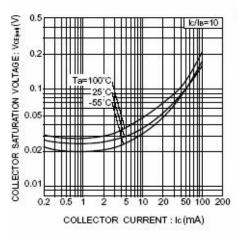


Fig.7 Collector-emitter saturation voltage vs. collector current (1)

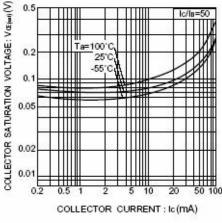


Fig.8 Collector-emitter saturation voltage vs. collector current (II)

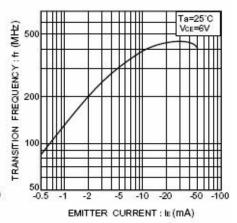


Fig.9 Gain bandwidth product vs. emitter current

Page 2 of 4 8/9/2011

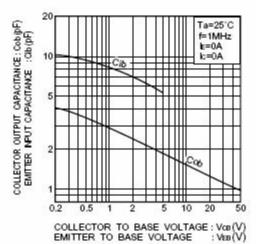
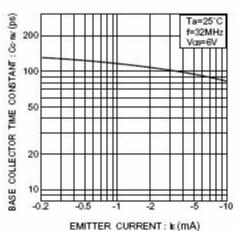
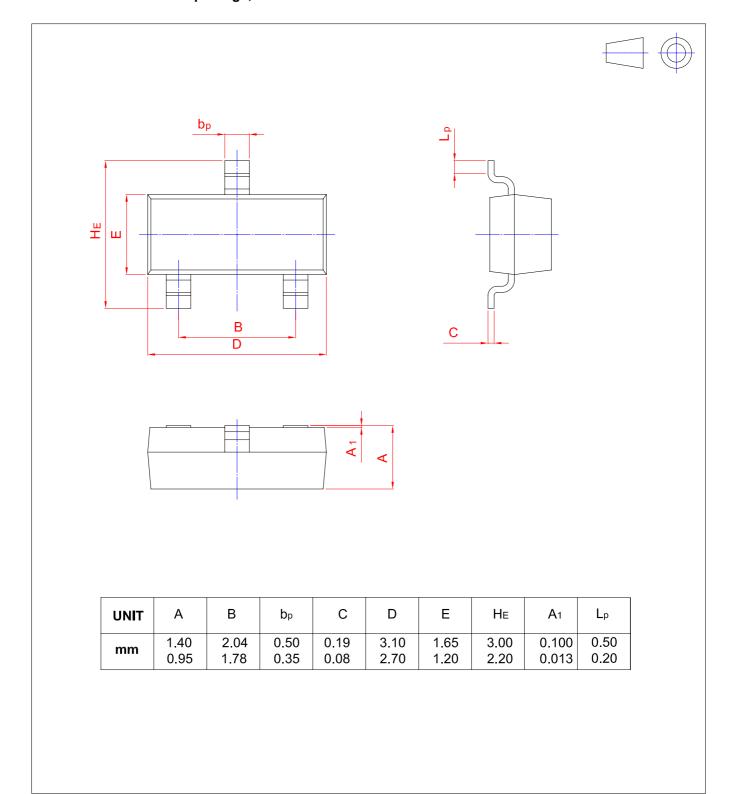


Fig.10 Collector output capacitance vs. collector-base voltage Emitter input capacitance vs. emitter-base voltage




Fig.11 Base-collector time constant vs. emitter current

Page 3 of 4

PACKAGE OUTLINE

Plastic surface mounted package; 3 leads

SOT-23

Page 4 of 4

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by Hong Kong Chuangji manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H MMBT-2369-TR BC546/116 BC557/116 BSW67A NJVMJD148T4G NTE123AP-10 NTE153MCP NTE16

NTE195A NTE92 2N4401-A 2N6728 2SA1419T-TD-H 2SA2126-E 2SB1204S-TL-E 2SC2712S-GR,LF SP000011176 2N2907A 2N3904
NS 2N5769 2SC2412KT146S CPH6501-TL-E MCH4021-TL-E MJE340 Jantx2N5416 US6T6TR NJL0281DG 732314D CPH3121-TL-E

CPH6021-TL-H 873787E IMZ2AT108 MMST8098T146 UMX21NTR MCH6102-TL-E NJL0302DG 30A02MH-TL-E NTE13 NTE26

NTE282 NTE323 NTE350 NTE81 STX83003-AP JANTX2N2920L JANSR2N2222AUB CMLT3946EG TR 2SA1371D-AE