深圳华芯鸿电子有限公司

产品规格书 PRODUCT SPECIFICATION SHEET

物料名称 (APPELLATION): <u>16GB EMMC FLASH STORAGE</u>

产品型号 (MODEL): <u>HG-EMC016-N1210</u>

客户料号 (No.):

生.	工艺审核	品质审核	项目审核	开发审核
<u> </u>	TECHNICAL	QUALITY	PROJECT	DEVELOPING
方				

12.7	零件工程师	设计工程师	主管审批	研发体系
各户	Cecomponent Engineer	Engineer	Approval	R & D System
力				

地址: 深圳市光明新区华强创意园 3A804

深圳市南山区西丽牛成 221 大厦 5 楼

电话: 0755-27652977 传真: 0755-27652992

Mr.Lee: 15013501940 & Ms.wang: 13923779042

E-mail: lpzhxh@163.com, wcxhxh@163.com

变更履历表

变更日期	变更内容	版次	备注
2019-09-03	发行	A0	

eMMC 5.1 FLASH STORAGE HG-EMC016-N1210

Product Features:

- ♦ Support eMMC specification versions 4.4, 4.41, 4.5, 5.0, 5.01 and 5.1
- ♦ Eleven-wire bus (clock, 1 bit command, 8 bit data bus, and data strobe) and a hardware reset:
 - ➤ Clock frequencies of 0-200MHz
 - > Three modes of data bus width: 1bit (default), 4bit, and 8bit
- ♦ Supports three different data bus widths: 1 bit(default), 4 bits, 8 bits
 - Data transfer rate: up to 52Mbyte/s (using 8 parallel data lines at 52 MHz)
 - ➤ Single data rate: up to 200Mbyte/s @ 200MHz
 - > Dual data rate: up to 400Mbyte/s @ 200MHz
- ♦ Operating voltage range:
 - VCCQ = 1.8 V/3.3 V
 - \triangleright VCC = 3.3 V
- ♦ Supports Field Firmware Update (FFU)
- ♦ Enhanced Device Life time
- ♦ Support Pre EOL information
- ♦ Optimal Size
- ♦ Supports Production State Awareness
- ♦ Supports Power Off Notification for Sleep
- ♦ Supports HS400
- ♦ Supports CMD queuing
- ♦ Supports Cache enhancement barrier
- ♦ Supports Cache Flushing report
- ♦ RPMB throughput improve
- ♦ Supports BKOP control
- ♦ Supports HCI for CMD queuing
- ♦ Supports Enhanced strobe
- ♦ Supports secure write protection

Revision History

Revision	History	Date	Owner
1.0	First release	2019/9/3	Nick
1.1	Added eMMC product logo	2019/9/18	Nick
1.2	Modified for HG-EMC016-N1210	2019/10/9	Nick
1.3	Added operating temperature	2019/10/15	Nick
1.4	Modified CID/CSD/eCSD	2019/10/23	Nick
1.5	Modified MID	2019/11/13	Nick
1.6	Modified Extended CSD -slice Value	2020/2/20	Sylvia

Table of Content

1	GENERAL DESCRIPTION	7
2	2 Specification	8
	2.1 Device Summary	
	2.2 System Performance	
	2.3 Power Consumption	
	2.4 Capacity According To Partition	
	2.5 User Density	8
3	Mechanical Specification	9
	3.1 Ball Definition	g
	3.2 Ball Assignment	
	3.3 Package Dimension	
4	eMMC Block Diagram	10
•		
	4.1 eMMC System Overview	
	4.2 Memory Addressing	
	4.3 eMMC Device Overview	
	4.3.1 Clock (CLK)	
	4.3.2 Data Strobe (DS)	
	4.3.3 Command (CMD)	
	4.3.4 Input/Outputs (DATO-DAT7)	
	4.5. Bus Speed Modes	
	4.5.1 HS400 Bus Speed mode	
	4.5.2 HS400 System Block Diagram	
5		
_	5.1 eMMC Overview	
	5.2 Boot Operation Mode	
	5.3 Device Identification Mode	
	5.4 Interrupt Mode	
	5.5 Data Transfer Mode	
	5.6 Inactive Mode	
	5.7 H/W Reset Operation	
	5.8 Noise Filtering Timing for H/W Reset	
	5.9 Field Firmware Update (FFU)	
	5.10 Power off Notification for sleep	
	5.11 Cache Enhancement Barrier	21

	5. 12 Cache Flushing Policy	22
	5. 13 Command Queueing	22
	5.13.1 CMD Set Description	23
	5.13.2 New Response: QSR (Queue Status Register)	23
6	Register Settings	24
	6.1 OCR Register	24
	6.2 CID Register	
	6.3 CSD Register	
	6.4 Extended CSD Register	
	6.5 RCA Register	
	6.6 DSR Register	
_	' The eMMC BUS	22
,		
	7.1 Power-up	33
	7.1.1 eMMC power-up	33
	7.1.2 eMMC Power Cycling	33
	7.2 Bus Operating Conditions	34
	7.2.1 Power supply: eMMC	34
	7.2.2 eMMC Power Supply Voltage	35
	7.2.3 Bus Signal Line Load	36
	7.2.4 HS400 reference load	36
	7.3 Bus Signal Levels	37
	7.3.1 Open-drain Mode Bus Signal Level	38
	7.3.2 Push-pull mode bus signal level— eMMC	38
	7.3.3 Bus Operating Conditions for HS200 & HS400	38
	7.3.4 Device Output Driver Requirements for HS200 & HS400	38
	7.4 Bus Timing	39
	7.4.1 Device Interface Timings	39
	7.5 Bus Timing for DAT Signals During Dual Data Rate Operation	40
	7.5.1 Dual Data Rate Interface Timings	41
	7.6 Bus Timing Specification in HS400 mode	42
	7.6.1 HS400 Device Input Timing	42
	7.6.2 HS400 Device Output Timing	43

Temperature

Parameter	Rating	Unit	Note
Operating temperature	-25 ~ +8 5	ů	

Product Logo and Product Number

<u>HG - EMC 016 - N 1 2 1 0</u>

Reserved

1: 153 ball

1: HG8226-E01 2. HG8228-E02

1: eMMC 5.1 (HS400)

N: Non-Dram

eMMC Density: 008: 08GB 016: 16GB

EMC: eMMC

Fixed part number (HosinGlobal Product)

1 GENERAL DESCRIPTION

HG's eMMC products follow the JEDEC Standard. It is an ideal universal storage solution for many electronic devices, including smartphones, tablets, PDAs, eBook readers, digital cameras, recorders, MP3, MP4 players, electronic learning products, digital TVs and set-top boxes. **HG-EMC016-N1210** encloses the **3D TLC** NAND and eMMC controller inside as one JEDEC standard package, providing a standard interface to the host. The eMMC controller directly manages NAND flash, including ECC, wear-leveling, IOPS optimization and read sensing.

2 Specification

2.1 Device Summary

Product	NAND Density	Package	Operating Voltage
HG-EMC016-N1210	16GB	FBGA153	$V_{CC} = 3.3V$ $V_{CCQ} = 1.8/3.3V$

2.2 System Performance

		Typical value @HS400			
Product	NAND Density	Sequential Read	Sequential Write	Random Read	Random write
		(MB/s)	(MB/s)	(IOPS) cmdQ	Cache on (IOPS)
HG-EMC016-N1210	16GB	224	59	8234	5582

Note 1: Values given for an 8-bit bus width, running HS400 mode from HG proprietary tool, VCC=3.3V, VCCQ=1.8V.

Note 2: For performance number under other test conditions, please contact HG's representatives.

Note 3: Performance numbers might be subject to changes without notice.

2.3 Power Consumption

Duoduot	Read	(mA)	Write (mA)		Stand ha
Product	I _{CCQ (1.8V)}	I _{CC (3.3V)}	I _{CCQ (1.8V)}	I _{CC (3.3V)}	Stand-by
HG-EMC016-N1210	119	109	90	68	<200uA

2.4 Capacity According To Partition

Product	User Density	Boot Partition 1	Boot Partition 2	RPMB
HG-EMC016-N1210	16GB	4MB	4MB	4MB

2.5 User Density

Product	User Density	Capacity
HG-EMC016-N1210	16GB	14928 MB

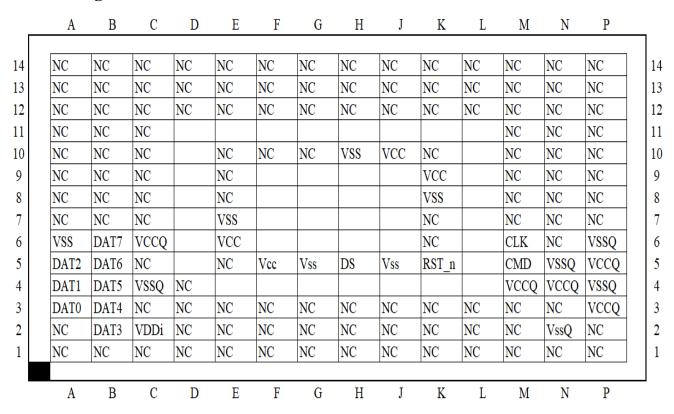
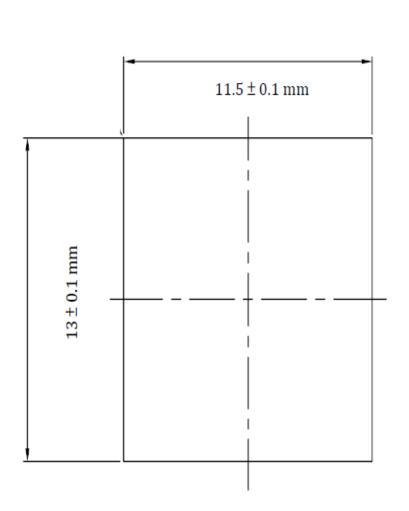
3 Mechanical Specification

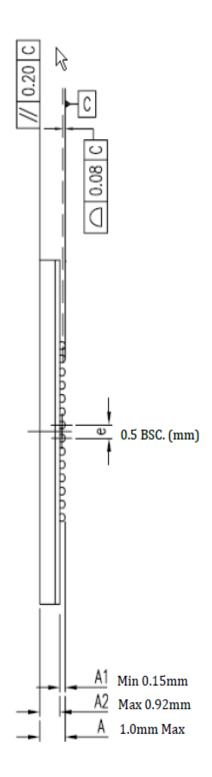
3.1 Ball Definition

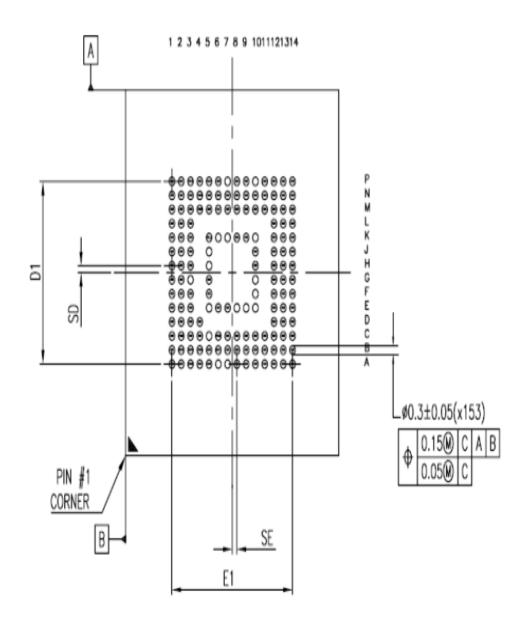
Table 3-1 FBGA153 Ball information

Name	Type ¹	Description
CLK	1	Clock
DS	O/PP	Data strobe
DAT0~ DAT7	I/O/PP	Data
CMD	I/O/PP/OD	Command/Response
RST_n	I	Hardware reset
Vcc	S	Supply voltage for Core
V_{CCQ}	S	Supply voltage for I/O
Vss	S	Supply voltage ground for Core
V _{SSQ}	S	Supply voltage ground for I/O
VDDi	N/A	Controller core power

3.2 Ball Assignment


Figure 3-1 Ball assignment for FBGA 153L


3.3 Package Dimension

(11.5mm*13mm*1.0mm Max.)

BOTTOM VIEW

N	SE (MM)	SD (MM)	E1(MM)	D1(MM)	JEDEC(REF)
153	0.25 BSC.	0.25 BSC.	6.50 BSC.	6.50 BSC.	MO-276 BA

4 eMMC Block Diagram

4.1 eMMC System Overview

The eMMC specification covers the behavior of the interface and the Device controller. As part of this specification the existence of a host controller and a memory storage array are implied but the operation of these pieces is not fully specified.

HG's NAND Device consists of a single chip MMC controller and NAND flash memory module. The micro-controller interfaces with a host system allowing data to be written to and read from the NAND flash memory module. The controller allows the host to be independent from details of erasing and programming the flash memory.

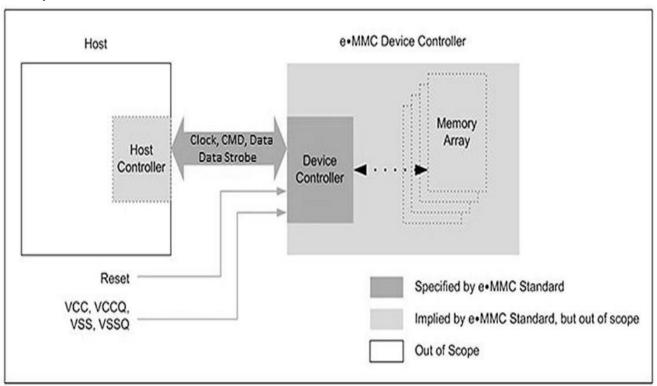


Figure 4-1 eMMC System Overview

4.2 Memory Addressing

Previous implementations of the eMMC specification are following byte addressing with 32 bits field. This addressing mechanism permitted for eMMC densities up to and including 2 GB. To support larger densities the addressing mechanism was update to support sector addresses (512B sectors). The sector addresses shall be used for all devices with capacity larger than 2 GB. To determine the addressing mode use the host should read bit [30:29] in the OCR register.

4.3 eMMC Device Overview

The eMMC device transfers data via a configurable number of data bus signals. The communication signals are:

4.3.1 Clock (CLK)

Each cycle of this signal directs a one bit transfer on the command and either a one bit (1x) or a two bits transfer (2x) on all the data lines. The frequency may vary between zero and the maximum clock frequency.

4.3.2 Data Strobe (DS)

This signal is generated by the device and used for output in HS400 mode. The frequency of this signal follows the frequency of CLK. For data output each cycle of this signal directs two bits transfer(2x) on the data - one bit for positive edge and the other bit for negative edge. For CRC status response output and CMD response output (enabled only HS400 enhanced strobe mode), the CRC status is latched on the positive edge only, and don't care on the negative edge.

4.3.3 Command (CMD)

This signal is a bidirectional command channel used for Device initialization and transfer of commands. The CMD signal has two operation modes: open-drain for initialization mode, and push-pull for fast command transfer.

Commands are sent from the eMMC host controller to the eMMC Device and responses are sent from the Device to the host.

4.3.4 Input/Outputs (DAT0-DAT7)

These are bidirectional data channels. The DAT signals operate in push-pull mode. Only the Device or the host is driving these signals at a time. By default, after power up or reset, only DAT0 is used for data transfer. A wider data bus can be configured for data transfer, using either DAT0-DAT3 or DAT0-DAT7, by the eMMC host controller. The *eMMC* Device includes internal pull-ups for data lines DAT1-DAT7. Immediately after entering the 4-bit mode, the Device disconnects the internal pull ups of lines DAT1, DAT2, and DAT3. Correspondingly, immediately after entering to the 8-bit mode the Device disconnects the internal pull-ups of lines DAT1-DAT7.

Name	Type ¹	Description
CLK	1	Clock
DS	O/PP	Data strobe
DAT0~ DAT7	I/O/PP	Data
CMD	I/O/PP/OD	Command/Response
RST_n	I	Hardware reset
Vcc	S	Supply voltage for Core
V _{ccq}	S	Supply voltage for I/O
Vss	S	Supply voltage ground for Core
V _{SSQ}	S	Supply voltage ground for I/O
VDDi	N/A	Controller core power

Table 4-1 Communication Interface

Table 4-2 eMMC Registers

Name	Width (Bytes)	Description	Implementation
CID	16	Device Identification number, an individual number for identification.	Mandatory
RCA	2	Relative Device Address is the Device system address, dynamically assigned by the host during initialization.	Mandatory
DSR	2	Driver Stage Register, to configure the Device's output drivers.	Optional
CSD	16	Device Specific Data, information about the Device operation conditions.	Mandatory
OCR	4	Operation Conditions Register. Used by a special broadcast command to identify the voltage type of the Device.	Mandatory
EXT_CSD	512	Extended Device Specific Data. Contains information about the Device capabilities and selected modes. Introduced in standard v4.0	Mandatory

The host may reset the device by:

- Switching the power supply off and back on. The device shall have its own power-on detection circuitry which puts the device into a defined state after the power-on Device.
- A reset signal
- By sending a special command

4.4. Bus Protocol

After a power-on reset, the host must initialize the device by a special message-based eMMC bus protocol. For more details, refer to section 5.3.1 of the JEDEC Standard Specification No. JESD84-B51.

4.5. Bus Speed Modes

eMMC defines several bus speed modes as shown in Table 4-3.

Table 4-3 Bus Speed Mode

Mode Name	Data Rate	IO Voltage	Bus Width	Frequency	Max Data Transfer (implies x8 bus width)
Backwards Compatibility with legacy MMC card	Single	3.3/1.8V	1, 4, 8	0-26MHz	26MB/s
High Speed SDR	Single	3.3/1.8V	4, 8	0-52MHz	52MB/s
High Speed DDR	Dual	3.3/1.8V	4, 8	0-52MHz	104MB/s
HS200	Single	1.8V	4, 8	0-200MHz	200MB/s
HS400	Dual	1.8V	8	0-200MHz	400MB/s

4.5.1 HS400 Bus Speed mode

The HS400 mode has the following features

- DDR Data sampling method
- CLK frequency up to 200MHz, Data rate is up to 400MB/s
- Only 8-bit bus width supported
- Signaling levels of 1.8V
- Support up to 5 selective Drive Strength
- Data strobe signal is toggled only for Data out and CRC response

4.5.2 HS400 System Block Diagram

Figure 4-2 shows a typical HS400 Host and Device system. The host has a clock generator, which supplies CLK to the Device. For read operations, Data Strobe is generated by device output circuit. Host receives the data which is aligned to the edge of Data Strobe.

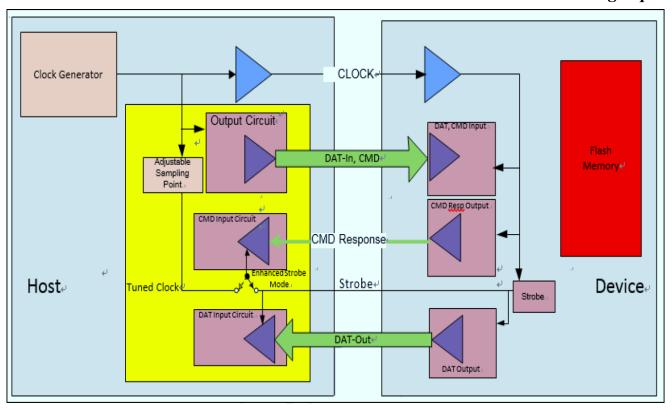


Figure 4-2 HS400 Host and Device block diagram

5 eMMC Functional Description

5.1 eMMC Overview

All communication between host and device are controlled by the host (main chip). The host sends a command, which results in a device response. For more details, refer to section 6.1 of the JEDEC Standard Specification No. JESD84-B51.

Five operation modes are defined for the eMMC system:

- Boot operation mode
- Device identification mode
- Interrupt mode
- Data transfer mode
- Inactive mode

5.2 Boot Operation Mode

In boot operation mode, the master (eMMC host) can read boot data from the slave (eMMC device) by keeping CMD line low or sending CMD0 with argument + 0xFFFFFFA, before issuing CMD1. The data can be read from either boot area or user area depending on register setting. For more details, refer to section 6.3 of the JEDEC Standard Specification No. JESD84-B51.

5.3 Device Identification Mode

While in device identification mode the host resets the device, validates operation voltage range and access mode, identifies the device and assigns a Relative device Address (RCA) to the device on the bus. All data communication in the Device Identification Mode uses the command line (CMD) only. For more details, refer to section 6.4 of the JEDEC Standard Specification No. JESD84-B51.

5.4 Interrupt Mode

The interrupt mode on the eMMC system enables the master (eMMC host) to grant the transmission allowance to the slaves (Device) simultaneously. This mode reduces the polling load for the host and hence, the power consumption of the system, while maintaining adequate responsiveness of the host to a Device request for service. Supporting eMMC interrupt mode is an option, both for the host and the Device. For more details, refer to section 6.5 of the JEDEC Standard Specification No.JESD84-B51.

5.5 Data Transfer Mode

When the Device is in Stand-by State, communication over the CMD and DAT lines will be performed in push-pull mode. For more details, refer to section 6.6 of the JEDEC Standard Specification No. JESD84-B51.

5.6 Inactive Mode

The device will enter inactive mode if either the device operating voltage range or access mode is not valid. The device can also enter inactive mode with GO_INACTIVE_STATE command (CMD15). The device will reset to Pre-idle state with power cycle. For more details, refer to section 6.1 of the JEDEC Standard Specification No. JESD84-B51

5.7 H/W Reset Operation

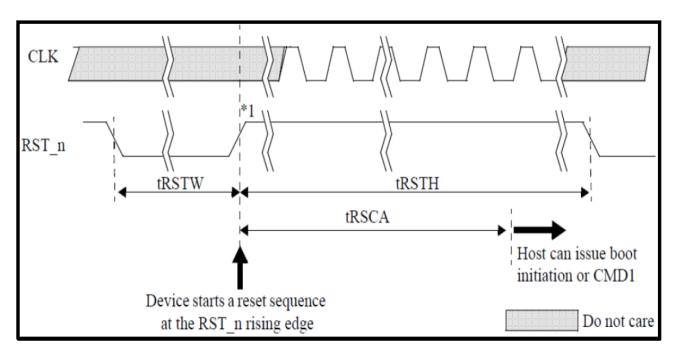


Figure 5-1 H/W Reset Waveform

Note1: Device will detect the rising edge of RST_n signal to trigger internal reset sequence

Symbol	Comment	Min	Max	Unit	
tRSTW	RST_n pulse width	1		[us]	
tRSCA	RST_n to Command time	200¹		[us]	
tRSTH RST_n high period (interval time) 1 [us]					
Note1: 74 cycles of clock signal required before issuing CMD1 or CMD0 with argument 0xFFFFFFFA					

Table 5-1 H/W Reset Timing Parameters

5.8 Noise Filtering Timing for H/W Reset

Device must filter out 5ns or less pulse width for noise immunity

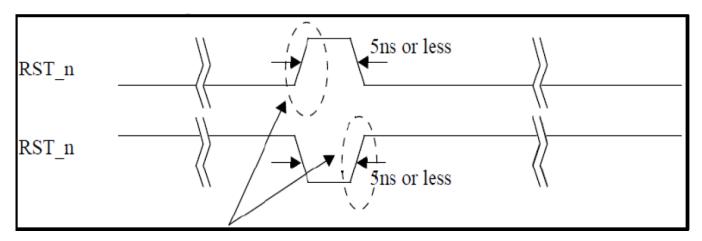


Figure 5-2 Noise Filtering Timing for H/W Reset

Device must not detect these rising edge.

Device must not detect 5ns or less of positive or negative RST_n pulse.

Device must detect more than or equal to 1us of positive or negative RST_n pulse width.

5.9 Field Firmware Update (FFU)

Field Firmware Updates (FFU) enables features enhancement in the field. Using this mechanism the host downloads a new version of the firmware to the eMMC device and, following a successful download, instructs the eMMC device to install the new downloaded firmware into the device.

In order to start the FFU process the host first checks if the eMMC device supports FFU capabilities by reading SUPPPORTED_MODES and FW_CONFIG fields in the EXT_CSD. If the eMMC device supports the FFU feature the host may start the FFU process. The FFU process starts by switching to FFU Mode in MODE_CONFIG field in the EXT_CSD. In FFU Mode host should use closed-ended or open ended commands for downloading the new firmware and reading vendor proprietary data. In this mode, the host should set the argument of these commands to be as defined in FFU_ARG field. In case these commands have a different argument the device behavior is not defined and the FFU process may fail. The host should set Block Length to be DATA_SECTOR_SIZE. Downloaded firmware bundle must be DATA_SECTOR_SIZE size aligned (internal padding of the bundle might be required). Once in FFU Mode the host may send the new firmware bundle to the device using one or more write commands.

The host could regain regular functionality of write and read commands by setting MODE_CONFIG field in the EXT_CSD back to Normal state. Switching out of FFU Mode may abort the firmware download operation. When host switched back to FFU Mode, the host should check the FFU Status to get indication about the number of sectors which were downloaded successfully by reading the

NUMBER_OF_FW_SECTORS_CORRECTLY_PROGRAMMED in the extended CSD. In case the number of sectors which were downloaded successfully is zero the host should re-start downloading the new firmware bundle from its first sector. In case the number of sectors which were downloaded successfully is positive the host should

continue the download from the next sector, which would resume the firmware download operation.

In case MODE_OPERATION_CODES field is not supported by the device the host sets to NORMAL state and initiates a CMD0/HW_Reset/Power cycle to install the new firmware. In such case the device doesn't need to use NUMBER_OF_FW_SECTORS_CORRECTLY_PROGRAMMED.

In both cases occurrence of a CMD0/HW_Reset/Power occurred before the host successfully downloaded the new firmware bundle to the device may cause the firmware download process to be aborted.

5.10 Power off Notification for sleep

The host should notify the device before it powers the device off. This allows the device to better prepare itself for being powered off. Power the device off means to turn off all its power supplies. In particular, the host should issue a power off notification (POWER_OFF_LONG, POWER_OFF_SHORT) if it intends to turn off both VCC and VCCQ power I or it may use to a power off notification (SLEEP_NOTIFICATION) if it intends to turn-off VCC after moving the device to Sleep state.

To indicate to the device that power off notification is supported by the host, a supporting host shall first set the POWER_OFF_NOTIFICATION byte in EXT_CSD [34] to POWERED_ON (0x01). To execute a power off, before powering the device down the host will changes the value to either POWER_OFF_SHORT (0x02) or POWER_OFF_LONG (0x03). Host should waits for the busy line to be de-asserted. Once the setting has changed to either 0x02 or 0x03, host may safely power off the device.

The host may issue SLEEP_AWAKE (CMD5) to enter or to exit from Sleep state if

POWER_OFF_NOTIFICATION byte is set to POWERED_ON. Before moving to Standby state and then to Sleep state, the host sets POWER_OFF_NOTIFICATION to SLEEP_NOTIFICATION and waits for the DAT0 line deassertion. While in Sleep (slp) state VCC (Memory supply) may be turned off as defined in 4.1.6. Removing power supplies other than VCC while the device is in the Sleep (slp) state may result in undefined device behavior. Before removing all power supplies, the host should transition the device out of Sleep (slp) state back to Transfer state using CMD5 and CMD7 and then execute a power off notification setting POWER_OFF_NOTIFICATION byte to either POWER_OFF_SHORT or POWER_OFF_LONG.

If host continues to send commands to the device after switching to the power off setting (POWER_OFF_LONG, POWER_OFF_SHORT or SLEEP_NOTIFICATION) or performs HPI during its busy condition, the device shall restore the POWER_OFF_NOTIFICATION byte to POWERED_ON.

If host tries to change POWER_OFF_NOTIFICATION to 0x00 after writing another value there, a SWITCH_ERROR is generated.

The difference between the two power-off modes is how urgent the host wants to turn power off. The device should respond to POWER_OFF_SHORT quickly under the generic CMD6 timeout. If more time is acceptable, POWER_OFF_LONG may be used and the device shall respond to it within the POWER_OFF_LONG_TIME timeout.

While POWER_OFF_NOTIFICATION is set to POWERED_ON, the device expects the host to host shall:

- •Keep the device power supplies alive (both VCC and VCCQ) and in their active mode
- •Not power off the device intentionally before changing POWER_OFF_NOTIFICATION to either POWER_OFF_LONG or POWER_OFF_SHORT
- •Not power off VCC intentionally before changing POWER OFF NOTIFICATION to SLEEP NOTIFICATION

and before moving the device to Sleep state 18

Before moving to Sleep state hosts may set the POWER_OFF_NOTIFICATION byte to SLEEP_NOTIFICATION (0x04) if aware that the device is capable of autonomously initiating background operations for possible performance improvements. Host should wait for the busy line to be de-asserted. Busy line may be asserted up the period defined in SLEEP_NOTIFICATION_TIME byte in EXT_CSD [216]. Once the setting has changed to 0x04 host may set the device into Sleep mode (CMD7+CMD5). After getting out from Sleep the POWER_OFF_NOTIFICATION byte will restore its value to POWERED_ON. HPI may interrupt the SLEEP_NOTIFICATION operation. In that case POWER_OFF_NOTIFICATION byte will restore to POWERED_ON.

5.11 Cache Enhancement Barrier

Barrier function provides a way to perform a delayed in-order flushing of a cached data. The main motivation for using barrier commands is to avoid the long delay that is introduced by flush commands. There are cases where the host is not interested in flushing the data right away, however it would like to keep an order between different cached data batches. The barrier command enables the host achieving the in-order goal but without paying the flush delay, since the real flushing can be delayed by the device to some later idle time. The formal definition of the barrier rule is as follows: Denote a sequence of requests Ri, i=0,...,N. Assuming a barrier is set between requests Rx and Rx+1 (0<x<N) then all the requests R0..Rx must be flushed to the non-volatile memory before any of the requests Rx+1..RN. Between two barriers the device is free to write data into the non-volatile memory in any order. If the host wants to preserve a certain order it shall flush the cache or set another barrier at a point where order is important. The barrier is set by writing to the BARRIER bit of the FLUSH CACHE byte (EXT CSD byte [32]). Any error resulted can be read from the status register by CMD13 after the completion of the programming as defined for a normal write request. The error could affect any data written to the cache since the previous flush operation. The device shall support any number of barrier commands between two flush commands. In case of multiple barrier commands between two flush commands a subset of the cached data may be committed to the nonvolatile memory according to the barrier rule. Internally, a device may have an upper limit on the barrier amount it can absorb without flushing the cache. That is, if the host exceeds this barrier amount, the device may issue, internally, a normal flush.

The device shall expose its barrier support capability via the BARRIER_SUPPORT byte (EXT_CSD byte [486]). If a device does not support barrier function this register shall be zero. If a device supports barrier function this register shall be one. Assuming the device supports barrier function, if the BARRIER bit of the FLUSH_CACHE byte is set, a barrier operation shall be executed. If the cache gets totally full and/or the cache is not able to receive the data of the next access (per block count indicated in CMD23 or per initiated single / open ended multiple block write in general) then it shall still be the responsibility of the eMMC device to store the data of the next access within the timeouts that are specified elsewhere in this specification. The actual algorithm to handle the new data and possible flush of some older cached data is left for the implementation. Note: When issuing a force-programming write request (CMD23 with bit 24 on) or a reliable write request (CMD23 with bit 31 on), the host should be aware that the data will be written to the non-volatile memory, potentially, before any cached data, even if a barrier command was issued. Therefore, if the writing order to the non-volatile memory is important, it is the responsibility of the host to issue a flush command before the force-programming or the reliable-write request. In

order to use the barrier function, the host shall set bit 0 of BARRIER_EN (EXT_CSD byte [31]). The barrier feature is optional for an eMMC device.

5. 12 Cache Flushing Policy

The host may require the device to flush data from the cache in an in-order manner. From time to time, to guarantee in-order flushing, the host may command the device to flush the device cache or may use a barrier command. However, if the eMMC device flushing policy is to flush data from the cache in an in-order manner, cache barrier commands or flush commands operations (In case goal is to guarantee the flushing order) are redundant and impose a needless overhead to the device and host. FIFO bit in CACHE_FLUSH_POLICY field (EXT_CSD byte [240]) is used by the device to indicate to the host that the device cache flushing policy is First-In-First-Out; this means that the device guarantees that the order of the flushing of data would be the in same order which data was written to the cache. When the FIFO bit is set it is recommended for the host not to send cache barrier commands or flush operations which goal is to guarantee the flushing order as they are redundant and impose a burden to the system. However, if the FIFO bit is set to 1b and the device supports the cache barrier mechanism, the host may still send barrier commands without getting an error. Sending these commands will not change the device behavior as device flushes cache in-order anyway. The CACHE_FLUSH_POLICY field is read-only field and never change its value either by the host or device.

5. 13 Command Queueing

To facilitate command queuing in eMMC, the device manages an internal task queue to which the host can queue data transfer tasks. Initially the task queue is empty. Every task is issued by the host and initially queued as pending. The device controller works to prepare pending tasks for execution. When a task is ready for execution its state changes to "ready for execution". The exact meaning of "ready for execution" is left for device implementation. The host tracks the state of all queued tasks and may order the execution of any task, which is marked as "ready for execution" by sending a command indicating its task ID. When the execute command is received (CMD46/CMD47) the device executes the data transfer transaction. For example, in order to queue a write transaction the host sends a CMD44 indicating the task's parameters. The device responds and the host sends a CMD45, indicating the start block address. The device regards the two commands as a single task in the queue and sends a response indicating success if no error is detected. This exchange may be executed on the CMD line while a data transfer, or busy state, is ongoing on the DAT lines. The host tracks the state of the queue using CMD13. At a later time, when data transfer is not in progress, the host issues a CMD47, ordering the device to execute a task from the queue, providing the Task ID in its argument. The device responds with an R1 response and the data transfer starts. Note that if hosts need to access RPMB partition, the host should disable the Command Queue mechanism and access RPMB partition not through the command queue. General Purpose partitions may be accessed when command queueing is enabled. The queue must be empty when CMD6 is sent (to switch partitions or to disable command queueing). Sending CMD6 while the queue is not empty shall be regarded as illegal command (as explained 6.6.42.9 Supported Commands). Prior to enabling command queuing, the block size shall be set to 512B. Device may respond with an error to CMD46/CMD47 if block size is not 512B.

5.13.1 CMD Set Description

Table 5-2 CMD Set Description and Details

CMD	Туре	Argument	Abbreviation	Purpose
CMD44	ac/R1	[31] Reliable Write Request	QUEUED_TASK _PARAMS	Define direction of operation (Read or Write) and Set high
		[30] DAT_DIR - "0" write / "1" read		priority CMD Queue with task ID
		[29] tag request		
		[28:25] context ID		
		[24] forced programming		
		[23] Priority: "0" simple / "1" high		
		[20:16] TASK ID		
		[15:0] number of blocks		
CMD45	ac/R1	[31:0] Start block address	QUEUED_TASK_ADDRESS	Indicate data address for Queued CMD
CMD46	adtc/R1	[20:16] TASK ID	EXECUTE_READ_TASK	(Read) Transmit the requested number of data blocks
CMD47	adtc/R1	[20:16] TASK ID	EXECUTE_WRITE_TASK	(Write) Transmit the requested number of data blocks
CMD48	ac/R1b	[20:16] Task ID	CMDQ_TASK _MGMT	Reset a specific task or entire queue.
		[3:0] TM op-code		[20:16] when TM op-code = 2h these bits represent TaskID.
				When TM op-code = 1h these bits are reserved."

5.13.2 New Response: QSR (Queue Status Register)

The 32-bit Queue Status Register (QSR) carries the state of tasks in the queue at a specific point in time. The host has read access to this register through device response to SEND_STATUS command (CMD13 with bit[15]="1"), R1's argument will be the 32- bit Queue Status Register (QSR). Every bit in the QSR represents the task who's ID corresponds to the bit index. If bit QSR[i] = "0", then the queued task with a Task ID i is not ready for execution. The task may be queued and pending, or the Task ID is unused. If bit QSR[i] = "1", then the queued task with Task ID i is ready for execution.

5.13.3 Send Status: CMD13

CMD13 for reading the Queue Status Register (QSR) by the host. If bit[15] in CMD13's argument is set to 1, then the device shall send an R1 Response with the QSR instead of the Device Status.

5.13.4 Mechanism of CMD Queue operation

Host issues CMD44 with Task ID number, Sector, Count, Direction, Priority to the device followed by CMD45 and host checks the Queue Status check with CMD13 [15]bits to 1. After that host issues CMD46 for Read or CMD47 for write During CMD queue operation, CMD44/CMD45 is able to be issued at anytime when the CMD line is not in use

6 Register Settings

Within the Device interface six registers are defined: OCR, CID, CSD, EXT_CSD, RCA and DSR. These can be accessed only by corresponding commands (see Section 6.10 of JESD84-B51).

Width Implementation Name Description (Bytes) CID 16 Device Identification number, an individual number for identification. Mandatory Relative Device Address is the Device system address, dynamically **RCA** 2 Mandatory assigned by the host during initialization. DSR 2 Driver Stage Register, to configure the Device's output drivers. Optional Device Specific Data, information about the Device operation CSD 16 Mandatory conditions. Operation Conditions Register. Used by a special broadcast command OCR 4 Mandatory to identify the voltage type of the Device. Extended Device Specific Data. Contains information about the Device EXT_CSD 512 Mandatory capabilities and selected modes. Introduced in standard v4.0

Table 6.1 eMMC Registers

6.1 OCR Register

The 32-bit operation conditions register (OCR) stores the VDD voltage profile of the Device and the access mode indication. In addition, this register includes a status information bit. This status bit is set if the Device power up procedure has been finished. The OCR register shall be implemented by all Devices.

Width (Bits) **VCCQ Voltage Window OCR Bit OCR Value** Device power up status bit (busy) (1) Note 1 [31] Access Mode 2 [30:29] 10b(sector mode) 5 Reserved 0 0000b [28:24] 9 VCCQ: 2.7 - 3.6V 1 1111 1111b [23:15] VCCQ: 2.0 - 2.6V 7 [14:8] 000 0000b VCCQ: 1.7 - 1.95V 1 1b [7] 000 0000b Reserved 7 [6:0]

Table 6.2 OCR Register

Note: 1. This bit is set to LOW if the device has not finished the power up routine.

6.2 CID Register

The Card Identification (CID) register is 128 bits wide. It contains the Device identification information used during the Device identification phase (eMMC protocol). For details, refer to JEDEC Standard Specification No. JESD84-B51

Table 6.3 CID Register

Name	Field	Width (Bits)	CID Bits	CID value
Manufacturer ID	MID	8	[127:120]	D6h
Bank Index Number	BIN	6	[119:114]	0Bh
Device/BGA	CBX	2	[113:112]	1h
OEM/Application ID	OID	8	[111:104]	1h
Product Name	PNM	48	[103:56]	MMC16G
Product Revision	PRV	8	[55:48]	5 1h
Product Serial Number	MDT	8	[15:8]	Month, year
CRC7 Checksum	CRC	7	[7:1]	NA (Notes1)
Not used, always "1"	-	1	[0]	1h

Note: 1. The description is same as eMMC TM JEDEC standard.

6.3 CSD Register

The Card-Specific Data (CSD) register provides information on how to access the contents stored in eMMC. The CSD registers are used to define the error correction type, maximum data access time, data transfer speed, data format...etc. For details, refer to section 7.3 of the JEDEC Standard Specification No. JESD84-B51.

Table 6.4 CSD Register

Name	Field	Width (Bits)	CSD Bits	CSD Value
CSD Structure	CSD_STRUCTURE	2	[127:126]	3 h
System Specification Version	SPEC_VERS	4	[125:122]	4 h
Reserved (2)	-	2	[121:120]	-
Data Read Access Time 1	TAAC	8	[119:112]	4Fh
Data Read Access Time 2 in CLK Cycles	NSAC	8	[111:104]	1 h
(NSAC x 100)				
Maximum Bus Clock Frequency	TRAN_SPEED	8	[103:96]	32h
Card Command Classes	CCC	12	[95:84]	8F5h
Maximum Read Data Block Length	READ_BL_LEN	4	[83:80]	9h
Partial Blocks for Reads supported	READ_BL_PARTIAL	1	[79]	0 h
Write Block Misalignment	WRITE_BLK_MISALIGN	1	[78]	0 h
Read Block Misalignment	READ_BLK_MISALIGN	1	[77]	0 h
DS Register Implemented	DSR_IMP	1	[76]	0 h
Reserved (2)	-	2	[75:74]	-
Device Size	C-SIZE	12	[73:62]	FFFh
Maximum Read Current at VDD min	VDD_R_CURR_MIN	3	[61:59]	7h
Maximum Read Current at VDD max	VDD_R_CURR_MAX	3	[58:56]	7h
Maximum Write Current at VDD min	VDD_W_CURR_MIN	3	[55:53]	7h
Maximum Write Current at VDD max	VDD_W_CURR_MAX	3	[52:50]	7h
Device Size Multiplier	C_SIZE_MULT	3	[49:47]	7h
Erase Group Size	ERASE_GRP_SIZE	5	[42:46]	1Fh
Erase Group Size Multiplier	ERASE_GRP_SIZE_MULT	5	[41:37]	1Fh
Write Protect Group Size	WR_GRP_SIZE	5	[36:32]	0Fh
Write Protect Group Enable	WR_GRP_ENABLE	1	[31]	1h
Manufacturer Default ECC	DEFAULT_ECC	2	[30:29]	0 h
Write-Speed Factor	R2W_FACTOR	3	[28:26]	2h
Maximum Write Data Block Length	WRITE_BL_LEN	4	[25:22]	9h
Partial Blocks for Writes supported	WRITE_BL_PARTIAL	1	[21]	0 h
Reserved (2)	-	4	[20:17]	-
Content Protection Application	CONTENT_PROT_APP	1	[16]	0 h
File-Format Group	FILE_FORMAT_GRP	1	[15]	0 h
Copy Flag (OTP)	COPY	1	[14]	0 h
Permanent Write Protection	PERM_WRITE_PROTECT	1	[13]	0 h
Temporary Write Protection	TEMP_WRITE_PROTECT	1	[12]	0 h
File Format	FILE_FORMAT	2	[11:10]	0 h
ECC	ECC	2	[9:8]	0 h
CRC	CRC	7	[7:1]	30h
Not Used, always "1"	-	1	[0]	1h

6.4 Extended CSD Register

The Extended CSD register defines the Device properties and selected modes. It is 512 bytes long. The most significant 320 bytes are the Properties segment, which defines the Device capabilities and cannot be modified by the host. The lower 192 bytes are the Modes segment, which defines the configuration the Device is working in. These modes can be changed by the host by means of the SWITCH command. For details, refer to section 7.4 of the JEDEC Standard Specification No. JESD84-B51.

Table 6.4 ECSD Register

Name	Field	Size (Byte	CSD-slice	Value
Properties Segment				
Reserved (note1)	-	6	[511:506]	0h
Extended Security Commands Error	EXT_SECURITY_ERR	1	[505]	0h
Supported Command Sets	S_CMD_SET	1	[504]	1h
HPI features	HPI_FEATURES	1	[503]	1h
Background operations support	BKOPS_SUPPORT	1	[502]	1h
Max packed read commands	MAX_PACKED_READS	1	[501]	3Fh
Max packed write commands	MAX_PACKED_WRITES	1	[500]	20h
Data Tag Support	DATA_TAG_SUPPORT	1	[499]	1h
Tag Unit Size	TAG_UNIT_SIZE	1	[498]	3h
Tag Resources	Size TAG_RES_SIZE	1	[497]	0h
Context management capabilities	CONTEXT_CAPABILITIES	1	[496]	5h
Large Unit size	LARGE_UNIT_SIZE_M1	1	[495]	0Bh
Extended partitions attribute support	EXT_SUPPORT	1	[494]	3h
Supported modes	SUPPORTED_MODES	1	[493]	01h
FFU features	FFU_FEATURES	1	[492]	0h
Operation codes timeout	OPERATION_CODE_TIME_OUT	1	[491]	0h
FFU Argument	FFU_ARG	4	[490:487]	65535
Barrier support	BARRIER_SUPPORT	1	[486:486]	1h
Reserved	Reserved	177	[485:309]	-
CMD Queuing Support	CMQ_SUPPORT	1	[308:308]	1h
CMD Queuing Depth	CMQ_DEPTH	1	[307:307]	1Fh
Reserved	Reserved	1	[306:306]	-
Number of FW sectors correctly programmed	NUMBER_OF_FW_SECTORS_CORRECTLY_PROGRAM	4	[305:302]	0h
	MED			
Vendor proprietary health report	VENDOR_PROPRIETARY_HEALTH_REPORT	32	[301:270]	0h
Device life time estimation type B	DEVICE_LIFE_TIME_EST _TYP_B	1	[269]	01h
Device life time estimation type A	DEVICE_LIFE_TIME_EST_TYP_A	1	[268]	01h
Pre EOL information	PRE_EOL_INFO	1	[267]	01h
Optimal read size	OPTIMAL_READ_SIZE	1	[266]	01h
Optimal write size	OPTIMAL_WRITE_SIZE	1	[265]	08h
Optimal trim unit size	OPTIMAL_TRIM_UNIT_SIZE	1	[264]	01h
Device version	DEVICE_VERSION	2	[263:262]	0h
Firmware version	FIRMWARE_VERSION	8	[261:254]	51*

Name	Field	Size (Byte	CSD-slice	Value
Power class for 200MHz, DDR at VCC=3.6V	PWR_CL_DDR_200_360	1	[253]	0h
Cache size	CACHE_SIZE	4	[252:249]	200h
Generic CMD6 timeout	GENERIC_CMD6_TIME	1	[248]	32h
Power off notification(long) timeout	POWER_OFF_LONG_TIME	1	[247]	FFh
Background operations status	BKOPS_STATUS	1	[246]	0h
Number of correctly programmed sectors	CORRECTLY_PRG_SECTORS_NUM	4	[245:242]	0h
1st initialization time after partitioning	INI_TIMEOUT_AP	1	[241]	64h
Cache Flushing Policy	CACHE_FLUSH_POLICY	1	[240]	1h
Power class for 52MHz, DDR at 3.6V	PWR_CL_DDR_52_360	1	[239]	0h
Power class for 52MHz, DDR at 1.95V	PWR_CL_DDR_52_195	1	[238]	0h
Power class for 200MHz at 3.6V	PWR_CL_200_360	1	[237]	0h
Power class for 200MHz, at 1.95V	PWR_CL_200_195	1	[236]	0h
Minimum Write Performance for 8bit at	MIN_PERF_DDR_W_8_52	1	[235]	0h
52MHz in DDR mode				
Minimum Read Performance for 8bit at 52MHz	MIN_PERF_DDR_R_8_52	1	[234]	0h
in DDR mode				
Reserved (note1)		1	[233]	-
TRIM Multiplier	TRIM_MULT	1	[232]	05h
Secure Feature support	SEC_FEATURE_SUPPORT	1	[231]	55h
Secure Erase Multiplier	SEC_ERASE_MULT	1	[230]	F7h
Secure TRIM Multiplier	SEC_TRIM_MULT	1	[229]	F7h
Boot information	BOOT_INFO	1	[228]	7h
Reserved (note1)	-	1	[227]	-
Boot partition size	BOOT_SIZE_MULTI	1	[226]	20h *
Access size	ACC_SIZE	1	[225]	7 h
High-capacity erase unit size	HC_ERASE_GRP_SIZE	1	[224]	1h
High-capacity erase timeout	ERASE_TIMEOUT_MULT	1	[223]	11h
Reliable write sector count	REL_WR_SEC_C	1	[222]	1h
High-capacity write protect group size	HC_WP_GRP_SIZE	1	[221]	10h
Sleep current (VCC)	s_c_vcc	1	[220]	8h
Sleep current (VCCQ)	s_c_vccq	1	[219]	8h
Production state awareness Timeout	PRODUCTION_STATE_AWARENESS_TIMEOUT	1	[218]	14h
Sleep/awake timeout	\$_A_TIMEOUT	1	[217]	15h
Sleep Notification timout	SLEEP_NOTIFICATION_TIME	1	[216]	0Fh
Sector Count	SEC_COUNT	4	[215:212]	01D28000h
Reserved (note1)	-	1	[211]	-

Name	Field	Size (Byte CSD-slice Value		
Minimum Write Performance for 8bit at 52MHz	MIN_PERF_W_8_52	1	[210]	8h
Minimum Read Performance for 8bit at 52MHz	MIN_PERF_R_8_52	1	[209]	8h
	MIN_PERF_W_8_26_4_52	1	[208]	8h
Minimum Write Performance for 8bit at 26MHz, for 4bit at 52MHz				
Minimum Read Performance for 8bit at 26MHz, for 4bit at 52MHz	MIN_PERF_R_8_26_4_52	1	[207]	8h
Minimum Write Performance for 4bit at 26MHz	MIN_PERF_W_4_26	1	[206]	8h
Minimum Read Performance for 4bit at 26MHz	MIN_PERF_R_4_26	1	[205]	8h
Reserved (notel)	-	1	[204]	-
Power class for 26MHz at 3.6V 1 R	PWR_CL_26_360	1	[203]	0h
Power class for 52MHz at 3.6V 1 R	PWR_CL_52_360	1	[202]	0h
Power class for 26MHz at 1.95V 1 R	PWR_CL_26_195	1	[201]	0h
Power class for 52MHz at 1.95V 1 R	PWR_CL_52_195	1	[200]	0h
Partition switching timing	PARTITION_SWITCH_TIME	1	[199]	3h
Out-of-interrupt busy timing	OUT_OF_INTERRUPT_TIME	1	[198]	FFh
I/O Driver Strength	DRIVER_STRENGTH	1	[197]	1Fh
Device type	CARD_TYPE	1	[196]	57h
Reserved (notel)	-	1	[195]	-
CSD structure version	-	1	[194]	2h
Reserved (notel)	-	1	[193]	-
Extended CSD revision	EXT_CSD_REV	1	[192]	08h
Modes Segment Command set	CMD_SET	1	[191]	0h
Reserved (notel)	-	1	[190]	-
Command set revision	CMD_SET_REV	1	[189]	0h
Reserved (notel)	-	1	[188]	-
Power class	POWER_CLASS	1	[187]	0h
Reserved (notel)	-	1	[186]	-
High-speed interface timing	HS_TIMING	1	[185]	1h (note 3)
Strobe Support	STROBE_SUPPORT	1	[184]	1h
Bus width mode	BUS_WIDTH	1	[183]	2h (note 4)
Reserved (notel)	-	1	[182]	-
Erased memory content	ERASED_MEM_CONT	1	[181]	0h
Reserved (notel)	-	1	[180]	-

Name	Field	Size (Byte	CSD-slice	Value
Partition configuration	PARTITION_CONFIG	1	[179]	0h
Boot config protection	BOOT_CONFIG_PROT	1	[178]	0h
Boot bus Conditions	BOOT_BUS_CONDITIONS	1	[177]	0h
Reserved (note1)	-	1	[176]	-
High-density erase group definition	ERASE_GROUP_DEF	1	[175]	0h
Boot write protection status registers	BOOT_WP_STATUS	1	[174]	0h
Boot area write protection register	BOOT_WP	1	[173]	0h
Reserved (note1)	-	1	[172]	-
User area write protection register	USER_WP	1	[171]	0h
Reserved (note1)	-	1	[170]	-
FW configuration	FW_CONFIG	1	[169]	0h
RPMB Size	RPMB_SIZE_MULT	1	[168]	20h *
Write reliability setting register	WR_REL_SET	1	[167]	0h
Write reliability parameter register	WR_REL_PARAM	1	[166]	15h
Start Sanitize operation	SANITIZE START	1	[165]	0h
Manually start background operations	BKOPS START	1	[164]	0h
Enable background operations handshake	BKOPS EN	1	[163]	0h
H/W reset function	RST_n FUNCTION	1	[162]	0h
HPI management	HPI_MGMT	1	[161]	0h
Partitioning Support	PARTITIONING_SUPPORT	1	[160]	7h
Max Enhanced Area Size	MAX_ENH_SIZE_MULT	3	[159:157]	26Eh
Partitions attribute	PARTITIONS_ATTRIBUTE	1	[156]	0h
Partitioning Setting	PARTITION_SETTING_COMPLETED	1	[155]	0h
General Purpose Partition Size	GP_SIZE_MULT4	3	[154:152]	0h
General Purpose Partition Size	GP_SIZE_MULT3	3	[151:149]	0h
General Purpose Partition Size	GP_SIZE_MULT2	3	[148:146]	0h
General Purpose Partition Size	GP_SIZE_MULT1	3	[145:143]	0h
Enhanced User Data Area Size	ENH_SIZE_MULT	3	[142:140]	0h
Enhanced User Data Start Address	ENH_START_ADDR	4	[139:136]	0h
Reserved (note1)	-	1	[135]	-
Bad Block Management mode	SEC_BAD_BLK_MGMNT	1	[134]	0h
Reserved (note1)	-	1	[133]	-
Package Case Temperature is controlled	TCASE_SUPPORT	1	[132]	0h
Periodic Wake-up	PERIODIC_WAKEUP	1	[131]	0h
Program CID/CSD in DDR mode support	PROGRAM_CID_CSD_DDR_SUPPORT	1	[130]	1h
Reserved (note1)	-	2	[129:128]	-

Name	Field	Size (Byte	CSD-slice	Value Value
Vendor Specific Fields	VENDOR_SPECIFIC_FIELD	64	[127:64]	-
Native sector size	NATIVE_SECTOR_SIZE	1	[63]	0h
Sector size emulation	USE_NATIVE_SECTOR	1	[62]	0h
Sector size	DATA_SECTOR_SIZE	1	[61]	0h
emulation	INI_TIMEOUT_EMU	1	[60]	0h
Class 6 commands control	CLASS_6_CTRL	1	[59]	0h
Number of addressed group to be Released	DYNCAP_NEEDED	1	[58]	0h
Exception events control	EXCEPTION_EVENTS_CTRL	2	[57:56]	0h
Exception events status	EXCEPTION_EVENTS_STATUS	2	[55:54]	0h
Extended Partitions Attribute	EXT_PARTITIONS_ATTRIBUTE	2	[53:52]	0h
Context configuration	CONTEXT_CONF	15	[51:37]	0h
Packed command status	PACKED_COMMAND_STATUS	1	[36]	0h
Packed command failure index	PACKED_FAILURE_INDEX	1	[35]	0h
Power Off Notification	POWER_OFF_NOTIFICATION		[34]	0h
Control to turn the Cache ON/OFF	CACHE_CTRL	1	[33]	0h
Flushing of the cache	FLUSH_CACHE	1	[32]	0h
Reserved (note1)	Reserved	1	[31]	-
Mode config	MODE_CONFIG	1	[30]	0h
Mode operation codes	MODE_OPERATION_CODES	1	[29]	0h
Reserved (note1)	Reserved	2	[28:27]	-
FFU status	FFU_STATUS	1	[26]	0h
Per loading data size	PRE_LOADING_DATA_SIZE	4	[25:22]	0h
Max pre loading data size	MAX_PRE_LOADING_DATA_SIZE	4	[21:18]	009A4000h
Product state awareness enablement	PRODUCT_STATE_AWARENESS_ENABLEMENT	1	[17]	01h
Secure removal type	SECURE_REMOVAL_TYPE	1	[16]	01h
Command Queue Mode enable	CMQ_MODE_EN	1	[15]	0h
Reserved	Reserved	15	[14:0]	-

6.5 RCA Register

The writable 16-bit Relative Device Address (RCA) register carries the Device address assigned by the host during the Device identification. This address is used for the addressed host-Device communication after the Device identification procedure. The default value of the RCA register is 0x0001. The value 0x0000 is reserved to set all Devices into the *Stand-by State* with CMD7.

6.6 DSR Register

The 16-bit driver stage register (DSR) is described in detail in Section 7.6 of the JEDEC Standard Specification No. JESD84-B51. It can be optionally used to improve the bus performance for extended operating conditions (depending on parameters like bus length, transfer rate or number of Devices). The CSD register carries the information about the DSR register usage.

7 The eMMC BUS

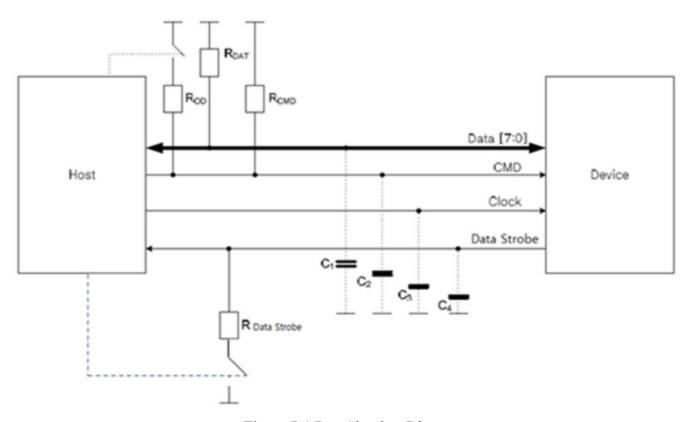


Figure 7-1 Bus Circuitry Diagram

The eMMC bus has ten communication lines and three supply lines:

- **CMD**: Command is a bidirectional signal. The host and Device drivers are operating in two modes, open drain and push/pull.
- DAT0-7: Data lines are bidirectional signals. Host and Device drivers are operating in push-pull mode
- CLK : Clock is a host to Device signal. CLK operates in push-pull mode
- Data Strobe: Data Strobe is a Device to host signal. Data Strobe operates in push-pull mode.

The R_{OD} is switched on and off by the host synchronously to the open-drain and push-pull mode transitions. The host does not have to have open drain drivers, but must recognize this mode to switch on the R_{OD} . R_{DAT} and R_{CMD} are pull-up resistors protecting the CMD and the DAT lines against bus floating device when all device drivers are in a high-impedance mode.

A constant current source can replace the ROD by achieving a better performance (constant slopes for the signal rising and falling edges). If the host does not allow the switchable ROD implementation, a fixed R_{CMD} can be used). Consequently, the maximum operating frequency in the open drain mode has to be reduced if the used R_{CMD} value is higher than the minimal one given in.

R_{DATA Strobe} is pull-down resistor used in HS400 device.

7.1 Power-up

7.1.1 eMM*C* power-up

An *eMMC* bus power-up is handled locally in each device and in the bus master. Figure 7 shows the power-up sequence and is followed by specific instructions regarding the power-up sequence. Refer to section 10.1 of the JEDEC Standard Specification No. JESD84-B51 for specific instructions regarding the power-up sequence.

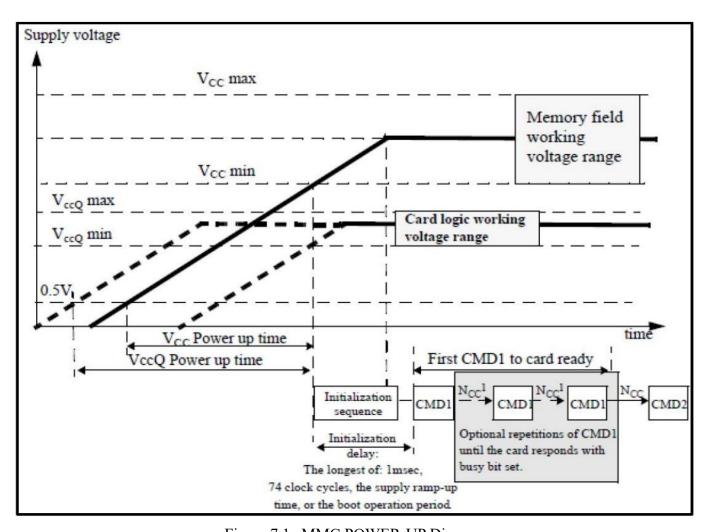


Figure 7.1 eMMC POWER-UP Diagram

7.1.2 eMMC Power Cycling

The master can execute any sequence of Vcc and Vccq power-up/power-down. However, the master must not issue any commands until Vcc and Vccq are stable within each operating voltage range. After the slave enters sleep mode, the master can power-down Vcc to reduce power consumption. It is necessary for the slave to be ramped up to Vcc before the host issues CMD5 (SLEEP_AWAKE) to wake the slave unit. For more information about power cycling see Section 10.1.3 of the JEDEC Standard Specification No. JESD84-B51.

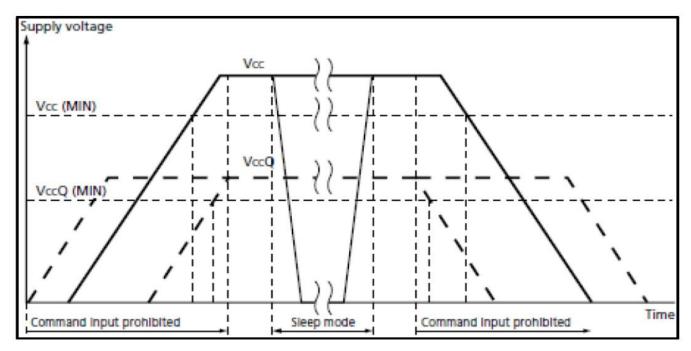


Figure 7.2 The eMMC Power Cycle

7.2 Bus Operating Conditions

Parameter	Symbol	Min	Max.	Unit	Remark
Peak voltage on all lines		-0.5	VCCQ + 0.5	V	
All Inputs					
Input Leakage Current (before initialization sequence and/or the internal pull up resistors connected)		-100	100	μА	
Input Leakage Current (after initialization sequence and the internal pull up resistors disconnected)		-2	2	μА	
All Outputs					
Output Leakage Current (before initialization sequence)		-100	100	μA	
Output Leakage Current (after initialization sequence)		-2	2	μA	

Table 7.1 General Operating Conditions

7.2.1 Power supply: eMMC

In the eMMC, VCC is used for the NAND flash device and its interface voltage; VCCQ is for the controller and the MMC interface voltage as shown in Figure 9. The core regulator is optional and only required when internal core logic voltage is regulated from VCCQ. A C_{Reg} capacitor must be connected to the VDDi terminal to stabilize regulator output on the system.

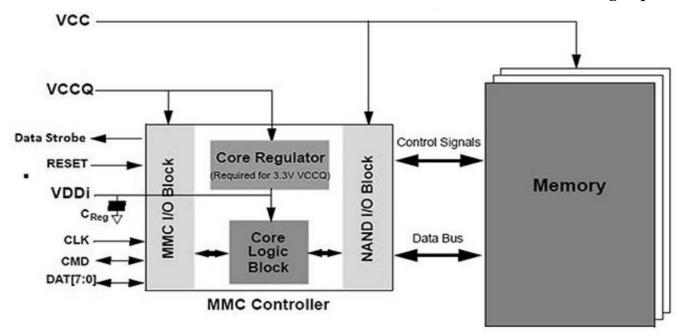


Figure 7.3 eMMC Internal Power Diagram

7.2.2 eMMC Power Supply Voltage

The eMMC supports one or more combinations of Vcc and Vccq as shown in Table 7.2. The VCCQ must be defined at equal to or less than VCC.

Parameter Symbol MIN MAX Unit Remarks 2.7 Supply voltage (NAND) 3.6 V_{cc} Supply voltage (I/O) 2.7 3.6 ٧ Vccq 1.95 ٧ 1.7 Supply power-up for 3.3V 35 **t**PRUH ms Supply power-up for 1.8V 25 **t**PRUL ms

Table 7.2 eMMC Operating Voltage

Table 7.3 eMMC Voltage Combinations

		Vccq				
		1.7V-1.95V	2.7V-3.6V ¹			
Vcc	2.7V-3.6V	Valid	Valid			

Note: 1. $V_{CCQ(I/O)}$ 3.3 voltage range is not supported in HS200 /HS400 devices.

7.2.3 Bus Signal Line Load

The total capacitance CL of each line of the eMMC bus is the sum of the bus master capacitance Chost, the bus capacitance CBUS itself and the capacitance CDEVICE of eMMC connected to this line:

$$C_L = C_{HOST} + C_{BUS} + C_{DEVICE}$$

The sum of the host and bus capacitances must be under 20pF.

Table 7.4 Signal Line Load

Parameter	Symbol	Min	Max	Unit	Remark
Pull-up resistance for CMD	R _{CMD}	4.7	50	Kohm	to prevent bus floating
Pull-up resistance for DAT0–7	R _{DAT}	10	50	Kohm	to prevent bus floating
Pull-up resistance for RST_n	R _{RST_n}	4.7	50	Kohm	It is not necessary to put pull-up resistance on RST_n (H/W rest) line if host does not use H/W reset. (Extended CSD register [162] = 0 b)
Bus signal line capacitance	CL		30	pF	Single Device
Single Device capacitance	C _{BGA}		12	pF	
Maximum signal line inductance			16	nH	
Impedance on CLK / CMD / DAT0~7		45	55	ohm	Impedance match
Serial's resistance on CLK line	SR _{CLK}	0	47	ohm	
Serial's resistance on CMD / DAT0~7 line	SR _{CMD} SR _{DAT0~7}	0	47	ohm	
		2.2+0.1	4.7+0.22		It should be located as close as possible to the balls defined in order to minimize connection parasitic
V _{ccQ} decoupling capacitor	СН1	1	2.2	μF	CH1 is only for HS200. It should be placed adjacent to VCCQ-VSSQ balls (#K6 and #K4 accordingly, next to DAT [70] balls). It should be located as close as possible to the balls defined in order to minimize connection parasitic.
VCC capacitor value		1+0.1	4.7+0.22	μF	It should be located as close as possible to the balls defined in order to minimize connection parasitic
$V_{ extsf{DDi}}$ capacitor value	C _{REG}	1	4.7+0.1	μF	To stabilize regulator output to controller core logics. It should be located as close as possible to the balls defined in order to minimize connection parasitic

7.2.4 HS400 reference load

The circuit in Figure 10 shows the reference load used to define the HS400 Device Output Timings and overshoot / undershoot parameters.

The reference load is made up by the transmission line and the CREFERENCE capacitance.

The reference load is not intended to be a precise representation of the typical system environment nor a depiction of the actual load presented by a production tester.

System designers should use IBIS or other simulation tools to correlate the reference load to system

environment. Manufacturers should correlate to their production test conditions.

Delay time (td) of the transmission line has been introduced to make the reference load independent from the PCB technology and trace length.

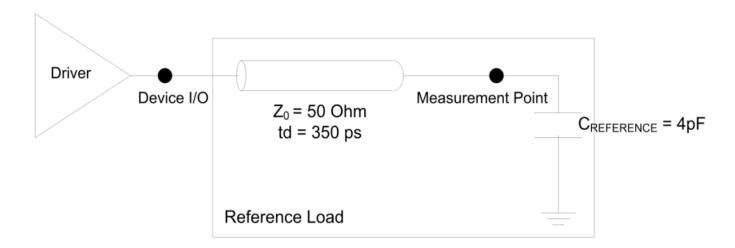


Figure 7.4 HS400 reference load

7.3 Bus Signal Levels

As the bus can be supplied with a variable supply voltage, all signal levels are related to the supply voltage.

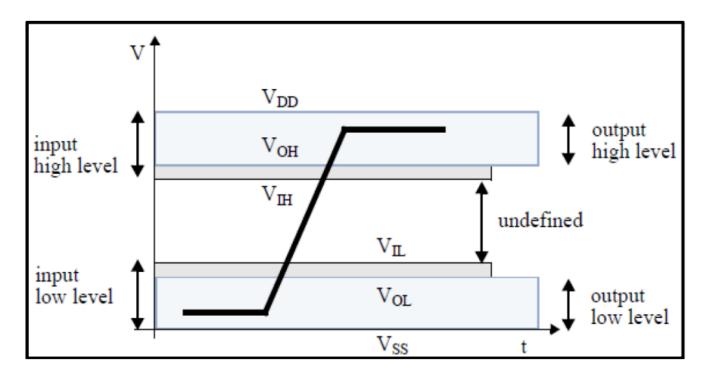


Figure 7.5 Bus Signal Levels

7.3.1 Open-drain Mode Bus Signal Level

Table 7.5 Open-drain Bus Signal Level

Parameter	Symbol	Min	Max.	Unit	Conditions
Output HIGH voltage	VOH	VDD - 0.2		V	IOH = -100 μA
Output LOW voltage	VOL		0.3	V	IOL = 2 mA

The input levels are identical with the push-pull mode bus signal levels.

7.3.2 Push-pull mode bus signal level— eMMC

The device input and output voltages shall be within the following specified ranges for any VDD of the allowed voltage range

For 2.7V-3.6V VCCQ range (compatible with JESD8C.01)

Table 7.6 Push-pull Signal Level—High-voltage eMMC

Parameter	Symbol	Min	Max.	Unit	Conditions
Output HIGH voltage	VOH	0.75 * VCCQ		V	IOH = -100 μA @ V _{CCQ} min
Output LOW voltage	VOL		0.125 * VCCQ	V	IOL = 100 μA @ V _{CCQ} min
Input HIGH voltage	VIH	0.625 * VCCQ	VCCQ + 0.3	V	
Input LOW voltage	VIL	VSS - 0.3	0.25 * VCCQ	V	

For 1.70V – 1.95V Vccq range (: Compatible with EIA/JEDEC Standard "EIA/JESD8-7 Normal Range" as defined in the following table.

Table 7.7 Push-pull Signal Level—1.70 -1.95 VCCQ Voltage Range

Parameter	Symbol	Min	Max.	Unit	Conditions
Output HIGH voltage	VOH	V _{CCQ} – 0.45V		V	IOH = -2mA
Output LOW voltage	VOL		0.45V	V	IOL = 2mA
Input HIGH voltage	VIH	0.65 * Vccq 1	V _{CCQ} + 0.3	V	
Input LOW voltage	VIL	V _{SS} – 0.3	0.35 * V _{DD} ²	V	

Note1: 0.7 * VDD for eMMCTM4.3 and older revisions.

Note2: 0.3 * VDD for eMMCTM4.3 and older revisions.

7.3.3 Bus Operating Conditions for HS200 & HS400

The bus operating conditions for HS200 devices is the same as specified in sections 10.5.1 of JESD84-B51 through 10.5.2 of JESD84-B51. The only exception is that Vcco=3.3v is not supported.

7.3.4 Device Output Driver Requirements for HS200 & HS400

Refer to section 10.5.4 of the JEDEC Standard Specification No. JESD84-B51.

7.4 Bus Timing

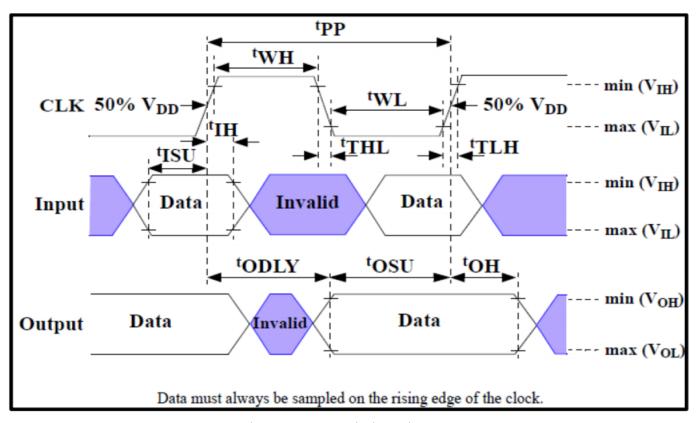


Figure 7.6 BUS Timing Diagram

7.4.1 Device Interface Timings

Table 7.8 High-speed Device Interface Timing

8								
Parameter	Symbol	Min	Max.	Unit	Remark			
Clock CLK ¹								
Clock frequency Data Transfer Mode	fPP	0	523	MHz	$CL \le 30 \text{ pF}$			
(PP) ²	11 1	U	32	MIIZ	Tolerance:+100KHz			
Clock frequency Identification Mode	fOD	0	400	kHz	Tolerance: +20KHz			
(OD)	IOD	U	400	KIIZ	Tolerance. +20KHZ			
Clock high time	tWH	6.5		ns	$CL \le 30 \text{ pF}$			
Clock low time	tWL	6.5		ns	$CL \le 30 \text{ pF}$			
Clock rise time ⁴	tTLH		3	ns	$CL \le 30 \text{ pF}$			
Clock fall time	tTHL		3	ns	$CL \le 30 \text{ pF}$			
Inputs CMD, DAT (referenced to CLK)								
Input set-up time	tISU	3		ns	CL ≤ 30 pF			
Input hold time	tIH	3		ns	$CL \le 30 \text{ pF}$			
Outputs CMD, DAT (referenced to CLK)								
Output delay time during data transfer	tODLY		13.7	ns	CL ≤ 30 pF			
Output hold time	tOH	2.5		ns	$CL \le 30 \text{ pF}$			
Signal rise time ⁵	tRISE		3	ns	CL ≤ 30 pF			
Signal fall time	tFALL		3	ns	CL ≤ 30 pF			
			•					

Note1: CLK timing is measured at 50% of VDD.

Note2: e·MMC™ shall support the full frequency range from 0-26Mhz or 0-52MHz

Note3:Device can operate as high-speed Device interface timing at 26 MHz clock frequency.

Note4:CLK rise and fall times are measured by min (VIH) and max (VIL).

Note5: Inputs CMD DAT rise and fall times are measured by min (VIH) and max (VIL) and outputs CMD DAT rise and fall times are measured by min (VOH) and max (VOL). "

				_				
Clock CLK ²								
Clock frequency Data Transfer Mode (PP) ³	fPP	0	26	MHz	CL ≤ 30 pF			
Clock frequency Identification Mode (OD)	fOD	0	400	kHz				
Clock high time	tWH	10			CL ≤ 30 pF			
Clock low time	tWL	10		ns	CL ≤ 30 pF			
Clock rise time ⁴	tTLH		10	ns	CL ≤ 30 pF			
Clock fall time	tTHL		10	ns	CL ≤ 30 pF			
In	puts CMD, DAT (re	eferenced to C	CLK)					
Input set-up time	tISU	3		ns	CL ≤ 30 pF			
Input hold time	tIH	3		ns	CL ≤ 30 pF			
Our	tputs CMD, DAT (r	referenced to	CLK)					
Output set-up time ⁵	tOSU	11.7		ns	CL ≤ 30 pF			
Output hold time ⁵	tOH	8.3		ns	CL < 30 pF			

Table 7.9 Backward-compatible Device Interface Timing

Notes 1: The Device must always start with the backward-compatible interface timing. The timing mode can be switched to high-speed interface timing by the host sending the SWITCH command (CMD6) with the argument for high-speed interface select.

Notes 2: CLK timing is measured at 50% of VDD.

Notes 3: For compatibility with Devices that support the v4.2 standard or earlier, host should not use > 26 MHz before switching to high-speed interface timing.

Notes 4: CLK rise and fall times are measured by min (VIH) and max (VIL).

Notes 5: tOSU and tOH are defined as values from clock rising edge. However, there may be Devices or devices which utilize clock falling edge to output data in backward compatibility mode. Therefore, it is recommended for hosts either to settWL value as long as possible within the range which will not go over tCK-tOH(min) in the system or to use slow clock frequency, so that host could have data set up margin for those devices. In this case, each device which utilizes clock falling edge might show the correlation either between tWL and tOSU or between tCK and tOSU for the device in its own datasheet as a note or its application notes.

7.5 Bus Timing for DAT Signals During Dual Data Rate Operation

These timings apply to the DAT[7:0] signals only when the device is configured for dual data mode operation. In this dual data mode, the DAT signals operate synchronously of both the rising and the falling edges of CLK. The CMD signal still operates synchronously of the rising edge of CLK and therefore complies with the bus timing specified in section 10.5, therefore there is no timing change for the CMD signal.

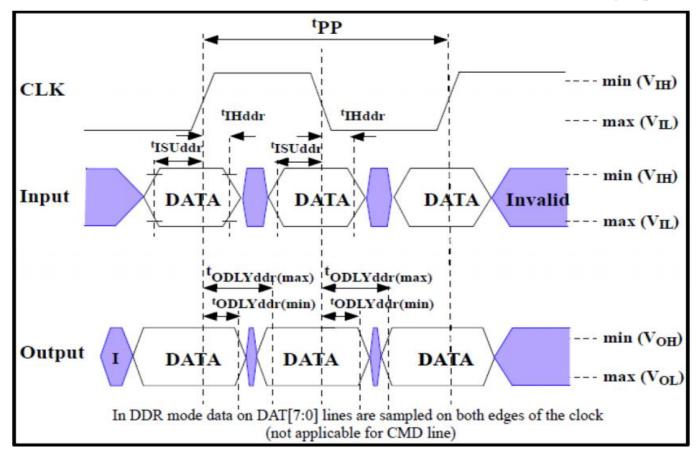


Figure 7.7 Timing Diagram; Data Input/Output in Dual Data Rate Mode

7.5.1 Dual Data Rate Interface Timings

Table 7.10 High-speed Dual Data

Parameter	Symbol	Min	Max.	Unit	Remark
Input CLK ¹					
Clock duty cycle		45	55	%	Includes jitter, phase noise
Input DAT (referenced to CLK-DDR mode)					
Input set-up time	tISUddr	2.5		ns	$CL \le 20 \text{ pF}$
Input hold time	tIHddr	2.5		ns	$CL \le 20 \text{ pF}$
Output DAT (referenced to CLK-DDR mode)					
Output delay time during data transfer	tODLYddr	1.5	7	ns	$CL \le 20 \text{ pF}$
Signal rise time (all signals) ²	tRISE		2	ns	CL ≤ 20 pF
Signal fall time (all signals)	tFALL		2	ns	$CL \le 20 \text{ pF}$

Note1:CLK timing is measured at 50% of VDD.

Note2: Inputs CMD, DAT rise and fall times are measured by min (V_{IH}) and max (V_{IL}), and outputs CMD, DAT rise and fall times are measured by min (V_{OH}) and max (V_{OL})

7.6 Bus Timing Specification in HS400 mode

7.6.1 HS400 Device Input Timing

The CMD input timing for HS400 mode is the same as CMD input timing for HS200 mode.

Figure 7.8 and Table 7.11 show Device input timing

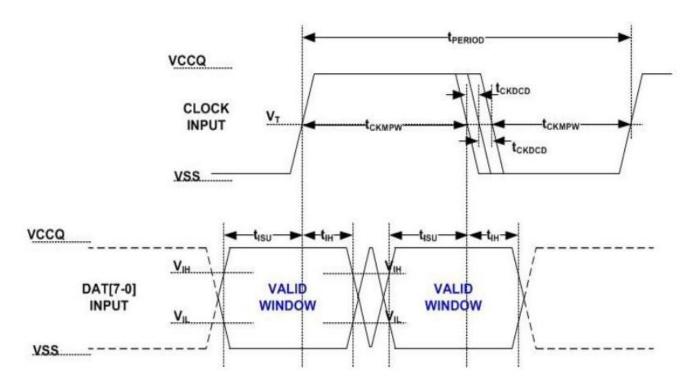


Figure 7.8 HS400 Clock Signal Timing

Note1: VIH denote VIH(min.) and VIL denotes VIL(max.).

 $Note 2 \div VT = 0.975 V - Clock\ Threshold, indicates\ clock\ reference\ point\ for\ timing\ measurements.$

Table 7.11 HS400 Device input timing

Parameter	Symbol	Min	Max	Unit	Remark					
	Input CLK									
Cycle time data transfer mode	tPERIOD	5			200MHz (Max), between rising edges With respect to VT.					
Slew rate	SR	1.125		V/ns	With respect to VIH/VIL.					
Duty cycle	tCKDCD	0.0	0.3	ns	Allowable deviation from an ideal 50% duty cycle.					
distortion					With respect to VT. Includes jitter, phase					
Minimum pulse width	tCKMPW	2.2		ns	With respect to VT.					
		Inp	ut DAT (refere	nced to CLK)						
Input set-up time	tISUddr	0.4		ns	CDevice ≤ 6pF With respect to VIH/VIL.					
Input hold time	tIHddr	0.4		ns	CDevice ≤ 6pF With respect to VIH/VIL.					
Slew rate	SR	1.125		V/ns	With respect to VIH/VIL.					

7.6.2 HS400 Device Output Timing

The Data Strobe is used to read data in HS400 mode. The Data Strobe is toggled only during data read or CRC status response.

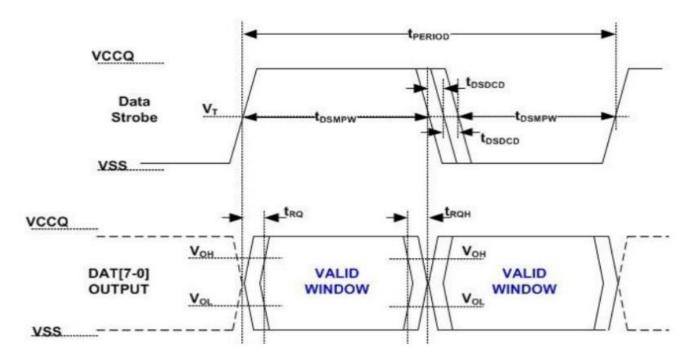


Figure 7.9 HS400 Device Output Timing

Table 7.12 HS400 Device Output timing

Parameter	Symbol	Min	Max	Unit	Remark					
Data Strobe										
Cycle time data transfer mode	tPERIOD	5			200MHz(Max), between rising edges With respect to VT					
Slew rate	SR	1.125		V/ns	With respect to VOH/VOL and HS400 reference load					
Duty cycle distortion	tDSDCD	0.0	0.2	ns	Allowable deviation from the input CLK duty cycle distortion (tCKDCD) With respect to VT Includes jitter, phase noise					
Minimum pulse width	tDSMPW	2.0		ns	With respect to VT					
Read pre-amble	tRPRE	0.4	-	tPERIOD	Max value is specified by manufacturer. Value up to infinite is valid					
Read post- amble	tRPST	0.4	-	tPERIOD	Max value is specified by manufacturer. Value up to infinite is valid					
	•	Outpu	t DAT (refer	enced to Dat	a Strobe)					
Output skew	tRQ		0.4	ns	With respect to VOH/VOL and HS400 reference load					
Output hold skew	tRQH		0.4	ns	With respect to VOH/VOL and HS400 reference load.					
Slew rate	SR	1.125		V/ns	With respect to VOH/VOL and HS400 reference load					

NOTE 1: Measured with HS400 reference load

Table 7.13 HS400 Capacitance

Parameter	Symbol	Min	Туре	Max	Unit	Remark
Pull-up resistance for CMD	RCMD	4.7		100(1)	Kohm	
Pull-up resistance for DAT0-7	RDAT	10		100(1)	Kohm	
Pull-down resistance for Data Strobe	RDS	10		100(1)	Kohm	
Internal pull up resistance DAT1-DAT7	Rint	10		150	Kohm	
Single Device capacitance	CDevice			6	pF	

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Flash category:

Click to view products by Hosin Global manufacturer:

Other Similar products are found below:

615309A \$29GL064S70BHI030 \$29GL064S70BHI040 W25Q64FWZPIGT BH25D10CSUIG BH25D40ASUIG BH25Q32BSWIG
BH25D16ASUIG P25Q80UF-D8H-IR FS35ND01G-S1Y2QWFI000 FS35ND02G-S3Y2QWFI000 FM25M64C-1AIB4R DS35M1GA-IB
MKDV2GIL-AS W25Q256JVFIQT MKDV1GIL-AS \$25FL127SABBHIC00 \$25FL128SDSBHI210 \$25FL256SAGBHIC00
\$25FL256SDSBHI210 \$25FS128SDSNFI101 \$25FS256SDSBHI200 \$29GL064S70DHI010 \$29GL064S70FHI010 \$29GL064S80FHIV10
\$29GL064S80TFIV10 \$ST39VF020-70-4I-WHE \$ST39VF010-70-4C-NHE \$ST39SF010A-70-4I-WHE \$ST39LF200A-55-4C-EKE
\$ST38VF6401-90-5I-B3KE \$25FL512SAGBHI210 \$ST49LF160C-33-4C-NHE \$ST49LF080A-33-4C-NHE \$ST49LF008A-33-4C-WHE
\$ST39WF1601-70-4C-B3KE \$ST39VF800A-70-4I-B3KE \$ST39VF800A-70-4C-EKE \$ST39VF3201B-70-4I-B3KE \$ST39VF200A-70-4C-EKE \$ST39VF1601-70-4C-EKE \$ST39VF040-70-4C-WHE \$ST25WF040BT-40I/NP \$ST25VF080B-50-4C-QAF \$ST25VF040B-50-4I-SAF \$25FL132K0XBHI020 \$25FL256SAGNFI011 \$25FS128SAGBHI200 \$25FS128SAGBHI200