FEATURES

- $3.3 \mathrm{~V}, 5.0 \mathrm{~V}, 12 \mathrm{~V}$ and Adjustable Output Versions
- Adjustable Version Output Voltage Range, 1.23 to 37 V +/- 4\% AG10Maximum Over Line and Load Conditions
- Guaranteed 3.0A Output Current
- Wide Input Voltage Range
- Requires Only 4 External Components
- 52 kHz Fixed Frequency Internal Oscillator
- TTL Shutdown Capability, Low Power Standby Mode
- High Efficiency
- Uses Readily Available Standard Inductors
- Thermal Shutdown and Current Limit Protection
- Moisture Sensitivity Level 3 for SMD packages

APPLICATION

- Simple High-Efficiency Step-Down(Buck) Regulator
- Efficient Pre-Regulator for Linear Regulators
- On-Card Switching Regulators
- Positive to Negative Converter(Buck-Boost)
- Negative Step-Up Converters
- Power Supply for Battery Chargers

ORDERING INFORMATION

Device	Marking	Package
LM2576DP-X.X	LM2576-X.X	SOP8-PP
LM2576T-X.X	LM2576-X.X	TO-220
LM2576R-X.X	LM2576-X.X	TO-263

DESCRIPTION

The LM2576 series of regulators are monolithic integrated circuits ideally suited for easy and convenient design of a step-down switching regulator (buck converter).
All circuits of this series are capable of driving a 3.0A load with excellent line and load regulation. These devices are available in fixed output voltages of $3.3 \mathrm{~V}, 5.0 \mathrm{~V}, 12 \mathrm{~V}$ and an adjustable output version.
These regulators were designed to minimize the number of external components to simplify the power supply design. Standard series of inductors optimized for use with the LM2576 are offered by several different inductor manufacturers.
Since the LM2576 converter is a switch-mode power supply, its efficiency is significantly higher in comparison with popular three-terminal linear regulators, especially with higher input voltages.
In many cases, the power dissipated is so low that no heatsink is required or its size could be reduced dramatically. A standard series of inductors optimized for use with the LM2576 are available from several different manufacturers. This feature greatly simplifies the design of switch-mode power supplies. The LM2576 features include a guaranteed $+/-4 \%$ tolerance on output voltage within specified input voltages and output load conditions, and $+/-10 \%$ on the oscillator frequency ($+/-2 \%$ over $0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$).
External shutdown is included, featuring $80 \mu \mathrm{~A}$ (typical) standby current. The output switch includes cyclebycycle current limiting, as well as thermal shutdown for full protection under fault conditions.

Ordering Information

Vout	Package	Order No.	Description	Package Marking	Status
ADJ	SOP8-PP	LM2576DP-ADJ	3A, Adjustable, 52 kHz , On/off	LM2576-ADJ	Contact Us
	TO220-5L	LM2576T-ADJ	3A, Adjustable, 52 kHz , On/off	LM2576-ADJ	Active
	TO263-5L	LM2576R-ADJ	3A, Adjustable, 52 kHz , On/off	LM2576-ADJ	Active
3.3 V	SOP8-PP	LM2576DP-3.3	3A, Fixed, 52 kHz , On/off	LM2576-3.3	Contact Us
	TO220-5L	LM2576T-3.3	3A, Fixed, 52kHz, On/off	LM2576-3.3	Active
	TO263-5L	LM2576R-3.3	3A, Fixed, 52 kHz , On/off	LM2576-3.3	Active
5.0 V	SOP8-PP	LM2576DP-5.0	3A, Fixed, 52 kHz , On/off	LM2576-5.0	Contact Us
	TO220-5L	LM2576T-5.0	3A, Fixed, 52 kHz , On/off	LM2576-5.0	Active
	TO263-5L	LM2576R-5.0	3A, Fixed, 52 kHz , On/off	LM2576-5.0	Active
12V	SOP8-PP	LM2576DP-12	3A, Fixed, 52 kHz , On/off	LM2576-12	Contact Us
	TO220-5L	LM2576T-12	3A, Fixed, 52 kHz , On/off	LM2576-12	Active
	TO263-5L	LM2576R-12	3A, Fixed, 52kHz, On/off	LM2576-12	Active

PIN CONFIGURATION

SOP8-PP

TO220-5L

TO263-5L

PIN DESCRIPTION

Package		Symbol	Description
$\begin{aligned} & \text { TO-220 5L } \\ & \text { TO-263 5L } \end{aligned}$	SOP8-PP		
1	1	VIN	This pin is the positive input supply for the LM2576 step-down switching regulator. In order to minimize voltage transients and to supply the switching currents needed by the regulator, a suitable input bypass capacitor must be present. (Cin in Figure 1).
2	2	VOUT	This is the emitter of the internal switch. The saturation voltage $\mathrm{V}_{\text {SAT }}$ of this output switch is typically 1.5 V . It should be kept in mind that the PCB area connected to this pin should be kept to a minimum in order to minimize coupling to sensitive circuitry.
3	6	GND	Circuit ground pin. See the information about the printed circuit board layout.
4	3	FEEDBACK	This pin senses regulated output voltage to complete the feedback loop. The signal is divided by the internal resistor divider network R2, R1 and applied to the non-inverting input of the internal error amplifier. In the adjustable version of the LM2576 switching regulator this pin is the direct input of the error amplifier and the resistor network R2, R1 is connected externally to allow programming of the output voltage.
5	4	ON/OFF	It allows the switching regulator circuit to be shutdown using logic level signals, thus dropping the total input supply current to approximately 80uA. The threshold voltage is typically 1.4 V . Applying a voltage above this value (up to + Vin) shuts the regulator off. If the voltage applied to this pin is lower than 1.4 V or if this pin is left open, the regulator will be in the "on" condition
-	5, 7, 8	N.C.	No Connect.

* Exposed Pad of SOP8-PP package should be externally connected to GND.

Typical Application (Fixed Output Voltage Versions)

Figure 1. Block Diagram and Typical Application

ABSOLUTE MAXIMUM RATINGS

(Absolute Maximum Ratings indicate limits beyond which damage to the device may occur)

Rating	Symbol	Value	UNIT
Maximum Supply Voltage	Vin	45	V
On/Off Pin Input Voltage	-	$-0.3 \mathrm{~V} \leq \mathrm{V} \leq+\mathrm{Vin}$	V
Output Voltage to Ground (Steady-State)	-	-1.0	V
Power Dissipation SOP8-PP 8Lead Thermal Resistance, Junction to Ambient Thermal Resistance, Junction to Case	$\begin{aligned} & \mathrm{P}_{\mathrm{D}} \\ & \theta_{\mathrm{JA}} \\ & \theta_{\mathrm{Jc}} \end{aligned}$	Internally Limited Contact us Contact us	$\begin{gathered} \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$
TO-220 5Lead Thermal Resistance, Junction to Ambient Thermal Resistance, Junction to Case	$\begin{aligned} & \mathrm{P}_{\mathrm{D}} \\ & \theta_{\mathrm{JA}} \\ & \theta_{\mathrm{Jc}} \end{aligned}$	Internally Limited 65 5	$\begin{gathered} \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$
TO-263 5Lead Thermal Resistance, Junction to Ambient Thermal Resistance, Junction to Case	$\begin{aligned} & \mathrm{P}_{\mathrm{D}} \\ & \theta_{\mathrm{JA}} \\ & \theta_{\mathrm{Jc}} \end{aligned}$	Internally Limited 70 5	$\begin{gathered} \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	-60 to +150	${ }^{\circ} \mathrm{C}$
Minimum ESD Rating(Human Body Model: $\mathrm{C}=100 \mathrm{pF}, \mathrm{R}=1.5 \mathrm{k} \Omega$	-	2.0	kV
Lead Temperature (Soldering, 10seconds)	-	260	${ }^{\circ} \mathrm{C}$
Maximum Junction Temperature	TJ	150	${ }^{\circ} \mathrm{C}$

OPERATING RATINGS (Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications, see the Electrical Characteristics.)

Rating	Symbol	Value.	Unit
Operating Junction Temperature Range	T_{J}	-40 to +125	${ }^{\circ} \mathrm{C}$
Supply Voltage	Vin	40	V

3A, 52kHz, Step-Down Switching Regulator

LM2576
ELECTRICAL CHARACTERISTICS I SYSTEM PARAMETERS ([Note 1] Test Circuit Figure 15)
(Unless otherwise specified, Vin $=12 \mathrm{~V}$ for the $3.3 \mathrm{~V}, 5.0 \mathrm{~V}$, and Adjustable version, Vin $=25 \mathrm{~V}$ for the 12 V version. ILoad $=500 \mathrm{~mA}$. For typical values $\mathrm{TJ}=25^{\circ} \mathrm{C}$, for $\mathrm{min} / \mathrm{max}$ values TJ is the operating junction temperature range that applies [Note 2], unless otherwise noted.)

Characteristics	Symbol	Min	TYP	Max	Unit
LM2576-3.3V ([Note 1] Test Circuit Figure 2)					
Output Voltage (Vin $=12 \mathrm{~V}$, $\mathrm{I}_{\text {LOAD }}=0.5 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$)	Vout	3.234	3.3	3.366	V
$\begin{aligned} & \text { Output Voltage }\left(6.0 \mathrm{~V} \leq \operatorname{Vin} \leq 40 \mathrm{~V}, 0.5 \mathrm{~A} \leq \mathrm{I}_{\mathrm{LOAD}} \leq 3.0 \mathrm{~A}\right. \\ & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=-40^{\circ} \mathrm{C} \sim+125^{\circ} \mathrm{C} \end{aligned}$	Vout	$\begin{aligned} & 3.168 \\ & 3.135 \end{aligned}$	3.3	$\begin{aligned} & 3.432 \\ & 3.465 \end{aligned}$	V
Efficiency (Vin=12V, $\mathrm{I}_{\text {LOAD }}=3.0 \mathrm{~A}$)	η	-	75	-	\%

LM2576-5.0V ([Note 1] Test Circuit Figure 2)					
Output Voltage (Vin $=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.5 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$)	Vout	4.9	5.0	5.1	V
$\begin{aligned} & \text { Output Voltage }\left(8.0 \mathrm{~V} \leq \operatorname{Vin} \leq 40 \mathrm{~V}, 0.5 \mathrm{~A} \leq \mathrm{I}_{\mathrm{LOAD}} \leq 3.0 \mathrm{~A}\right. \\ & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=-40^{\circ} \mathrm{C} \sim+125^{\circ} \mathrm{C} \end{aligned}$	Vout	$\begin{gathered} 4.8 \\ 4.75 \end{gathered}$	5.0	$\begin{gathered} 5.2 \\ 5.25 \end{gathered}$	V
Efficiency (Vin=12V, $\mathrm{I}_{\text {LOAD }}=3.0 \mathrm{~A}$)	η	-	77	-	\%

LM2576-12V ([Note 1] Test Circuit Figure 2)					
Output Voltage (Vin $\left.=25 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.5 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)$	Vout	11.76	12	12.24	V
Output Voltage (15V $\leq \operatorname{Vin} \leq 40 \mathrm{~V}, 0.5 \mathrm{~A} \leq \mathrm{I}_{\mathrm{LOAD}} \leq 3.0 \mathrm{~A}$					
$\mathrm{~T}_{J}=25^{\circ} \mathrm{C}$	Vout	11.52	12	12.48	V
$\mathrm{~T}_{J}=-40^{\circ} \mathrm{C} \sim+125^{\circ} \mathrm{C}$		11.4	-	12.6	
Efficiency $\left(\mathrm{Vin}=25 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3.0 \mathrm{~A}\right)$	η	-	88	-	$\%$

LM2576-ADJ ([Note 1] Test Circuit Figure 2)					
Feedback Voltage (Vin=12V, $\left.\mathrm{I}_{\text {LOAD }}=0.5 \mathrm{~A}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}\right)$	Vout	1.217	1.23	1.243	V
Feedback Voltage (8.0V $\left.\leq \operatorname{Vin} \leq 40 \mathrm{~V}, 0.5 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3.0 \mathrm{~A}, \mathrm{Vout}=5.0 \mathrm{~V}\right)$					
$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	Vout	1.193	1.23	1.267	V
$\mathrm{~T}_{J}=-40^{\circ} \mathrm{C} \sim+125^{\circ} \mathrm{C}$		1.18	-	1.28	
Efficiency $\left(\right.$ Vin $=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3.0 \mathrm{~A}$, Vout=5.0V $)$	η	-	77	-	$\%$

1. External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance.
When the LM2576 is used as shown in the Figure 15 test circuit, system performance will be as shown in system parameters section.
2. Tested junction temperature range for the LM2576: Tlow $=-40^{\circ} \mathrm{C}$ Thigh $=+125^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS / Device Parameters

(Unless otherwise specified, Vin $=12 \mathrm{~V}$ for the $3.3 \mathrm{~V}, 5.0 \mathrm{~V}$, and Adjustable version, Vin $=25 \mathrm{~V}$ for the 12 V version. ILoad $=500 \mathrm{~mA}$. For typical values $\mathrm{TJ}=25^{\circ} \mathrm{C}$, for $\mathrm{min} / \mathrm{max}$ values TJ is the operating junction temperature range that applies [Note 2], unless otherwise noted.)

Characteristics	Symbol	MIN.	TYP.	MAX	Unit
All Output Voltage Versions					
$\begin{aligned} & \text { Feedback Bias Current (Vout=5.0V [Adjustable Version Only]) } \\ & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=-40 \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	I_{b}			$\begin{aligned} & 100 \\ & 200 \end{aligned}$	nA
$\begin{aligned} & \text { Oscillator Frequency [Note 3] } \\ & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=0 \text { to }+125^{\circ} \mathrm{C} \\ & \mathrm{~T}_{J}=-40 \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	Fosc	$\begin{aligned} & 47 \\ & 42 \end{aligned}$	52	$\begin{aligned} & 58 \\ & 63 \end{aligned}$	kHz
$\begin{aligned} & \text { Saturation Voltage (lout=3.0A [note 4]) } \\ & T_{J}=25^{\circ} \mathrm{C} \\ & T_{J}=-40 \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{\text {SAT }}$		1.5	$\begin{gathered} 1.8 \\ 2 \\ \hline \end{gathered}$	V
Max Duty Cycle ("0") [Note 5]	DC	94	98	-	\%
$\begin{aligned} & \text { Current Limit (Peak Current [Note } 3 \text { and 4]) } \\ & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=-40 \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	$I_{\text {cL }}$	$\begin{aligned} & 4.2 \\ & 3.5 \end{aligned}$	5.8	$\begin{aligned} & 6.9 \\ & 7.5 \end{aligned}$	A
```Output Leakage Current [Note 6 and 7], TJ=25 C Output = 0V Output = -1.0V```	$I_{L}$	-	$\begin{gathered} 0.8 \\ 6 \end{gathered}$	$\begin{aligned} & 50 \\ & 30 \end{aligned}$	mA
$\begin{aligned} & \text { Quiescent Current [Note 6] } \\ & T_{J}=25^{\circ} \mathrm{C} \\ & T_{J}=-40 \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{I}_{\mathrm{Q}}$	-	5	$\begin{gathered} 9 \\ 11 \end{gathered}$	mA
$\begin{aligned} & \text { Standby Quiescent Current (ON/OFF Pin }=5.0 \mathrm{~V} \text { ("off")) } \\ & T_{J}=25^{\circ} \mathrm{C} \\ & T_{J}=-40 \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	$I_{\text {StBy }}$		$80$	$\begin{aligned} & 200 \\ & 400 \end{aligned}$	$\mu \mathrm{A}$
ON/OFF Pin Logic Input Level (Test circuit Figure 15)   Vout=0V   $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$   $\mathrm{T}_{\mathrm{J}}=-40$ to $+125^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {IH }}$				V
Vout=Nominal Output Voltage $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ $T_{J}=-40 \text { to }+125^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {IL }}$	-	1.2	$\begin{gathered} 1 \\ 0.8 \end{gathered}$	V
ON/OFF Pin Input Current (Test Circuit Figure 15) ON/OFF Pin $=5.0 \mathrm{~V}$ (Regulator OFF), $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ ON/OFF Pin $=0 \mathrm{~V}$ (Regulator ON), $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{I}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{IL}} \\ & \hline \end{aligned}$	-	$\begin{gathered} 15 \\ 0 \\ \hline \end{gathered}$	$\begin{aligned} & 30 \\ & 0.5 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$

3. The oscillator frequency reduces to approximately 18 kHz in the event of an output short or an overload which causes the regulated output voltage to drop approximately $40 \%$ from the nominal voltage. This self protection feature lowers the average dissipation of the IC by lowering the minimum duty cycle from $5 \%$ down to approximately $2 \%$
4. Output sourcing current. No diode, inductor or capacitor connected to output pin.
5. Feedback removed from output and connected to 0 V .
6. Feedback removed from output and connected to +12 V for the Adjustable, 3.3 V , and 5.0 V versions, and +25 V for the 12 V version, to force the output transistor "off".
7. $\mathrm{Vin}=40 \mathrm{~V}$.

TYPICAL PERFORMANCE CHARACTERISTICS (Circuit of Figure 15)


Figure 2. Normalized Output Voltage


Figure 4. Dropout Voltage


Figure 6. Quiescent Current


Figure 3. Line Regulation


Figure 5. Current Limit


Figure 7. Standby Quiescent Current

TYPICAL PERFORMANCE CHARACTERISTICS (Circuit of Figure 15)


Figure 8. Standby Quiescent Current


Figure 10. Oscillator Frequency


Figure 9. Switch Saturation Voltage


Figure 11. Minimum Operating Voltage


Figure 12. Feedback Pin Current

## TYPICAL PERFORMANCE CHARACTERISTICS



Figure 13. Switching Waveforms


Figure 14. Load Transient Response

$$
\text { Vout }=15 \mathrm{~V}
$$

A : Output Pin Voltage, 10V/DIV
B: Inductor Current, 2.0A/DIV
C: Inductor Current, 2.0A/DIV
D: Output Ripple Voltage, $50 \mathrm{mV} / \mathrm{dDIV}, \mathrm{AC}-C o u p l e d$
Horizontal Time Base : $5.0 \mu \mathrm{~s} /$ DIV

Fixed Output Voltage Versions


Cin $-100 \mu \mathrm{~F}, 75 \mathrm{~V}$, Aluminium Electrolytic
Cout $-1000 \mu \mathrm{~F}, 25 \mathrm{~V}$, Aluminium Electrolytic
D1 - Schottky, MBR360
L1 -100 $\mu \mathrm{H}$, Pulse Eng. PE-92108
R1-2.0 k, 0.1\%
R2-6.12k, 0.1\%
Adjustable Output Voltage Versions

$V_{\text {out }}=V_{\text {ref }}\left(1.0+\frac{R 2}{R 1}\right)$
$\mathrm{R} 2=\mathrm{R} 1\left(\frac{\mathrm{~V}_{\text {out }}}{\mathrm{V}_{\text {ref }}}-1.0\right)$
Where $\mathrm{V}_{\text {ref }}=1.23 \mathrm{~V}, \mathrm{R} 1$ between 1.0 k and 5.0 k
Figure 15. Typical Test Circuit

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Isolated DC/DC Converters category:
Click to view products by HTC Korea manufacturer:
Other Similar products are found below :
FMD15.24G PSL486-7LR Q48T30020-NBB0 18362 JAHW100Y1 SPB05C-12 SQ24S15033-PS0S 19-130041 CE-1003 CE-1004 RDS180245 MAU228 J80-0041NL DFC15U48D15 XGS-1205 NCT1000N040R050B SPB05B-15 SPB05C-15 L-DA20 DCG40-5G QME48T40033-PGB0 AK1601-9RT DPA423R VI-R5022-EXWW PSC128-7iR RPS8-350ATX-XE DAS1004812 PQA30-D24-S24-DH vi-m13-cw-03 VI-LN2-EW VI-PJW01-CZY CK2540-9ERT AK-1615-7R 700DNC40-CON-KIT-8G 350DNC40-CON-KIT-9G 088-101348-G VI-L52-EW VI-L53-CV PQA30-D48-S12-TH VI-L50-IY VI-LC63-EV AM2D-051212DZ 24IBX15-50-0ZG HZZ01204-G SPU02L-09 SPU02M-09 SPU02N-09 UNO-PS/350-900DC/24DC/60W QUINT4-BUFFER/24DC/20 QUINT4-CAP/24DC/5/4KJ

