FEATURES

- $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$ and Adjustable output versions
- Adjustable version output voltage range, 1.23 V to 57 V
- $\pm 4 \%$ max over line and load condition
- Available in TO-220, TO-263 and SOP-8PP
- Guaranteed 3A output load current
- Input voltage range up to 60 V
- Requires only 4 external components
- Excellent line and load regulation specifications
- 150 kHz fixed frequency internal oscillator
- Low power standby mode, $I_{\text {stв }}$ typically $30 u A$
- High efficiency
- Thermal shutdown and current limit protection
- Output short protection by reduction of frequency by 3 times

ORDERING INFORMATION

Device	Package
LM2596HVGDP-ADJ	SOP-8PP
LM2596HVGDP-X.X	
LM2596HVGR-ADJ	TO-263 5L
LM2596HVGR-X.X	
LM2596HVGT-ADJ	
LM2596HVGT-X.X	
X.X = Output Voltage $=3.3,5.0,12$	

DESCRIPTION

The LM 2596 HV series of regulators are monolithic integrated circuits that provide all the active functions for a step-down (buck) switching regulator, capable of driving a 3A load with excellent line and load regulation. These devices are available in fixed output voltages of $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$, and an adjustable output version.
Available in a standard 5-lead TO-220 package and a 5-lead TO-263 surface mount package.
External shutdown is included, featuring typically $30 \mu \mathrm{~A}$ standby current. The output switch includes cycle-bycycle current limiting, as well as thermal shutdown, and protection from output short for full protection under fault conditions.

Absolute Maximum Ratings ${ }^{\text {(Note 1) }}$

CHARACTERISTIC	SYMBOL	MIN.	MAX.	UNIT
Supply Voltage	$\mathrm{V}_{\text {IN }}$	-	63	V
ON/OFF Pin Input Voltage	$\mathrm{V}_{\text {ON/OFF }}$	-0.3	$60\left(\mathrm{or} \mathrm{V}_{\text {IN }}\right)$	V
FB pin voltage	$\mathrm{V}_{\text {FB }}$	-0.3	$25\left(\mathrm{or} \mathrm{VIN}^{\prime}\right)$	V
Output voltage to GND	$\mathrm{V}_{\text {OUT }}$	-1		V
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	-65	150	${ }^{\circ} \mathrm{C}$
Maximum Junction Temperature Range	$\mathrm{T}_{\mathrm{J}, \mathrm{MAX}}$	-	150	${ }^{\circ} \mathrm{C}$

Operating Ratings

CHARACTERISTIC	SYMBOL	MIN.	MAX.	UNIT
Supply Voltage	$\mathrm{V}_{\text {IN }}$	4.5	60	V
Load Current	ILOAD	-	3.0	A
Temperature Range	T_{J}	-40	125	\boxtimes

Ordering Information

VOUT	Package	Order No.	Description	Supplied As	Status
ADJ	SOP-8PP-8L	LM2596HVGDP-ADJ	3A, 150kHz, Adjustable	Reel	Active
	TO-263-5L	LM2596HVGR-ADJ	3A, 150kHz, Adjustable	Reel	Active
	TO-220-5L	LM2596HVGT-ADJ	3A, 150kHz, Adjustable	Tube	Active
3.3 V	SOP-8PP-8L	LM2596HVGDP-3.3	3A, 150kHz, Fixed	Reel	Contact us
	TO-263-5L	LM2596HVGR-3.3	3A, 150kHz, Fixed	Reel	Active
	TO-220-5L	LM2596HVGT-3.3	3A, 150kHz, Fixed	Tube	Contact us
5.0V	SOP-8PP-8L	LM2596HVGDP-5.0	3A, 150kHz, Fixed	Reel	Active
	TO-263-5L	LM2596HVGR-5.0	3A, 150kHz, Fixed	Reel	Active
	TO-220-5L	LM2596HVGT-5.0	3A, 150kHz, Fixed	Tube	Active
12V	SOP-8PP-8L	LM2596HVGDP-12	3A, 150kHz, Fixed	Reel	Contact us
	TO-263-5L	LM2596HVGR-12	3A, 150kHz, Fixed	Reel	Active
	TO-220-5L	LM2596HVGT-12	3A, 150kHz, Fixed	Tube	Active

PIN CONFIGURATION

SOP-8PP

TO-263-5L

TO-220-5L

PIN DESCRIPTION

Pin No.	TO-263 / TO-220 5 LEAD		Pin No.	SOP-8PP 8 LEAD	
	Name	Function		Function	
1	VIN	Input Supply	1	VIN	Input Supply
2	VOUT	Output Voltage	2	VOUT	Output Voltage
3	GND	Ground	3	FB / ADJ	Output Voltage Feedback or Output Adjust
4	FB / ADJ	Output Voltage Feedback or Output Adjust	4	ON/OFF	ON/OFF Shutdown
5	ON/OFF	ON/OFF Shutdown	$5 / 6 / 7 / 8$	GND	Ground

* Exposed Pad of SOP8-PP package should be externally connected to GND.

TYPICAL APPLICATION

- Fixed Output Voltage Version

- Adjustable Output Voltage Version

ELECTRICAL CHARACTERISTICS

Unless specified otherwise, $\mathrm{V}_{\mathbb{I N}}=12 \mathrm{~V}$ for the $3.3 \mathrm{~V}, 5 \mathrm{~V}$ and adjustable versions, $\mathrm{I}_{\mathrm{LOAD}}=0.5 \mathrm{~A}, \mathrm{~V}_{\mathrm{IN}}=18 \mathrm{~V}$ for 12 V version. The boldface type denotes the specifications, which apply over full operating temperature range $\mathrm{T}_{J}=-40$ to $+125^{\circ} \mathrm{C}$.

PARAMETER	SYMBOL	TEST CONDITION ${ }^{(\text {Note 2) }}$		MIN.	TYP.	MAX.	UNIT
SYSTEM PARAMETERS ${ }^{(\text {Note 3) }}$							
Feedback Voltage	$V_{\text {FB }}$	LM2596HV-ADJ	$\begin{aligned} & 8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 60 \mathrm{~V}, \\ & 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A} \end{aligned}$	1.193	1.230	1.273	V
				1.180		1.285	
Output Voltage	Vo	LM2596HV-3.3	$\begin{aligned} & 5.5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 60 \mathrm{~V}, \\ & 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A} \end{aligned}$	3.185	3.30	3.432	V
				3.152		3.465	
		LM2596HV-5.0	$\begin{aligned} & 8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 60 \mathrm{~V}, \\ & 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A} \end{aligned}$	4.825	5.00	5.20	V
				4.775		5.25	
		LM2596HV-12	$\begin{aligned} & 15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 60 \mathrm{~V}, \\ & 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A} \end{aligned}$	11.58	12.00	12.48	V
				11.46		12.60	
Line Regulation	Line Reg	$8 \leq \mathrm{V}_{\text {IN }} \leq 60 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.2 \mathrm{~A}$			0.3		\%
Load Regulation	Load Reg	$10 \mathrm{~mA} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A}, \mathrm{~V}_{\text {IN }}=12 \mathrm{~V}$			0.3		\%
Efficiency	η	LM2596HV-ADJ	$\begin{aligned} & V_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}, \\ & \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V} \end{aligned}$		79		\%
		LM2596HV-3.3	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$		77		\%
		LM2596HV-5.0	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$		79		\%
		LM2596HV-12	$\mathrm{V}_{\text {IN }}=15 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$		83		\%
DEVICE PARAMETERS							

Quiescent Current	I_{Q}	$\mathrm{V}_{\mathrm{FB}}=12 \mathrm{~V}$ force driver off ${ }^{\text {(Note 6) }}$		5	8	mA
Feedback Bias Current	$\mathrm{I}_{\text {FB }}$	$\mathrm{V}_{\mathrm{FB}}=1.3 \mathrm{~V}$ (Adjustable version only)	-250	-70		nA
			-450			
Shutdown Supply Current	ІІтв	$\mathrm{V}_{\text {On/off }}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=60 \mathrm{~V}$		30	220	uA
					280	
Oscillator Frequency	Fosc	(Note 8)	133	150	168	KHz
			120		180	
Oscillator Frequency of short Circuit Protect	$F_{\text {SCP }}$	When $\mathrm{V}_{\text {OUT }}$ < 40% from nominal, $\mathrm{l}_{\mathrm{lout}}=\mathrm{CL}{ }^{\text {(Note }}$ 8)		50		KHz
Max. duty Cycle	$\mathrm{DC}_{\text {(MAX.) }}$	$\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}$ force driver on ${ }^{\text {(Note 5) }}$	100			\%
Min. duty Cycle	$D C_{\text {(min.) }}$	$\mathrm{V}_{\mathrm{FB}}=12 \mathrm{~V}$ force driver off ($\mathrm{V}_{\mathrm{FB}}=15 \mathrm{~V}$, For 12 V Version)			0	

60V, 3A, 150kHz, Step-down Switching Regulator

Current Limit	CL	Peak Current. No outside circuit.$\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}^{(\text {Note } 4,8)}$	4.1	5.3	6.7	A
			3.8		7.0	
Saturation Voltage	$V_{\text {SAT }}$	lout=3A. No outside circuit.$\mathrm{V}_{\mathrm{FB}}=\mathrm{OV}^{\text {(Note 4) }}$		1.35	1.50	V
					1.70	
Output Leakage Current	I	$V_{\text {OUT }}=0 \mathrm{~V}$. No outside circuit. $\mathrm{V}_{\mathrm{FB}}=12 \mathrm{~V}$ (Note 6, 7)	-300	-50		uA
Output Leakage Current	L_{1}	$V_{\text {OUT }}=-1 \mathrm{~V}$. No outside circuit. $\mathrm{V}_{\mathrm{FB}}=12 \mathrm{~V}$ (Note 6, 7)	-30	-3		mA
ON/OFF Input Threshold	$\mathrm{V}_{\text {TH }}$		0.6	1.3	2.0	V
ON/OFF Input Current	I_{H}	$\mathrm{V}_{\text {ON/OFF }}=2.5 \mathrm{~V}$	-5	-0.1	5	uA
	I	$V_{\text {ON/OFF }}=0.5 \mathrm{~V}$	-1	-0.01	1	uA
Thermal Shutdown Temperature	$\mathrm{T}_{\text {SD }}$	TJ		160		\boxtimes

Note 1. Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.
Note 2, All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face).
Note 3, External components such as the schottky diode, inductor, input and output capacitors can affect switching regulator system performance. When the 2596 HV is used as shown in the Figure 2 test circuit, system performance will be as shown in system parameters section of Electrical Characteristics.
Note 4. Output pin sourcing current. No diode, inductor or capacitor connected to output.
Note 5. Feedback pin removed from output and connected to 0V.
Note 6 . Feedback pin removed from output and connected to +12 V for the Adjustable, 3.3 V , and 5 V , versions, and +25 V for the 12 V and 15 V versions, to force the output transistor OFF.
Note 7. $\mathrm{V}_{\mathrm{IN}}=60 \mathrm{~V}$.
Note 8. The oscillator frequency reduces to approximately 50 KHz in the event of an output short or an overload which causes the regulated output voltage to drop approximately 40% from the nominal output voltage. This self protections feature lowers the average power dissipation of the IC by lowering the minimum duty cycle from 5% down to approximately 2%.

TYPICAL OPERATING CHARACTERISTIC

Efficiency vs. IOUT

Load Regulation vs. IOUT

FOSC vs. TJ

Line Regulation vs. VIN

VOUT vs. TJ

VSAT vs. IOUT

IQ vs. VIN

ISTB vs. VIN

APPLICATION INFORMATION

As in any switching regulator, layout is very important. Rapidly switching currents associated with wiring inductance generate voltage transients which can cause problems. For minimal inductance and ground loops, the length of the wires should be kept as short as possible. Single-point grounding or ground plane construction should be used for best results. Keep the feedback wiring away from the inductor flux

- Fixed Output Voltage Version

[Figure 1]
- Adjustable Output Voltage Version

[Figure 2]
* $V_{\text {OUT }}=V_{F B}\left(1+\frac{R 2}{R 1}\right)$
where $\mathrm{V}_{\mathrm{FB}}=1.23 \mathrm{~V}$, R 1 between $1 \mathrm{~K} \Omega$ and $5 \mathrm{~K} \Omega$.

REVISION NOTICE

The description in this datasheet can be revised without any notice to describe its electrical characteristics properly.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Isolated DC/DC Converters category:
Click to view products by HTC Korea manufacturer:

Other Similar products are found below :
ESM6D044440C05AAQ FMD15.24G PSL486-7LR PSR152.5-7IR Q48T30020-NBB0 AVO240-48S12B-6L AVO250-48S28B-6L NAN0505 HW-L16D JAHW100Y1 217-1617-001 22827 SPB05C-12 SQ24S15033-PS0S 18952 19-130041 CE-1003 CE-1004 GQ2541-7R PSE1000DCDC-12V RDS180245 MAU228 419-2065-201 449-2075-101 J80-0041NL V300C24C150BG 419-2062-200 419-2063-401 419-2067-101 419-2067-501 419-2068-001 DCG40-5G DFC15U48D15 449-2067-000 XGS-0512 XGS-1205 XGS-1212 XGS-2412 XGS$\underline{2415} \underline{X K S}-1215 \underline{033456}$ NCT1000N040R050B SPB05B-15 SPB05C-15 SSQE48T25025-NAA0G L-DA20 HP3040-9RG HP1001-9RTG XKS-2415 XKS-2412

