FEATURES

- 3.3V, 5.0V, 12V, and Adjustable Output version
- Adjustable Output Voltage range, 1.2 V to 37 V $\pm 4 \%$ Max. Over Line and Load conditions
- Guaranteed Output Current of 3A
- Available in TO-263, TO-220 Packages
- Requires Only 4 External Components
- Excellent Line and Load Regulation Specifications
- 150kHz Fixed Frequency Internal Oscillator
- TTL Shutdown Capability
- Low Power Standby Mode, IQ typically 100mA
- Thermal Shutdown and Current Limit Protection
- Moisture Sensitivity Level 3

APPLICATION

- Simple High-Efficiency Step-Down(Buck) Regulator
- Efficient Pre-Regulator for Linear Regulators
- On-Card Switching Regulators
- Positive to Negative Converter(Buck-Boost)
- Negative Step-Up Converters
- Power Supply for Battery Chargers

ORDERING INFORMATION

Device	Package
LM2596R-X.X	TO-263-5L
LM2596T-X.X	TO-220-5L
LM2596DP-X.X	SOP-8PP

X.X $=$ Output Voltage $=3.3,5.0,12$, ADJ

DESCRIPTION

The LM2596 series of regulators are monolithic integrated circuits ideally suited for easy and convenient design of a step-down switching regulator (buck converter). All circuits of this series are capable of driving a 3.0A load with excellent line and load regulation. These devices are available in fixed output voltages of 3.3 V , $5.0 \mathrm{~V}, 12 \mathrm{~V}$, and an adjustable output version. These regulators were designed to minimize the number of external components to simplify the power supply design. Standard series of inductors optimized for use with the LM2596 are offered by several different inductor manufacturers. Since the LM2596 converter is a switchmode power supply, its efficiency is significantly higher in comparison with popular three-terminal linear regulators, especially with higher input voltages. In many cases, the power dissipated is so low that no heatsink is required or its size could be reduced dramatically. A standard series of inductors optimized for use with the LM2596 are available from several different manufacturers. This feature greatly simplifies the design of switchmode power supplies. The LM2596 features include a guaranteed $+/-4 \%$ tolerance on output voltage within specified input voltages and output load conditions, and $+/-15 \%$ on the oscillator frequency $\left(+/-2 \%\right.$ over $0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$). External shutdown is included, featuring $80 \mu \mathrm{~A}$ (typical) standby current. Self-protection features include a two stage frequency reducing current limit for output switch and an over temperature shutdown for complete protection under fault conditions.

Ordering Information

Vout	Package	Order No.	Description	Package Marking	Status
ADJ	SOP-8PP	LM2596DP-ADJ	3A, Adjustable, 150kHz, On/off	LM2596-ADJ	Active
	TO-220-5L	LM2596T-ADJ	3A, Adjustable, 150kHz, On/off	LM2596-ADJ	Active
	TO-263-5L	LM2596R-ADJ	3A, Adjustable, 150kHz, On/off	LM2596-ADJ	Active
3.3 V	SOP-8PP	LM2596DP-3.3	3A, Fixed, 150kHz, On/off	LM2596-3.3	Contact Us
	TO-220-5L	LM2596T-3.3	3A, Fixed, 150kHz, On/off	LM2596-3.3	Active
	TO-263-5L	LM2596R-3.3	3A, Fixed, 150kHz, On/off	LM2596-3.3	Active
5.0V	SOP-8PP	LM2596DP-5.0	3A, Fixed, 150kHz, On/off	LM2596-5.0	Active
	TO-220-5L	LM2596T-5.0	3A, Fixed, 150kHz, On/off	LM2596-5.0	Active
	TO-263-5L	LM2596R-5.0	3A, Fixed, 150kHz, On/off	LM2596-5.0	Active
12V	SOP-8PP	LM2596DP-12	3A, Fixed, 150kHz, On/off	LM2596-12	Contact Us
	TO-220-5L	LM2596T-12	3A, Fixed, 150kHz, On/off	LM2596-12	Active
	TO-263-5L	LM2596R-12	3A, Fixed, 150kHz, On/off	LM2596-12	Active

PIN CONFIGURATION

SOP8-PP

TO220-5L

TO263-5L

PIN DESCRIPTION

Package		Symbol	Description
$\begin{aligned} & \text { TO-220 5L } \\ & \text { TO-263 5L } \end{aligned}$	SOP8-PP		
1	1	VIN	This pin is the positive input supply for the LM2596 step-down switching regulator. In order to minimize voltage transients and to supply the switching currents needed by the regulator, a suitable input bypass capacitor must be present.
2	2	VOUT	This is the emitter of the internal switch. The saturation voltage Vsat of this output switch is typically 1.5 V . It should be kept in mind that the PCB area connected to this pin should be kept to a minimum in order to minimize coupling to sensitive circuitry.
3	3	GND	Circuit ground pin.
4	4	FEEDBACK	This pin senses regulated output voltage to complete the feedback loop. The signal is divided by the internal resistor divider network R2, R1 and applied to the non-inverting input of the internal error amplifier. In the Adjustable version of the LM2596 switching regulator this pin is the direct input of the error amplifier and the resistor network R2, R1 is connected externally to allow programming of the output voltage.
5	5	ON/OFF	It allows the switching regulator circuit to be shut down using logic level signals, thus dropping the total input supply current to approximately 80 uA . The threshold voltage is typically 1.3 V . Applying a voltage above this value (up to +Vin) shuts the regulator off. If the voltage applied to this pin is lower than 1.3 V or if this pin is left open, the regulator will be in the "on" condition.
-	6, 7, 8	N.C.	No Connect.

* Exposed Pad of SOP8-PP package should be externally connected to GND.

Typical Application (Fixed Output Voltage Versions)

Absolute Maximum Ratings

Rating	Symbol	Value	UNIT
Maximum Supply Voltage	Vin	45	V
On/Off Pin Input Voltage	-	$-0.3 \mathrm{~V} \leq \mathrm{V} \leq+\mathrm{Vin}$	V
Output Voltage to Ground (Steady-State)	-	-1.0	V
Power Dissipation SOP8-PP-8Lead Thermal Resistance, Junction to Ambient Thermal Resistance, Junction to Case	$\begin{aligned} & \mathrm{P}_{\mathrm{D}} \\ & \theta_{\mathrm{JA}} \\ & \theta_{\mathrm{JC}} \end{aligned}$	Internally Limited Contact us Contact us	$\begin{gathered} W \\ { }^{\circ} \mathrm{C} / \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$
TO-220-5Lead Thermal Resistance, Junction to Ambient Thermal Resistance, Junction to Case	$\begin{aligned} & \mathrm{P}_{\mathrm{D}} \\ & \theta_{\mathrm{JA}} \\ & \theta_{\mathrm{JC}} \end{aligned}$	Internally Limited 65 5	$\begin{gathered} \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$
TO-263-5Lead Thermal Resistance, Junction to Ambient Thermal Resistance, Junction to Case	$\begin{aligned} & \hline \mathrm{P}_{\mathrm{D}} \\ & \theta_{\mathrm{JA}} \\ & \theta_{\mathrm{JC}} \end{aligned}$	Internally Limited \qquad 70 5	$\begin{gathered} \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \\ \hline \end{gathered}$
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	-60 to +150	${ }^{\circ} \mathrm{C}$
Minimum ESD Rating (Human Body Model)	-	2	kV
Lead Temperature (Soldering, 10seconds)	-	260	${ }^{\circ} \mathrm{C}$
Maximum Junction Temperature	TJ	150	${ }^{\circ} \mathrm{C}$

OPERATING RATINGS (Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications, see the Electrical Characteristics.)

Rating	Symbol	Value.	Unit
Operating Junction Temperature Range	T_{J}	-40 to +125	${ }^{\circ} \mathrm{C}$
Supply Voltage	Vin	40	V

ELECTRICAL CHARACTERISTICS / SYSTEM PARAMETERS ([Note 1] Test Circuit Figure 2)

(Unless otherwise specified, Vin $=12 \mathrm{~V}$ for the 3.3 V , 5.0 V , and Adjustable version, Vin $=25 \mathrm{~V}$ for the 12 V version. $\mathrm{I}_{\text {LOAd }}=500 \mathrm{~mA}$. For typical values $T_{J}=25^{\circ} \mathrm{C}$, for $\mathrm{min} / \mathrm{max}$ values T_{J} is the operating junction temperature range that applies [Note 2], unless otherwise noted.)

Characteristics	Symbol	Min	TYP	Max	Unit
LM2596-3.3V ([Note 1] Test Circuit Figure 2)					
Output Voltage ($\mathrm{Vin}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{LOAD}}=0.5 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$)	Vout	3.234	3.3	3.366	V
Output Voltage ($6.0 \mathrm{~V} \leq \mathrm{Vin} \leq 40 \mathrm{~V}, 0.5 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3.0 \mathrm{~A}$	Vout				
$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		3.168	3.3	3.432	v
$\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C} \sim+125^{\circ} \mathrm{C}$		3.135	-	3.465	
Efficiency (Vin=12V, $\mathrm{I}_{\text {LOAD }}=3.0 \mathrm{~A}$)	η	-	73	-	\%

LM2596-5.0V ([Note 1] Test Circuit Figure 2)					
Output Voltage (Vin=12V, $\mathrm{I}_{\text {LOAD }}=0.5 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$)	Vout	4.9	5.0	5.1	V
Output Voltage ($8.0 \mathrm{~V} \leq \mathrm{Vin} \leq 40 \mathrm{~V}, 0.5 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3.0 \mathrm{~A}$	Vout				
$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		4.8	5.0	5.2	V
$\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C} \sim+125^{\circ} \mathrm{C}$		4.75	-	5.25	
Efficiency (Vin=12V, $\mathrm{I}_{\text {LOAD }}=3.0 \mathrm{~A}$)	η	-	80	-	\%

LM2596-12V ([Note 1] Test Circuit Figure 2)					
Output Voltage ($\mathrm{Vin}=25 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.5 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$)	Vout	11.76	12	12.24	V
Output Voltage ($15 \mathrm{~V} \leq \mathrm{Vin} \leq 40 \mathrm{~V}, 0.5 \mathrm{~A} \leq \mathrm{l}_{\text {LOAD }} \leq 3.0 \mathrm{~A}$	Vout				
$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		11.52	12	12.48	V
$\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C} \sim+125^{\circ} \mathrm{C}$		11.4	-	12.6	
Efficiency (Vin=12V, $\mathrm{I}_{\text {LOAD }}=3.0 \mathrm{~A}$)	η	-	90	-	\%

LM2596-ADJ ([Note 1] Test Circuit Figure 2)					
Feedback Voltage (Vin=12V, $\left.\mathrm{I}_{\text {LOAD }}=0.5 \mathrm{~A}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}\right)$	Vout	1.217	1.23	1.243	V
Feedback Voltage(8.0V \leq Vin $\leq 40 \mathrm{~V}, 0.5 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3.0 \mathrm{~A}$, Vout $=5.0 \mathrm{~V}$)	Vout				V
$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		1.193	1.23	1.267	
$\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C} \sim+125^{\circ} \mathrm{C}$		1.18	-	1.28	
Efficiency (Vin=12V, $\mathrm{I}_{\text {LOAD }}=3.0 \mathrm{~A}$, Vout $=5.0 \mathrm{~V}$)	η	-	73	-	\%

3.0A, 150kHz, Step-Down Switching Regulator

Characteristics	Symbol	Min	TYP	Max	Unit
All Output Voltage Versions					
```Feedback Bias Current (Vout=5.0V [Adjustable Version Only]) \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) \(\mathrm{T}_{\mathrm{J}}=0 \sim+125^{\circ} \mathrm{C}\)```	lb	$\begin{aligned} & 11.52 \\ & 11.4 \\ & \hline \end{aligned}$	$12$	$\begin{array}{\|l\|} 12.48 \\ 12.6 \\ \hline \end{array}$	nA
Oscillator Frequency $\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=0 \sim+125^{\circ} \mathrm{C} \end{aligned}$	Fosc	$\begin{aligned} & 127 \\ & 110 \end{aligned}$	$150$	$\begin{aligned} & 173 \\ & 173 \end{aligned}$	kHz
$\begin{aligned} & \text { Saturation Voltage (lout=3.0A [note 3]) } \\ & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=0 \sim+125^{\circ} \mathrm{C} \end{aligned}$	Vsat	-	$\begin{aligned} & 1.16 \\ & - \\ & \hline \end{aligned}$	$\begin{aligned} & 1.4 \\ & 1.5 \end{aligned}$	V
Max Duty Cycle ("0") [Note 4]	DC	-	100	-	\%
$\begin{aligned} & \text { Current Limit (Peak Current [Note 3]) } \\ & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=0 \sim+125^{\circ} \mathrm{C} \end{aligned}$	ICL	$\begin{aligned} & 3.6 \\ & 3.4 \\ & \hline \end{aligned}$	$4.5$	$\begin{array}{\|l} 6.9 \\ 7.5 \\ \hline \end{array}$	A
Output Leakage Current [Note 5 and 6], $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ $\begin{aligned} & \text { Output }=0 \mathrm{~V} \\ & \text { Output }=-1.0 \mathrm{~V} \end{aligned}$	IL	-	$2$	$\begin{array}{\|l\|} \hline 25 \\ 10 \\ \hline \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
Quiescent Current [Note 5] $\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=0 \sim+125^{\circ} \mathrm{C} \end{aligned}$	IQ	-	$5$	$10$	mA
$\begin{aligned} & \text { Standby Quiescent Current (ON/OFF Pin = 5.0V ("off")) } \\ & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=0 \sim+125^{\circ} \mathrm{C} \end{aligned}$	ISTBY	-	$80$	$\begin{array}{\|l} 200 \\ 250 \\ \hline \end{array}$	$\mu \mathrm{A}$
ON/OFF Pin Logic Input Level (Test circuit Figure 2)   Vout=0V $\begin{aligned} & T_{J}=25^{\circ} \mathrm{C} \\ & T_{J}=0 \sim+125^{\circ} \mathrm{C} \end{aligned}$   Vout=Nominal Output Voltage $\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=0 \sim+125^{\circ} \mathrm{C} \end{aligned}$	VIH   VIL	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$1.3$ $1.3$	$\begin{aligned} & 0.6 \\ & 0.6 \\ & \hline \end{aligned}$	V
ON/OFF Pin Input Current (Test Circuit Figure 2) $\begin{aligned} \text { VLOGIC } & =2.5 \mathrm{~V} \text { (Regulator OFF) } \\ \text { VLOGIC } & =0.5 \mathrm{~V} \text { (Regulator ON) } \end{aligned}$	$\begin{aligned} & \mathrm{IIH} \\ & \mathrm{IIL} \end{aligned}$	-	$\begin{array}{\|l\|} \hline 5 \\ 0.02 \\ \hline \end{array}$	$\begin{aligned} & 15 \\ & 5.0 \end{aligned}$	$\mu \mathrm{A}$

1. External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance.

When the LM2596 is used as shown in the Figure 1 test circuit, system performance will be as shown in system parameters section .
2. Tested junction temperature range for the LM2596: TLOW $=-40^{\circ} \mathrm{C}$ THIGH $=+125^{\circ} \mathrm{C}$
3. Output (Pin 2) sourcing current. No diode, inductor or capacitor connected to output pin.
4. Feedback (Pin 4) removed from output and connected to 0 V .
5. Feedback (Pin 4) removed from output and connected to +12 V for the Adjustable, 3.3 V , and 5.0 V versions, and ' +25 V for the 12 V versions, to force the output transistor "off".C195
6. $\mathrm{Vin}=40 \mathrm{~V}$.

## TYPICAL PERFORMANCE CHARACTERISTICS (Circuit of Figure 2)



## TYPICAL PERFORMANCE CHARACTERISTICS (Circuit of Figure 2)

Feedback Pin<br>Bias Current



Continuous Mode Switching Waveforms
$\mathrm{V}_{\text {IN }}=20 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=2 \mathrm{~A}$
$\mathrm{L}=32 \mu \mathrm{H}$, C $_{\text {out }}=220 \mu \mathrm{~F}, \mathrm{C}_{\text {out }} \mathrm{ESR}=50 \mathrm{~m} \Omega$


01258317
Horizontal Time Base: $\mathbf{2 \mu s} /$ div.
A: Output Pin Voltage, $10 \mathrm{~V} /$ div.
B: Inductor Current 1A/div.
C: Output Ripple Voltage, $50 \mathrm{mV} / \mathrm{div}$.

Load Transient Response for Continuous Mode
$\mathrm{V}_{\mathrm{IN}}=20 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=500 \mathrm{~mA}$ to 2 A
$\mathrm{L}=32 \mu \mathrm{H}, \mathrm{C}_{\text {OUT }}=220 \mu \mathrm{~F}, \mathrm{C}_{\text {OUT }} \mathrm{ESR}=50 \mathrm{~m} \Omega$


Horizontal Time Base: $100 \mu \mathrm{~s} / \mathrm{div}$.
A: Output Voltage, $100 \mathrm{mV} / \mathrm{div}$. (AC)
B: 500 mA to 2 A Load Pulse

Discontinuous Mode Switching Waveforms $\mathrm{V}_{\text {IN }}=20 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=500 \mathrm{~mA}$
$\mathrm{L}=10 \mu \mathrm{H}, \mathrm{C}_{\text {OUt }}=330 \mu \mathrm{~F}, \mathrm{C}_{\text {Out }} \mathrm{ESR}=45 \mathrm{~m} \Omega$


01258318
Horizontal Time Base: $\mathbf{2 \mu s} / \mathrm{div}$.
A: Output Pin Voltage, $10 \mathrm{~V} / \mathrm{div}$.
B: Inductor Current 0.5A/div.
C: Output Ripple Voltage, $100 \mathrm{mV} / \mathrm{d}^{2} \mathrm{v}$.

Load Transient Response for Discontinuous Mode $\mathrm{V}_{\mathrm{IN}}=20 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$, $\mathrm{I}_{\text {LOAD }}=500 \mathrm{~mA}$ to 2 A
$\mathrm{L}=10 \mu \mathrm{H}, \mathrm{C}_{\text {OUT }}=330 \mu \mathrm{~F}, \mathrm{C}_{\text {OUT }} \mathrm{ESR}=45 \mathrm{~m} \Omega$


Horizontal Time Base: $\mathbf{2 0 0} \mu \mathrm{s} / \mathrm{div}$.
A: Output Voltage, $100 \mathrm{mV} / \mathrm{div}$. (AC)
B: 500 mA to 2 A Load Pulse

## Test Circuit and Layout Guidelines



Cin $=470 \mu \mathrm{~F}, 50 \mathrm{~V}$, Cout $=220 \mu \mathrm{~F}, 35 \mathrm{~V}$ (Aluminum Electrolytic Nichicon "PL Series"
D1 = 5A, 40V Schottky Rectifier, IN5825
L1 = 68uH, R1 = $1 \mathrm{k} \Omega, 1 \%, \mathrm{R} 2=\mathrm{R} 1 \times($ Vout $/$ Vref -1$)$

As in any switching regulator, layout is very important. Rapidly switching currents associated with wiring inductance can generate voltage transients which can cause problems. For minimal inductance and ground loops, the wires indicated by heavy lines should be wide printed circuit traces and should be kept as short as possible. For best results, external components should be located as close to the switching IC as possible using ground plane construction or single point grounding. If open core inductors are used, special care must be taken as to the location and positioning of this type of inductor. Allowing the inductor flux to intersect sensitive feedback, IC ground path and COUT wiring can cause problems. When using the adjustable version, special care must be taken as to the location of the feedback resistors and the associated wiring. Physically locate both resistors near the IC, and route the wiring away from the inductor, especially an open core type of inductor.

## REVISION NOTICE

The description in this datasheet can be revised without any notice to describe its electrical characteristics properly.

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Isolated DC/DC Converters category:
Click to view products by HTC Korea manufacturer:

Other Similar products are found below :
PSL486-7LR Q48T30020-NBB0 18362 JAHW100Y1 SPB05C-12 SQ24S15033-PS0S 18952 19-130041 CE-1003 CE-1004 RDS180245 MAU228 J80-0041NL DFC15U48D15 XGS-1205 NCT1000N040R050B SPB05B-15 SPB05C-15 L-DA20 DCG40-5G AK1601-9RT DPA423R VI-R5022-EXWW PSC128-7iR RPS8-350ATX-XE DAS1004812 PQA30-D24-S24-DH vi-m13-cw-03 VI-LN2-EW VI-PJW01CZY CK2540-9ERT AK-1615-7R 700DNC40-CON-KIT-8G 350DNC40-CON-KIT-9G 088-101348-G VI-L52-EW VI-L53-CV PQA30-D48-S12-TH VI-L50-IY VI-LC63-EV AM2D-051212DZ 24IBX15-50-0ZG HZZ01204-G SPU02L-09 SPU02M-09 SPU02N-09 UNO-PS/350-900DC/24DC/60W QUINT4-BUFFER/24DC/20 QUINT4-CAP/24DC/5/4KJ QUINT4-CAP/24DC/10/8KJ

