100mA Low Dropout Voltage Regulator

LM2950G

FEATURES

- High accuracy output voltage
- Guaranteed 100 mA output
- Very low quiescent current
- Low dropout voltage
- Extremely tight load and line regulation
- Very low temperature coefficient
- Needs Output low-ESR ceramic capacitor for stability
- Logic-controlled electronic shutdown

APPLICATION

- Battery-powered systems
- Cordless telephones
- Radio-control systems
- Portable / Palm-top / Notebook computers
- Portable consumer equipment
- Portable instrumentation
- Avionics
- Automotive electronics
- SMPS post-regulator
- Voltage reference

ORDERING INFORMATION

Device	Package		
LM2950G-X.X	TO-92 (Bulk)		
LM2950GTA-X.X	TO-92 (Tape)		
LM2950GTF5-X.X	SC-70-5L		

X.X = Output Voltage = 3.3V, 5.0V

DESCRIPTION

The LM2950G is a low power voltage regulator. This device is an excellent choice for use in battery-powered application such as cordless telephones, radio-control systems, and portable computers.

The LM2950G features a very low quiescent current (75uA typ.) and a very low drop output voltage (typ. 40mV at a light load and 380mV at 100mA).

Furthermore, a tight initial Output voltage tolerance of 0.5% Typ., an extremely good load and line regulation of 0.05% Typical, and a very low output temperature coefficient - all that makes the LM2950G very useful as a low-power voltage reference.

ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	MIN.	MAX.	UNIT
Lead Temperature	T _{SOL}	-	260	°C
Storage Temperature Range	T _{STG}	-65	150	°C
Operating Junction Temperature Range	T _{JOPR}	-40	125	°C
Input Supply Voltage	V _{IN}	-0.3	30	V

Feb. 2020 - R1.1.1

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTIC	SYMBOL	MIN.	MAX.	UNIT
Maximum Input Voltage	V _{IN_MAX}	-	30	V
Junction Temperature	TJ	-25	85	°C

ORDERING INFORMATION

V _{OUT}	Package	Order No.	Supplied As	Status
3.3	TO-92	LM2950G-3.3	Bulk	Active
3.3	TO-92	LM2950GTA-3.3	Таре	Active
3.3	SC-70-5L	LM2950GTF5-3.3	Reel	Active
5.0	TO-92	LM2950G-5.0	Bulk	Active
5.0	TO-92	LM2950GTA-5.0	Таре	Active
5.0	SC-70-5L	LM2950GTF5-5.0	Reel	Active

PIN DESCRIPTION

PIN CONFIGURATION

Pin No.	Pin Name		
	TO-92	SC-70-5L	
1	VOUT	VIN	
2	GND	GND	
3	VIN	N.C	
4	-	N.C	
5	-	VOUT	

* N.C : No connection

TYPICAL APPLICATION CIRCUIT

Parameters	Condition	Min.	Тур.	Max.	Unit	
	TJ=25°C	0.990 VO		1.010 VO	V	
Output Voltage	-25°C ≤ TJ ≤ 85°C	0.985 VO	VO	1.015 VO	V	
	Full Operating Temperature	0.980 VO		1.020 VO	V	
	100uA ≤ IOUT ≤ 100mA, TJ ≤ TJMAX	0.976 VO	VO	1.024 VO	V	
Output Voltage Temperature Coefficient	(Note 1)		50	150	ppm/°C	
Line Regulation	$(VOUT+1V) \le VIN \le 30V$		0.04	0.2	%	
Load Regulation (Note 2)	100uA ≤ IOUT ≤ 100mA		0.1	0.3	%	
	IOUT=100uA		50	80	mV	
Dropout Voltage (Note 3)	IOUT=100mA		380	450	mV	
Cround Current	IOUT=100uA		75	120	uA	
Ground Current	IOUT=100mA		3	12	mA	
Dropout Ground Current	VIN=VOUT-0.5V, IOUT=100uA		110	170	uA	
Current Limit	VOUT=0V		160		mA	
Thermal Regulation			0.05	0.2	%/W	
Output Noise, (10Hz to 100KHz)	COUT=1uF		430		uVrms	
	COUT=200uF		160			
Over Temperature Protection			165		°C	

ELECTRICAL CHARACTERISTICS (at Ta=25°C, VIN=VOUT+1V, IOUT=100uA, unless otherwise noted)

Note 1 : Output temperature coefficient is defined as the worst case voltage change divided by the total temperature range.

Note 2 : The regulation is measured at a constant junction temperature using pulse testing with a low duty cycle. Changes in the output voltage due to heating effects are covered under the specification for thermal regulation.

Note 3 : The dropout voltage is defined as the input-to-output differential, at which the output voltage drops 100mV below its nominal value measured at 1V differential. At very low values of a programmed output voltage, the minimum input supply voltage 2V (2.3V over temperature) must be taken into account.

LM2950G

TYPICAL OPERATING CHARACTERISTICS

0

0.02

0.04

IOUT, Output current (A)

0.06

0.08

0.1

REVISION NOTICE

The description in this datasheet is subject to change without any notice to describe its electrical characteristics properly.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for LDO Voltage Regulators category:

Click to view products by HTC Korea manufacturer:

Other Similar products are found below :

AP7363-SP-13 L79M05TL-E AP7362-HA-7 PT7M8202B12TA5EX TCR3DF185,LM(CT TCR3DF45,LM(CT TLE4473G V52 059985X NCP4687DH15TIG 701326R NCV8170AXV250T2G AP7315-25W5-7 AP2111H-1.2TRG1 ZLDO1117QK50TC AZ1117ID-ADJTRG1 TCR3DG12,LF MIC5514-3.3YMT-T5 SCD7912BTG NCP154MX180270TAG SCD33269T-5.0G NCV8170BXV330T2G NCV8170BMX330TCG NCV8170AMX120TCG NCP706ABMX300TAG NCP153MX330180TCG NCP114BMX075TCG MC33269T-3.5G TCR3DG33,LF TCR4DG35,LF TAR5S15U(TE85L,F) TAR5S18U(TE85L,F) TCR3UG19A,LF TCR4DG105,LF MPQ2013AGG-5-P NCV8170AMX360TCG TLE4268GSXUMA2 NCP715SQ15T2G MIC5317-3.0YD5-T5 NCV563SQ18T1G NCP715MX30TBG NCV8702MX25TCG NCV8170BXV120T2G MIC5317-1.2YD5-T5 NCV8170AMX150TCG NCV8170BMX150TCG AP2213D-3.3TRG1 NCV8170BMX120TCG NCV8170BMX310TCG NCV8170BMX360TCG MIC5514-1.2YMT-T5