FEATURES

- 3.3V, 5.0V, 12V, 15 V and Adjustable Output Versions
- Adjustable Version Output Voltage Range, 1.23 V to 37 V +/- 4\% maximum over line and load conditions
- Guaranteed 3A Output Current
- Wide Input Voltage Range
- Requires Only 4 External Components
- 300KHz Fixed Frequency Internal Oscillator
- TTL Shutdown Capability, Low Power Standby Mode
- Uses Readily Available Standard Inductors
- Thermal Shutdown and Current Limit Protection
- Moisture Sensitivity Level 3 for SMD packages

APPLICATION

- Simple High-Efficiency Step-Down(Buck) Regulator
- On-Card Switching Regulators
- Positive to Negative Converter

DESCRIPTION

The LM4576 series of regulators are monolithic integrated circuits that provide all the active functional for a step-down (buck) switching regulator, capable of driving 3A load with excellent line and load regulation. These devices are available in fixed output voltages of $3.3 \mathrm{~V}, 5.0 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}$ and an adjustable output versions. Requiring a minimum number of external components, these regulators are simple to use and include internal frequency compensation, and a fixed-frequency oscillator.
The LM4576 series operates at a switching frequency of 300 KHz thus allowing smaller sized filter components than what would be needed with lower frequency switching regulators.
Some features include a guaranteed $+/-4 \%$ tolerance on output voltage under specified input voltage and output load conditions, and $+/-15 \%$ on the oscillator frequency. External shutdown is included, featuring typically 60uA standby current. The output switch includes cycle-by-cycle current limiting, as well as thermal shutdown for full protection under fault conditions. The oscillator frequency is reduced in the event of an output short or an overload which causes the regulated output voltage to drop approximately 40% from the nominal output voltage.

ORDERING INFORMATION

Vout	Package	Order No.	Description	Package Marking	Status
ADJ	SOP8-PP	LM4576DP-ADJ	3A, Adjustable, 300kHz, On/off	LM4576-ADJ	Contact Us
	TO-263-5L	LM4576R-ADJ	3A, Adjustable, 300kHz, On/off	LM4576-ADJ	Contact Us
	TO-220-5L	LM4576T-ADJ	3A, Adjustable, 300kHz, On/off	LM4576-ADJ	Active
	TO-220V-5L	LM4576TV-ADJ	3A, Adjustable, 300kHz, On/off	LM4576-ADJ	Contact Us
3.3 V	SOP8-PP	LM4576DP-3.3	3A, Fixed, 300kHz, On/off	LM4576-3.3	Contact Us
	TO-263-5L	LM4576R-3.3	3A, Fixed, 300kHz, On/off	LM4576-3.3	Contact Us
	TO-220-5L	LM4576T-3.3	3A, Fixed, 300kHz, On/off	LM4576-3.3	Contact Us
	TO-220V-5L	LM4576TV-3.3	3A, Fixed, 300kHz, On/off	LM4576-3.3	Contact Us
5.0V	SOP8-PP	LM4576DP-5.0	3A, Fixed, 300kHz, On/off	LM4576-5.0	Contact Us
	TO-263-5L	LM4576R-5.0	3A, Fixed, 300kHz, On/off	LM4576-5.0	Contact Us
	TO-220-5L	LM4576T-5.0	3A, Fixed, 300kHz, On/off	LM4576-5.0	Contact Us
	TO-220V-5L	LM4576TV-5.0	3A, Fixed, 300kHz, On/off	LM4576-5.0	Contact Us
12V	SOP8-PP	LM4576DP-12	3A, Fixed, 300kHz, On/off	LM4576-12	Contact Us
	TO-263-5L	LM4576R-12	3A, Fixed, 300kHz, On/off	LM4576-12	Contact Us
	TO-220-5L	LM4576T-12	3A, Fixed, 300kHz, On/off	LM4576-12	Contact Us
	TO-220V-5L	LM4576TV-12	3A, Fixed, 300kHz, On/off	LM4576-12	Contact Us
15V	SOP8-PP	LM4576DP-15	3A, Fixed, 300kHz, On/off	LM4576-15	Contact Us
	TO-263-5L	LM4576R-15	3A, Fixed, 300kHz, On/off	LM4576-15	Contact Us
	TO-220-5L	LM4576T-15	3A, Fixed, 300kHz, On/off	LM4576-15	Contact Us
	TO-220V-5L	LM4576TV-15	3A, Fixed, 300kHz, On/off	LM4576-15	Contact Us

PIN CONFIGURATION

SOP8-PP

TO-220-5L / TO-220V-5L

TO-263-5L

PIN DESCRIPTION

Package			
TO-263-5L		Symbol	
TO-220-5L	SOP8-PP		Vescription

* Exposed Pad of SOP8-PP package should be externally connected to GND.

TYPICAL APPLICATION (Fixed Output Voltage Versions)

$3.3 \mathrm{~V}, \mathrm{R} 2=1.7 \mathrm{~K}$
$5 \mathrm{~V}, \mathrm{R} 2=3.1 \mathrm{~K}$
$12 \mathrm{~V}, \mathrm{R} 2=8.84 \mathrm{~K}$
$15 \mathrm{~V}, \mathrm{R} 2=11.3 \mathrm{~K}$
For ADJ Version R1 $=$ Open, $R 2=0 \Omega$

Figure 1. Block Diagram and Typical Application

ABSOLUTE MAXIMUM RATINGS

(Absolute Maximum Ratings indicate limits beyond which damage to the device may occur)

Rating	Symbol	Value	UNIT
Maximum Supply Voltage	V_{IN}	45	V
On/Off Pin Input Voltage	$\mathrm{V}_{\mathrm{ONOFF}}$	$-0.3 \mathrm{~V} \leq \mathrm{V} \leq+\mathrm{Vin}$	V
FB Pin Voltage	V_{FB}	$-0.3 \mathrm{~V} \leq \mathrm{V} \leq+\mathrm{Vin}$	V
Output Voltage to Ground (Steady-State)	$\mathrm{V}_{\text {OUT }}$	-0.8	V
Power Dissipation			
SOP8-PP	P_{D}	Internally Limited	W
Thermal Resistance, Junction to Ambient	θ_{JA}	Contact us	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Junction to Case	θ_{JC}	Contact us	${ }^{\circ} \mathrm{C} / \mathrm{W}$
TO-263-5L	P_{D}	Internally Limited	W
Thermal Resistance, Junction to Ambient	θ_{JA}	70	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Junction to Case	θ_{JC}	5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
TO-220-5L	P_{D}	Internally Limited	W
Thermal Resistance, Junction to Ambient	θ_{JA}	65	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Junction to Case	θ_{JC}	5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
TO-220V-5L	P_{D}	Internally Limited	W
Thermal Resistance, Junction to Ambient	θ_{JA}	65	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Junction to Case	θ_{JC}	5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Storage Temperature Range	$\mathrm{T}_{\mathrm{STG}}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Maximum Junction Temperature	T_{J}	150	${ }^{\circ} \mathrm{C}$

OPERATING RATINGS (Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications, see the Electrical Characteristics.)

Rating	Symbol	Value.	Unit
Operating Junction Temperature Range	T_{J}	-40 to +125	${ }^{\circ} \mathrm{C}$
Maximum Supply Voltage	$\mathrm{V}_{\mathbb{I}}$	40	V
Output Current	Iout	3	A

ELECTRICAL CHARACTERISTICS / System Parameters [Note 1]
(Unless otherwise specified, $\mathrm{V}_{\mathbb{N}}=12 \mathrm{~V}$ for the $3.3 \mathrm{~V}, 5.0 \mathrm{~V}$, and Adjustable version, $\mathrm{V}_{\mathbb{I}}=25 \mathrm{~V}$ for the 12 V and 15 V version. ILOAD $=500 \mathrm{~mA}$. For typical values $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, for min $/ \mathrm{max}$ values T_{J} is the operating junction temperature range that applies [Note 2], unless otherwise noted.)

Characteristics	Symbol	Min	TYP	Max	Unit
LM4576-3.3 ([Note 1] Test Circuit Figure 2)					
$\begin{aligned} & \text { Output Voltage }\left(5.5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A}\right) \\ & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{J}=-40^{\circ} \mathrm{C} \sim+125^{\circ} \mathrm{C} \end{aligned}$	Vout	$\begin{aligned} & 3.168 \\ & 3.135 \end{aligned}$	3.3	$\begin{aligned} & 3.432 \\ & 3.465 \end{aligned}$	V
Efficiency (VIN=12V, ILOAD=3A)	η	-	73	-	\%

LM4576-5.0 ([Note 1] Test Circuit Figure 2)

Output Voltage $\left(8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, 0.2 \mathrm{~A} \leq \operatorname{ILOAD} \leq 3 \mathrm{~A}\right)$					
$\mathrm{T}_{\mathrm{J}=25^{\circ} \mathrm{C}}$	Vout	4.800	5.0	5.200	V
$\mathrm{~T}_{J}=-40^{\circ} \mathrm{C} \sim+125^{\circ} \mathrm{C}$		4.750	-	5.250	
Efficiency $\left(\mathrm{V}_{\text {IN }=12 \mathrm{~V}, \operatorname{ILOAD}=3 \mathrm{~A})}\right.$	η	-	75	-	$\%$

LM4576-12 ([Note 1] Test Circuit Figure 2)

$\begin{aligned} & \text { Output Voltage }\left(15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 40 \mathrm{~V}, 0.2 \mathrm{~A} \leq \operatorname{ILOAD} \leq 3 \mathrm{~A}\right) \\ & \mathrm{T}_{J}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{J}=-40^{\circ} \mathrm{C} \sim+125^{\circ} \mathrm{C} \end{aligned}$	Vout	$\begin{aligned} & 11.520 \\ & 11.400 \end{aligned}$	12	$\begin{aligned} & 12.480 \\ & 12.600 \end{aligned}$	V
Efficiency ($\mathrm{V}_{\text {IN }}=15 \mathrm{~V}$, I LOAD $=3 \mathrm{~A}$)	η	-	86	-	\%

LM4576-15 ([Note 1] Test Circuit Figure 2)					
Output Voltage ($\left.18 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, 0.2 \mathrm{~A} \leq \mathrm{l}_{\text {LOAD }} \leq 3 \mathrm{~A}\right)$					
TJ=25 ${ }^{\circ} \mathrm{C}$	Vout	14.400	15	15.600	V
$\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C} \sim+125^{\circ} \mathrm{C}$		14.250	-	15.750	
Efficiency (VIN=18V, ILOAD=3A)	η	-	86	-	\%

LM4576-ADJ ([Note 1] Test Circuit Figure 2)					
Feedback Voltage ($8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 40 \mathrm{~V}, 0.2 \mathrm{~A} \leq \mathrm{I}_{\mathrm{LOAD}} \leq 3 \mathrm{~A}$, Vout programmed for 5 V) $\begin{aligned} & T_{J}=25^{\circ} \mathrm{C} \\ & T_{J}=-40^{\circ} \mathrm{C} \sim+125^{\circ} \mathrm{C} \end{aligned}$	Vout	$\begin{aligned} & 1.193 \\ & 1.180 \end{aligned}$	1.230	$\begin{aligned} & 1.267 \\ & 1.280 \end{aligned}$	V
Efficiency ($\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$, ILoad $=3 \mathrm{~A}, \mathrm{~V}_{\text {OUt }}=5 \mathrm{~V}$)	η	-	75	-	\%

1. External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance.
2. Tested junction temperature range for the LM4576: TLow $=-40^{\circ} \mathrm{C}, \mathrm{T}_{\text {HIGH }}=+125^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS / Device Parameters

(Unless otherwise specified, $\mathrm{V}_{\mathbb{I N}}=12 \mathrm{~V}$ for the $3.3 \mathrm{~V}, 5.0 \mathrm{~V}$, and Adjustable version, $\mathrm{V}_{\mathbb{I}}=25 \mathrm{~V}$ for the 12 V and 15 V version. ILOAD $=500 \mathrm{~mA}$. For typical values $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, for $\mathrm{min} / \mathrm{max}$ values T_{J} is the operating junction temperature range that applies [Note 2], unless otherwise noted.)

Characteristics	Symbol	MIN.	TYP.	MAX.	Unit
All Output Voltage Versions					
$\begin{aligned} & \text { Feedback Bias Current (Vout=5.0V [Adjustable Version Only]) } \\ & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=-40 \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	l b			$\begin{aligned} & 100 \\ & 500 \end{aligned}$	nA
$\begin{aligned} & \text { Oscillator Frequency [Note 3] } \\ & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=-40 \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	Fosc	$\begin{aligned} & 255 \\ & 230 \end{aligned}$		$\begin{aligned} & 345 \\ & 370 \end{aligned}$	KHz
Saturation Voltage (lout=3.0A [note 4]) $\begin{aligned} & T_{J}=25^{\circ} \mathrm{C} \\ & T_{J}=-40 \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{\text {SAT }}$			$\begin{aligned} & 1.6 \\ & 1.8 \end{aligned}$	V
Max Duty Cycle ("0") [Note 5]	D/C	93	98	-	\%
$\begin{aligned} & \text { Current Limit (Peak Current [Note 3 and 4]) } \\ & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=-40 \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	ICL	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	5.7	$\begin{aligned} & 6.9 \\ & 7.5 \end{aligned}$	A
Output Leakage Current [Note 6 and 7] Output $=0 \mathrm{~V}$ Output $=-0.8 \mathrm{~V}$	I_{L}		$\begin{gathered} 0.4 \\ 10 \end{gathered}$	$\begin{gathered} 2 \\ 30 \end{gathered}$	mA
Quiescent Current [Note 6] $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	l_{Q}	-	5	10	mA
$\begin{aligned} & \text { Standby Quiescent Current (ON/OFF Pin = 5.0V ("off")) } \\ & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \end{aligned}$	$I_{\text {StBy }}$	-	60	200	$\mu \mathrm{A}$
ON/OFF Pin Logic Input Level (Vout=OV) $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ $\mathrm{T}_{\mathrm{J}}=-40$ to $+125^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {IH }}$	$\begin{aligned} & 2.2 \\ & 2.4 \end{aligned}$	1.4		V
Vout=Nominal Output Voltage $\mathrm{T}=25^{\circ} \mathrm{C}$ $T_{J}=-40 \text { to }+125^{\circ} \mathrm{C}$	VIL		1.2	$\begin{aligned} & 1.0 \\ & 0.8 \\ & \hline \end{aligned}$	V
ON/OFF Pin Input Current ON/OFF Pin $=5.0 \mathrm{~V}$ (Regulator OFF), $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ ON/OFF Pin $=0 \mathrm{~V}$ (Regulator ON), $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{I}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{LL}} \end{aligned}$	-	$\begin{gathered} 12 \\ 0 \end{gathered}$	$\begin{aligned} & 30 \\ & 10 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$

3. The oscillator frequency reduces to approximately 75 KHz in the event of an output short or an overload which causes the regulated output voltage to drop approximately 40% from the nominal voltage. This self protection feature lowers the average dissipation of the IC by lowering the minimum duty cycle from 5% down to approximately 2%
4. Output pin sourcing current. No diode, inductor or capacitor connected to output.
5. Feedback pin removed from output and connected to 0 V .
6. Feedback pin removed from output and connected to +12 V for the Adjustable, 3.3 V , and 5.0 V versions, and +25 V for the 12 V and 15 V version, to force the output transistor "off".
7. $\mathrm{Vin}=40 \mathrm{~V}$.

REVISION NOTICE

The description in this datasheet can be revised without any notice to describe its electrical characteristics properly

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Isolated DC/DC Converters category:
Click to view products by HTC Korea manufacturer:

Other Similar products are found below :
ESM6D044440C05AAQ FMD15.24G PSL486-7LR PSR152.5-7IR Q48T30020-NBB0 AVO240-48S12B-6L AVO250-48S28B-6L NAN0505 HW-L16D JAHW100Y1 217-1617-001 22827 SPB05C-12 SQ24S15033-PS0S 18952 19-130041 CE-1003 CE-1004 GQ2541-7R PSE1000DCDC-12V RDS180245 MAU228 419-2065-201 449-2075-101 J80-0041NL V300C24C150BG 419-2062-200 419-2063-401 419-2067-101 419-2067-501 419-2068-001 DCG40-5G DFC15U48D15 449-2067-000 XGS-0512 XGS-1205 XGS-1212 XGS-2412 XGS$\underline{2415} \underline{X K S}-1215 \underline{033456}$ NCT1000N040R050B SPB05B-15 SPB05C-15 SSQE48T25025-NAA0G L-DA20 HP3040-9RG HP1001-9RTG XKS-2415 XKS-2412

