FEATURES

- 3.3V, 5.0V, 12V, 15 V and Adjustable Output Versions
- Adjustable Version Output Voltage Range, 1.23V to 37V +/- 4\% maximum over line and load conditions
- Guaranteed 3A Output Current
- Wide Input Voltage Range
- Requires Only 4 External Components
- 300KHz Fixed Frequency Internal Oscillator
- TTL Shutdown Capability, Low Power Standby Mode
- Uses Readily Available Standard Inductors
- Thermal Shutdown and Current Limit Protection
- Moisture Sensitivity Level 3 for SMD packages

APPLICATION

- Simple High-Efficiency Step-Down(Buck) Regulator
- On-Card Switching Regulators
- Positive to Negative Converter

ORDERING INFORMATION

Device	Marking	Package
LM4576DP-X.X	LM4576-X.X	SOP8-PP
LM4576R-X.X	LM4576-X.X	TO-263-5L
LM4576T-X.X	LM4576-X.X	TO-220-5L

DESCRIPTION

The LM4576 series of regulators are monolithic integrated circuits that provide all the active functional for a step-down (buck) switching regulator, capable of driving 3A load with excellent line and load regulation. These devices are available in fixed output voltages of $3.3 \mathrm{~V}, 5.0 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}$ and an adjustable output versions. Requiring a minimum number of external components, these regulators are simple to use and include internal frequency compensation, and a fixed-frequency oscillator.
The LM4576 series operates at a switching frequency of 300 KHz thus allowing smaller sized filter components than what would be needed with lower frequency switching regulators.
Some features include a guaranteed $+/-4 \%$ tolerance on output voltage under specified input voltage and output load conditions, and $+/-15 \%$ on the oscillator frequency. External shutdown is included, featuring typically 60uA standby current. The output switch includes cycle-by-cycle current limiting, as well as thermal shutdown for full protection under fault conditions. The oscillator frequency is reduced in the event of an output short or an overload which causes the regulated output voltage to drop approximately 40% from the nominal output voltage.

3A, 300kHz, Step-Down Switching Regulator

ORDERING INFORMATION

Vout	Package	Order No.	Description	Package Marking	Status
ADJ	SOP8-PP	LM4576DP-ADJ	3A, Adjustable, 300kHz, On/off	LM4576-ADJ	Active
	TO-263-5L	LM4576R-ADJ	3A, Adjustable, 300kHz, On/off	LM4576-ADJ	Active
	TO-220-5L	LM4576T-ADJ	3A, Adjustable, 300kHz, On/off	LM4576-ADJ	Active
3.3 V	SOP8-PP	LM4576DP-3.3	3A, Fixed, 300kHz, On/off	LM4576-3.3	Contact Us
	TO-263-5L	LM4576R-3.3	3A, Fixed, 300kHz, On/off	LM4576-3.3	Contact Us
	TO-220-5L	LM4576T-3.3	3A, Fixed, 300kHz, On/off	LM4576-3.3	Contact Us
5.0 V	SOP8-PP	LM4576DP-5.0	3A, Fixed, 300kHz, On/off	LM4576-5.0	Active
	TO-263-5L	LM4576R-5.0	3A, Fixed, 300 kHz , On/off	LM4576-5.0	Active
	TO-220-5L	LM4576T-5.0	3A, Fixed, 300kHz, On/off	LM4576-5.0	Active
12V	SOP8-PP	LM4576DP-12	3A, Fixed, 300kHz, On/off	LM4576-12	Contact Us
	TO-263-5L	LM4576R-12	3A, Fixed, 300kHz, On/off	LM4576-12	Contact Us
	TO-220-5L	LM4576T-12	3A, Fixed, 300kHz, On/off	LM4576-12	Contact Us
15V	SOP8-PP	LM4576DP-15	3A, Fixed, 300 kHz , On/off	LM4576-15	Contact Us
	TO-263-5L	LM4576R-15	3A, Fixed, 300 kHz , On/off	LM4576-15	Contact Us
	TO-220-5L	LM4576T-15	3A, Fixed, 300kHz, On/off	LM4576-15	Contact Us

PIN CONFIGURATION

SOP8-PP

TO-220-5L

TO-263-5L

PIN DESCRIPTION

Package		Symbol	Description
$\begin{aligned} & \text { TO-263-5L } \\ & \text { TO-220-5L } \end{aligned}$	SOP8-PP		
1	1	VIN	This pin is the positive input supply for the LM4576 stepdown switching regulator. In order to minimize voltage transients and to supply the switching currents needed by the regulator, a suitable input bypass capacitor must be present. (Cin in Figure 1).
2	2	VOUT	This is the emitter of the internal switch. The saturation voltage $\mathrm{V}_{\text {SAT }}$ of this output switch is typically 1.4 V . It should be kept in mind that the PCB area connected to this pin should be kept to a minimum in order to minimize coupling to sensitive circuitry.
3	6	GND	Circuit ground pin. See the information about the printed circuit board layout.
4	3	FEEDBACK	This pin senses regulated output voltage to complete the feedback loop. The signal is divided by the internal resistor divider network R1, R2 and applied to the non-inverting input of the internal error amplifier. In the adjustable version of the LM4576 switching regulator this pin is the direct input of the error amplifier and the resistor network R1, R2 is connected externally to allow programming of the output voltage.
5	4	ON/OFF	It allows the switching regulator circuit to be shutdown using logic level signals, thus dropping the total input supply current to approximately 60uA. The threshold voltage is typically 1.4 V . Applying a voltage above this value (up to +Vin) shuts the regulator off. If the voltage applied to this pin is lower than 1.4 V or if this pin is left open, the regulator will be in the "on" condition
-	5, 7, 8	N.C.	No Connect.

* Exposed Pad of SOP8-PP package should be externally connected to GND.

TYPICAL APPLICATION (Fixed Output Voltage Versions)

$3.3 \mathrm{~V}, \mathrm{R} 2=1.7 \mathrm{~K}$
$5 \mathrm{~V}, \mathrm{R} 2=3.1 \mathrm{~K}$
$12 \mathrm{~V}, \mathrm{R} 2=8.84 \mathrm{~K}$
$15 \mathrm{~V}, \mathrm{R} 2=11.3 \mathrm{~K}$
For ADJ Version R1 $=$ Open, $\mathrm{R} 2=0 \Omega$

Figure 1. Block Diagram and Typical Application

ABSOLUTE MAXIMUM RATINGS

(Absolute Maximum Ratings indicate limits beyond which damage to the device may occur)

Rating	Symbol	Value	UNIT
Maximum Supply Voltage	$\mathrm{V}_{\text {IN }}$	45	V
On/Off Pin Input Voltage	$V_{\text {ONIOFF }}$	$-0.3 \mathrm{~V} \leq \mathrm{V} \leq+\mathrm{Vin}$	V
FB Pin Voltage	$V_{\text {FB }}$	-0.3V $\leq \mathrm{V} \leq+\mathrm{Vin}$	V
Output Voltage to Ground (Steady-State)	$\mathrm{V}_{\text {OUT }}$	-0.8	V
Power Dissipation SOP8-PP Thermal Resistance, Junction to Ambient Thermal Resistance, Junction to Case	$\begin{aligned} & \mathrm{P}_{\mathrm{D}} \\ & \theta_{\mathrm{JA}} \\ & \theta_{\mathrm{JC}} \end{aligned}$	Internally Limited Contact us Contact us	$\begin{gathered} W \\ { }^{\circ} \mathrm{C} / \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$
TO-263-5L Thermal Resistance, Junction to Ambient Thermal Resistance, Junction to Case	$\begin{aligned} & \mathrm{P}_{\mathrm{D}} \\ & \theta_{\mathrm{JA}} \\ & \theta_{\mathrm{JC}} \end{aligned}$	Internally Limited 70 5	$\begin{gathered} \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \\ \hline \end{gathered}$
TO-220-5L Thermal Resistance, Junction to Ambient Thermal Resistance, Junction to Case	$\begin{aligned} & \mathrm{P}_{\mathrm{D}} \\ & \theta_{\mathrm{JA}} \\ & \theta_{\mathrm{JC}} \end{aligned}$	Internally Limited 65 5	$\begin{gathered} \text { W } \\ { }^{\circ} \mathrm{C} / \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \\ \hline \end{gathered}$
TO-220V-5L Thermal Resistance, Junction to Ambient Thermal Resistance, Junction to Case	$\begin{aligned} & \mathrm{P}_{\mathrm{D}} \\ & \theta_{\mathrm{JJ}} \\ & \theta_{\mathrm{Jc}} \end{aligned}$	Internally Limited 65 5	$\begin{gathered} W \\ { }^{\circ} \mathrm{C} / \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Maximum Junction Temperature	TJ	150	${ }^{\circ} \mathrm{C}$

OPERATING RATINGS (Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications, see the Electrical Characteristics.)

Rating	Symbol	Value.	Unit
Operating Junction Temperature Range	T_{J}	-40 to +125	${ }^{\circ} \mathrm{C}$
Maximum Supply Voltage	V_{IN}	40	V
Output Current	$\mathrm{I}_{\text {OUT }}$	3	A

ELECTRICAL CHARACTERISTICS / System Parameters [Note 1]
(Unless otherwise specified, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$ for the $3.3 \mathrm{~V}, 5.0 \mathrm{~V}$, and Adjustable version, $\mathrm{V}_{\mathbb{I N}}=25 \mathrm{~V}$ for the 12 V and 15 V version. $I_{\text {LOAD }}=500 \mathrm{~mA}$. For typical values $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, for $\mathrm{min} / \mathrm{max}$ values T_{J} is the operating junction temperature range that applies [Note 2], unless otherwise noted.)

Characteristics	Symbol	Min	TYP	Max	Unit
LM4576-3.3 ([Note 1] Test Circuit Figure 2)					
Output Voltage (5.5V $\left.\leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A}\right)$					
$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {OUT }}$	3.168	3.3	3.432	\vee
$\mathrm{~T}_{J}=-40^{\circ} \mathrm{C} \sim+125^{\circ} \mathrm{C}$		3.135	-	3.465	
Efficiency $\left(\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}\right)$	η	-	73	-	$\%$

LM4576-5.0 ([Note 1] Test Circuit Figure 2)

Output Voltage $\left(8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A}\right)$					
$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {OUT }}$	4.800	5.0	5.200	V
$\mathrm{~T}_{J}=-40^{\circ} \mathrm{C} \sim+125^{\circ} \mathrm{C}$		4.750	-	5.250	
Efficiency $\left(\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}\right)$	η	-	75	-	$\%$

LM4576-12 ([Note 1] Test Circuit Figure 2)

Output Voltage (15V $\left.\leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A}\right)$					
$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {OUT }}$	11.520	12	12.480	V
$\mathrm{~T}_{J}=-40^{\circ} \mathrm{C} \sim+125^{\circ} \mathrm{C}$		11.400	-	12.600	
Efficiency $\left(\mathrm{V}_{\text {IN }}=15 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}\right)$	η	-	86	-	$\%$

LM4576-15 ([Note 1] Test Circuit Figure 2)

Output Voltage $\left(18 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A}\right)$					
$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {OUT }}$	14.400	15	15.600	V
$\mathrm{~T}_{J}=-40^{\circ} \mathrm{C} \sim+125^{\circ} \mathrm{C}$		14.250	-	15.750	
Efficiency $\left(\mathrm{V}_{\left.\text {IN }=18 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}\right)}\right.$	η	-	86	-	$\%$

LM4576-ADJ ([Note 1] Test Circuit Figure 2)					
Feedback Voltage (8V $\leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A}$,					
$\mathrm{V}_{\text {OUT }}$ programmed for 5V)	$\mathrm{V}_{\text {OUT }}$				
$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$		1.193	1.230	1.267	V
$\mathrm{~T}_{J}=-40^{\circ} \mathrm{C} \sim+125^{\circ} \mathrm{C}$		1.180	-	1.280	
Efficiency $\left(\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}\right)$	η	-	75	-	$\%$

1. External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance.
2. Tested junction temperature range for the LM 4576 : $\mathrm{T}_{\text {LOW }}=-40^{\circ} \mathrm{C}, \mathrm{T}_{\text {HIGH }}=+125^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS / Device Parameters

(Unless otherwise specified, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$ for the $3.3 \mathrm{~V}, 5.0 \mathrm{~V}$, and Adjustable version, $\mathrm{V}_{\mathrm{IN}}=25 \mathrm{~V}$ for the 12 V and 15 V version. $I_{\text {LOAD }}=500 \mathrm{~mA}$. For typical values $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, for $\mathrm{min} / \mathrm{max}$ values T_{J} is the operating junction temperature range that applies [Note 2], unless otherwise noted.)

Characteristics	Symbol	MIN.	TYP.	MAX.	Unit
All Output Voltage Versions					
$\begin{aligned} & \text { Feedback Bias Current (Vout=5.0V [Adjustable Version Only]) } \\ & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=-40 \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	I_{b}			$\begin{aligned} & 100 \\ & 500 \end{aligned}$	nA
$\begin{aligned} & \text { Oscillator Frequency [Note 3] } \\ & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=-40 \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	Fosc	$\begin{aligned} & 255 \\ & 230 \end{aligned}$	300	$\begin{aligned} & 345 \\ & 370 \end{aligned}$	KHz
$\begin{aligned} & \text { Saturation Voltage (lout=3.0A [note 4]) } \\ & T_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=-40 \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{\text {SAT }}$			$\begin{aligned} & 1.6 \\ & 1.8 \end{aligned}$	V
Max Duty Cycle ("0") [Note 5]	D/C	93	98	-	\%
$\begin{aligned} & \text { Current Limit (Peak Current [Note } 3 \text { and 4]) } \\ & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=-40 \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	I_{CL}	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$		$\begin{aligned} & 6.9 \\ & 7.5 \end{aligned}$	A
```Output Leakage Current [Note 6 and 7] Output = 0V Output = -0.8V```	$I_{L}$		$\begin{gathered} 0.4 \\ 10 \end{gathered}$	$\begin{gathered} 2 \\ 30 \end{gathered}$	mA
$\begin{aligned} & \text { Quiescent Current [Note 6] } \\ & T_{J}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{l}_{\mathrm{Q}}$	-	5	10	mA
$\begin{aligned} & \text { Standby Quiescent Current (ON/OFF Pin = 5.0V ("off")) } \\ & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \end{aligned}$	$I_{\text {StBy }}$	-	60	200	$\mu \mathrm{A}$
$\begin{aligned} & \text { ON/OFF Pin Logic Input Level (V } \left.\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\right) \\ & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=-40 \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{\mathrm{IH}}$	$\begin{aligned} & 2.2 \\ & 2.4 \end{aligned}$	$1.4$		V
Vout $=$ Nominal Output Voltage $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$   $\mathrm{T}_{\mathrm{J}}=-40$ to $+125^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {IL }}$		1.2	$\begin{aligned} & 1.0 \\ & 0.8 \\ & \hline \end{aligned}$	V
ON/OFF Pin Input Current ON/OFF Pin $=5.0 \mathrm{~V}$ (Regulator OFF), $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ ON/OFF Pin $=0 \mathrm{~V}$ (Regulator ON), $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{I}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{IL}} \end{aligned}$	-	$\begin{gathered} 12 \\ 0 \end{gathered}$	$\begin{aligned} & 30 \\ & 10 \end{aligned}$	$\mu \mathrm{A}$

3. The oscillator frequency reduces to approximately 75 KHz in the event of an output short or an overload which causes the regulated output voltage to drop approximately $40 \%$ from the nominal voltage. This self protection feature lowers the average dissipation of the IC by lowering the minimum duty cycle from 5\% down to approximately $2 \%$
4. Output pin sourcing current. No diode, inductor or capacitor connected to output.
5. Feedback pin removed from output and connected to 0 V .
6. Feedback pin removed from output and connected to +12 V for the Adjustable, 3.3 V , and 5.0 V versions, and +25 V for the 12 V and 15 V version, to force the output transistor "off".
7. $\mathrm{Vin}=40 \mathrm{~V}$.

## REVISION NOTICE

The description in this datasheet can be revised without any notice to describe its electrical characteristics properly.

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Controllers category:
Click to view products by HTC Korea manufacturer:
Other Similar products are found below :
LV5065VB-TLM-H LV5066V-TLM-H LV5725JAZ-AH 633888R MP2908AGF AZ7500EP-E1 NCP1012AP133G NCP1217P133G
NCP1218AD65R2G NCP1234AD100R2G NCP1244BD065R2G NCP1336ADR2G NCP1587GDR2G NCP6153MNTWG
NCP81005MNTWG NCP81101BMNTXG NCP81205MNTXG HV9123NG-G-M934 IR35207MTRPBF ISL6367HIRZ CAT874-80ULGT3
SJ6522AG SJE6600 TLE63893GV50XUMA1 IR35215MTRPBF SG3845DM NCP1216P133G NCP1236DD65R2G NCP1247BD100R2G
NCP1250BP65G NCP4202MNR2G NCP4204MNTXG NCP6132AMNR2G NCP81141MNTXG NCP81142MNTXG NCP81172MNTXG NCP81203MNTXG NCP81206MNTXG NX2155HCUPTR UC3845ADM UBA2051C IR35201MTRPBF MAX8778ETJ+ MAX17500AAUB+T MAX17411GTM+T MAX16933ATIR/V+ NCP1010AP130G NCP1063AD100R2G NCP1216AP133G NCP1217AP100G

