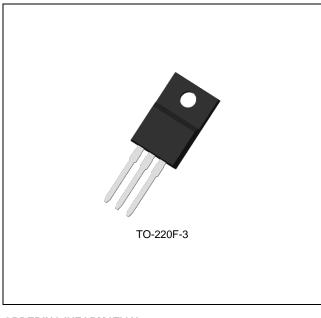
3-Terminal 0.5A Negative Voltage Regulator


FEATURES

- Output Current Up to 0.5A
- Internal Thermal Overload Protection
- Internal Short-Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Output Voltage of -5V, -6V, -8V, -9V, -12V, -15V, -18V, -20V, and -24V

DESCRIPTION

The series of fixed-negative voltage monolithic integrated circuit voltage regulator is designed to complement LM79Mxx series in a wide range of applications. These applications include on-card regulation for elimination of noise and distribution problems associated with single-point regulation.

Each of these regulators can deliver up to 0.5A of output current. The internal limiting and thermal shutdown features of these regulators make them essentially immune to overload. In addition to use as fixed-voltage regulators, these devices can be used with external components to obtain adjustable output voltages and current and also as the power pass element in precision regulators.

ORDERING INFORMATION

Device	Package
LM79MxxTP	TO-220F-3L

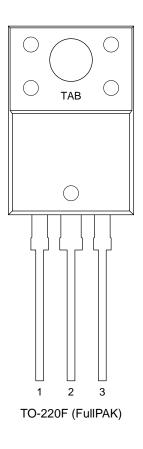
xx: Output Voltage

ABSOLUTE MAXIMUM RATINGS (Note 1)

CHARAC	SYMBOL	MIN	MAX	UNIT	
Input Voltage	All (except V _{OUT} = −24V)	V _{IN}	-	-35	V
	$V_{OUT} = -24V$		-	-40	
Maximum Junction Tempera	Maximum Junction Temperature			150	°C
Storage Temperature		T _{STG}	-65	150	°C

Note 1. Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING RATINGS (Note 2)

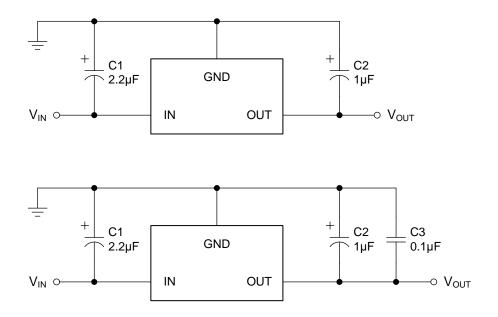

CHARACTERISTIC		SYMBOL	MIN	MAX	UNIT
Input Voltage	V _{OUT} = -5.0V	V _{IN}	-7.0	-25	V
	V _{OUT} = -6.0V		-8.0	-25	
	V _{OUT} = -8.0V		-10.5	-25	
	V _{OUT} = -9.0V		-11.5	-25	
	V _{OUT} = -12V		-14.5	-30	
	V _{OUT} = −15V		-17.5	-30	
	V _{OUT} = -18V		-21	-33	
	V _{OUT} = -20V		-23	-34	
	$V_{OUT} = -24V$		-27	-38	
Output Current		Ι _{ΟυΤ}	0	0.5	А
Operating Junction Tempera	ature Range	TJ	0	125	°C

Note 2. The device is not guaranteed to function outside its operating ratings.

ORDERING INFORMATION

VOUT	Package	Order No.	Description	Supplied As	Status
-5.0V	TO-220F-3L	LM79M05TP	0.5A, FullPAK	Tube	Active
-6.0V	TO-220F-3L	LM79M06TP	0.5A, FullPAK	Tube	Contact us
-8.0V	TO-220F-3L	LM79M08TP	0.5A, FullPAK	Tube	Contact us
-9.0V	TO-220F-3L	LM79M09TP	0.5A, FullPAK	Tube	Contact us
-12V	TO-220F-3L	LM79M12TP	0.5A, FullPAK	Tube	Contact us
-15V	TO-220F-3L	LM79M15TP	0.5A, FullPAK	Tube	Contact us
-18V	TO-220F-3L	LM79M18TP	0.5A, FullPAK	Tube	Contact us
-20V	TO-220F-3L	LM79M20TP	0.5A, FullPAK	Tube	Contact us
-24V	TO-220F-3L	LM79M24TP	0.5A, FullPAK	Tube	Contact us

PIN CONFIGURATION



PIN DESCRIPTION

Pin No.	Pin Name	Pin Function
1	GND	Ground
2	IN	Input Voltage
3	OUT	Output Voltage
ТАВ	TAB	No Connection. Electrically Isolated.

LM79Mxx

TYPICAL APPLICATION CIRCUITS

- * C1 required for stability. Value given may be increased.
- ** C2 required for stability. Value given may be increased.
- *** C3 considered improving the transient response.

Specifications with standard type face are for $T_J = 25^{\circ}$ C, and those with **boldface type** apply over full operating temperature range In the *Recommended Operating Ratings*. Conditions are $V_{IN} = -10$ V, $I_{OUT} = 350$ mA, $C_{IN} = 2.2\mu$ F, $C_{OUT} = 1\mu$ F, unless otherwise noted.

PARAMETER	SYMBOL	TEST CONDITIONS (Note 3)	MIN	TYP	MAX	UNIT
Output Voltage (Note 4)	V _{OUT}		-4.80	-5.0	-5.20	V
		$-20V \le V_{IN} \le -7.0V$, 5.0mA $\le I_{OUT} \le 350$ mA, P _D ≤ 5.25 W	-4.75	-5.0	-5.25	
Line Regulation	ΔV_{LINE}	$-25V \le V_{IN} \le -7.0V$	-	12.5	50	mV
		$-12V \le V_{IN} \le -8.0V$	-	4.0	15	
Load Regulation	ΔV_{LOAD}	5.0mA ≤ I _{OUT} ≤ 200mA	-	5.0	50	mV
		5.0mA ≤ I _{OUT} ≤ 500mA	-	15	100	
Temperature Coefficient of Output Voltage	$\Delta V_{OUT} / \Delta T$	I _{OUT} = 5.0mA	-	-0.4	-	mV/°C
Output Noise Voltage	Vn	10Hz ≤ f ≤ 100kHz	-	125	-	μV
Ripple Rejection	P _{RR}	$-18V \le V_{IN} \le -8.0V$, f = 120Hz	54	60	-	dB
Dropout Voltage	VD	I _{OUT} = 350mA	-	1.6	-	V
Bias Current	I _B		-	1.5	2.0	mA
Bias Current Change	ΔI_B	$-25V \le V_{IN} \le -7.0V$	-	0.15	0.5	mA
		5.0mA ≤ I _{OUT} ≤ 350mA	-	0.08	0.5	
Peak Output Current	I _{OMAX}		-	0.85	-	А

Note 3. Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately.

Specifications with standard type face are for $T_J = 25^{\circ}$ C, and those with **boldface type** apply over full operating temperature range In the *Recommended Operating Ratings*. Conditions are $V_{IN} = -11$ V, $I_{OUT} = 350$ mA, $C_{IN} = 2.2\mu$ F, $C_{OUT} = 1\mu$ F, unless otherwise noted.

PARAMETER	SYMBOL	TEST CONDITIONS (Note 3)	MIN	TYP	MAX	UNIT
Output Voltage (Note 4)	V _{OUT}		-5.75	-6.0	-6.25	V
		$-21V \le V_{IN} \le -8.0V$, 5.0mA $\le I_{OUT} \le 350$ mA, P _D ≤ 5.25 W	-5.70	-6.0	-6.30	
Line Regulation	ΔV_{LINE}	$-25V \le V_{IN} \le -8.0V$	-	12.5	120	mV
		$-13V \le V_{IN} \le -9.0V$	-	4.0	60	
Load Regulation	ΔV_{LOAD}	5.0mA ≤ I _{OUT} ≤ 200mA	-	5.0	60	mV
		5.0mA ≤ I _{OUT} ≤ 500mA	-	15	120	
Temperature Coefficient of Output Voltage	$\Delta V_{OUT} / \Delta T$	I _{OUT} = 5.0mA	-	-0.4	-	mV/°C
Output Noise Voltage	Vn	10Hz ≤ f ≤ 100kHz	-	150	-	μV
Ripple Rejection	P _{RR}	$-19V \le V_{IN} \le -9.0V$, f = 120Hz	54	60	-	dB
Dropout Voltage	VD	I _{OUT} = 350mA	-	1.6	-	V
Bias Current	I _B		-	1.5	2.0	mA
Bias Current Change	ΔI_B	$-25V \le V_{IN} \le -8.0V$	-	0.15	1.0	mA
		5.0mA ≤ I _{OUT} ≤ 350mA	-	0.08	0.5	
Peak Output Current	I _{OMAX}		-	0.85	-	А

Note 3. Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately.

Specifications with standard type face are for $T_J = 25^{\circ}$ C, and those with **boldface type** apply over full operating temperature range In the *Recommended Operating Ratings*. Conditions are $V_{IN} = -14$ V, $I_{OUT} = 350$ mA, $C_{IN} = 2.2\mu$ F, $C_{OUT} = 1\mu$ F, unless otherwise noted.

PARAMETER	SYMBOL	TEST CONDITIONS (Note 3)	MIN	TYP	MAX	UNIT
Output Voltage (Note 4)	V _{OUT}		-7.70	-8.0	-8.30	V
		$-23V \le V_{IN} \le -10.5V$, 5.0mA $\le I_{OUT} \le 350$ mA, P _D $\le 5.25W$	-7.60	-8.0	-8.40	
Line Regulation	ΔV_{LINE}	-25V ≤ V _{IN} ≤ -10.5V	-	12.5	160	mV
		$-17V \le V_{IN} \le -11V$	-	4.0	80	
Load Regulation	ΔV_{LOAD}	5.0mA ≤ I _{OUT} ≤ 200mA	-	5.0	80	mV
		5.0mA ≤ I _{OUT} ≤ 500mA	-	15	160	
Temperature Coefficient of Output Voltage	ΔV _{ΟυΤ} /ΔΤ	I _{OUT} = 5.0mA	-	-0.6	-	mV/°C
Output Noise Voltage	Vn	10Hz ≤ f ≤ 100kHz	-	200	-	μV
Ripple Rejection	P _{RR}	−21.5V ≤ V _{IN} ≤ −11.5V, f = 120Hz	54	60	-	dB
Dropout Voltage	VD	I _{OUT} = 350mA	-	1.6	-	V
Bias Current	Ι _Β		-	1.5	2.0	mA
Bias Current Change	ΔI_B	$-25V \le V_{IN} \le -10.5V$	-	0.15	1.0	mA
		5.0mA ≤ I _{OUT} ≤ 350mA	-	0.08	0.5	
Peak Output Current	I _{OMAX}		-	0.85	-	А

Note 3. Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately.

Specifications with standard type face are for $T_J = 25^{\circ}$ C, and those with **boldface type** apply over full operating temperature range In the *Recommended Operating Ratings*. Conditions are $V_{IN} = -15$ V, $I_{OUT} = 350$ mA, $C_{IN} = 2.2\mu$ F, $C_{OUT} = 1\mu$ F, unless otherwise noted.

PARAMETER	SYMBOL	TEST CONDITIONS (Note 3)	MIN	TYP	MAX	UNIT
Output Voltage (Note 4)	V _{OUT}		-8.64	-9.0	-9.36	V
		$-25V \le V_{IN} \le -11.5V$, 5.0mA $\le I_{OUT} \le 350$ mA, P _D $\le 5.25W$	-8.55	-9.0	-9.45	
Line Regulation	ΔV_{LINE}	−25V ≤ V _{IN} ≤ −11.5V	-	12.5	180	mV
		$-22V \le V_{IN} \le -14.5V$	-	4.0	90	
Load Regulation	ΔV_{LOAD}	5.0mA ≤ I _{OUT} ≤ 200mA	-	5.0	90	mV
		5.0mA ≤ I _{OUT} ≤ 500mA	-	15	180	
Temperature Coefficient of Output Voltage	$\Delta V_{OUT} / \Delta T$	I _{OUT} = 5.0mA	-	-0.8	-	mV/°C
Output Noise Voltage	Vn	10Hz ≤ f ≤ 100kHz	-	225	-	μV
Ripple Rejection	P _{RR}	$-24V \le V_{IN} \le -12.5V$, f = 120Hz	54	60	-	dB
Dropout Voltage	VD	I _{OUT} = 350mA	-	1.6	-	V
Bias Current	I _B		-	1.5	2.0	mA
Bias Current Change	ΔI_B	-25V ≤ V _{IN} ≤ -11.5V	-	0.15	1.0	mA
		5.0mA ≤ I _{OUT} ≤ 350mA	-	0.08	0.5	
Peak Output Current	I _{OMAX}		-	0.85	-	А

Note 3. Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately.

Specifications with standard type face are for $T_J = 25^{\circ}$ C, and those with **boldface type** apply over full operating temperature range In the *Recommended Operating Ratings*. Conditions are $V_{IN} = -19$ V, $I_{OUT} = 350$ mA, $C_{IN} = 2.2\mu$ F, $C_{OUT} = 1\mu$ F, unless otherwise noted.

PARAMETER	SYMBOL	TEST CONDITIONS (Note 3)	MIN	TYP	MAX	UNIT
Output Voltage (Note 4)	V _{OUT}		-11.5	-12	-12.5	V
		$-27V \le V_{IN} \le -14.5V$, 5.0mA ≤ I _{OUT} ≤ 350mA, P _D ≤ 5.25W	-11.4	-12	-12.6	
Line Regulation	ΔV_{LINE}	$-30V \le V_{IN} \le -14.5V$	-	12.5	240	mV
		$-22V \le V_{IN} \le -16V$	-	4.0	120	
Load Regulation	ΔV_{LOAD}	$5.0\text{mA} \le I_{\text{OUT}} \le 200\text{mA}$	-	5.0	120	mV
		5.0mA ≤ I _{OUT} ≤ 500mA	-	15	240	
Temperature Coefficient of Output Voltage	$\Delta V_{OUT} / \Delta T$	I _{OUT} = 5.0mA	-	-0.8	-	mV/°C
Output Noise Voltage	Vn	10Hz ≤ f ≤ 100kHz	-	300	-	μV
Ripple Rejection	P _{RR}	$-25V \le V_{IN} \le -15V$, f = 120Hz	54	60	-	dB
Dropout Voltage	VD	I _{OUT} = 350mA	-	1.6	-	V
Bias Current	I _B		-	2.0	3.0	mA
Bias Current Change	ΔI_B	$-30V \le V_{IN} \le -14.5V$	-	0.15	1.0	mA
		5.0mA ≤ I _{OUT} ≤ 350mA	-	0.08	0.5	
Peak Output Current	I _{OMAX}		-	0.85	-	А

Note 3. Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately.

Specifications with standard type face are for $T_J = 25^{\circ}$ C, and those with **boldface type** apply over full operating temperature range In the *Recommended Operating Ratings*. Conditions are $V_{IN} = -23V$, $I_{OUT} = 350$ mA, $C_{IN} = 2.2\mu$ F, $C_{OUT} = 1\mu$ F, unless otherwise noted.

PARAMETER	SYMBOL	TEST CONDITIONS (Note 3)	MIN	TYP	MAX	UNIT
Output Voltage (Note 4)	V _{OUT}		-14.4	-15	-15.6	V
		$-30V \le V_{IN} \le -17.5V$, 5.0mA ≤ I _{OUT} ≤ 350mA, P _D ≤ 5.25W	-14.25	-15	-15.75	
Line Regulation	ΔV_{LINE}	$-30V \le V_{IN} \le -17.5V$	-	12.5	300	mV
		$-26V \le V_{IN} \le -20V$	-	4.0	150	
Load Regulation	ΔV_{LOAD}	5.0mA ≤ I _{OUT} ≤ 200mA	-	5.0	150	mV
		5.0mA ≤ I _{OUT} ≤ 500mA	-	15	300	
Temperature Coefficient of Output Voltage	$\Delta V_{OUT} / \Delta T$	I _{OUT} = 5.0mA	-	-1.0	-	mV/°C
Output Noise Voltage	Vn	10Hz ≤ f ≤ 100kHz	-	375	-	μV
Ripple Rejection	P _{RR}	−28.5V ≤ V _{IN} ≤ −18.5V, f = 120Hz	54	60	-	dB
Dropout Voltage	VD	I _{OUT} = 350mA	-	1.6	-	V
Bias Current	I _B		-	2.0	3.0	mA
Bias Current Change	ΔI_B	$-30V \le V_{IN} \le -17.5V$	-	0.15	1.0	mA
		5.0mA ≤ I _{OUT} ≤ 350mA	-	0.08	0.5	
Peak Output Current	I _{OMAX}		-	0.85	-	А

Note 3. Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately.

Specifications with standard type face are for $T_J = 25^{\circ}$ C, and those with **boldface type** apply over full operating temperature range In the *Recommended Operating Ratings*. Conditions are $V_{IN} = -27$ V, $I_{OUT} = 350$ mA, $C_{IN} = 2.2\mu$ F, $C_{OUT} = 1\mu$ F, unless otherwise noted.

PARAMETER	SYMBOL	TEST CONDITIONS (Note 3)	MIN	TYP	MAX	UNIT
Output Voltage (Note 4)	V _{OUT}		-17.3	-18	-18.7	V
		$-33V \le V_{IN} \le -21V$, 5.0mA ≤ I _{OUT} ≤ 350mA, P _D ≤ 5.25W	-17.1	-18	-18.9	
Line Regulation	ΔV_{LINE}	$-33V \le V_{IN} \le -21V$	-	12.5	360	mV
		$-30V \le V_{IN} \le -24V$	-	4.0	180	
Load Regulation	ΔV_{LOAD}	5.0mA ≤ I _{OUT} ≤ 200mA	-	10	180	mV
		5.0mA ≤ I _{OUT} ≤ 500mA	-	30	360	
Temperature Coefficient of Output Voltage	$\Delta V_{OUT} / \Delta T$	I _{OUT} = 5.0mA	-	-1.0	-	mV/°C
Output Noise Voltage	Vn	10Hz ≤ f ≤ 100kHz	-	450	-	μV
Ripple Rejection	P _{RR}	$-32V \le V_{IN} \le -22V$, f = 120Hz	54	60	-	dB
Dropout Voltage	VD	I _{OUT} = 350mA	-	1.6	-	V
Bias Current	I _B		-	2.0	3.0	mA
Bias Current Change	ΔI_B	$-33V \le V_{IN} \le -21V$	-	0.15	1.0	mA
		5.0mA ≤ I _{OUT} ≤ 350mA	-	0.08	0.5	
Peak Output Current	I _{OMAX}		-	0.85	-	А

Note 3. Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately.

Specifications with standard type face are for $T_J = 25^{\circ}$ C, and those with **boldface type** apply over full operating temperature range In the *Recommended Operating Ratings*. Conditions are $V_{IN} = -31$ V, $I_{OUT} = 350$ mA, $C_{IN} = 2.2\mu$ F, $C_{OUT} = 1\mu$ F, unless otherwise noted.

PARAMETER	SYMBOL	TEST CONDITIONS (Note 3)	MIN	TYP	MAX	UNIT
Output Voltage (Note 4)	V _{OUT}		-19.2	-20	-20.8	V
		$-34V \le V_{IN} \le -23V$, 5.0mA ≤ I _{OUT} ≤ 350mA, P _D ≤ 5.25W	-19.0	-20	-21.0	
Line Regulation	ΔV_{LINE}	$-34V \le V_{IN} \le -23V$	-	5.0	400	mV
		$-31V \le V_{IN} \le -26V$	-	3.0	200	
Load Regulation	ΔV_{LOAD}	5.0mA ≤ I _{OUT} ≤ 200mA	-	15	200	mV
		5.0mA ≤ I _{OUT} ≤ 500mA	-	50	400	
Temperature Coefficient of Output Voltage	$\Delta V_{OUT} / \Delta T$	I _{OUT} = 5.0mA	-	-1.0	-	mV/°C
Output Noise Voltage	Vn	10Hz ≤ f ≤ 100kHz	-	500	-	μV
Ripple Rejection	P _{RR}	$-33V \le V_{IN} \le -24V$, f = 120Hz	54	60	-	dB
Dropout Voltage	VD	I _{OUT} = 350mA	-	1.6	-	V
Bias Current	I _B		-	2.0	3.0	mA
Bias Current Change	ΔI_B	$-34V \le V_{IN} \le -23V$	-	0.04	1.0	mA
		5.0mA ≤ I _{OUT} ≤ 350mA	-	0.06	0.5	
Peak Output Current	I _{OMAX}		-	0.85	-	А

Note 3. Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately.

Specifications with standard type face are for $T_J = 25^{\circ}$ C, and those with **boldface type** apply over full operating temperature range In the *Recommended Operating Ratings*. Conditions are $V_{IN} = -33$ V, $I_{OUT} = 350$ mA, $C_{IN} = 2.2\mu$ F, $C_{OUT} = 1\mu$ F, unless otherwise noted.

PARAMETER	SYMBOL	TEST CONDITIONS (Note 3)	MIN	TYP	MAX	UNIT
Output Voltage (Note 4)	V _{OUT}		-23.0	-24	-25.0	V
		$-38V \le V_{IN} \le -27V$, 5.0mA ≤ I _{OUT} ≤ 350mA, P _D ≤ 5.25W	-22.8	-24	-25.2	
Line Regulation	ΔV_{LINE}	$-38V \le V_{IN} \le -27V$	-	5.0	480	mV
		$-36V \le V_{IN} \le -30V$	-	3.0	240	
Load Regulation	ΔV_{LOAD}	5.0mA ≤ I _{OUT} ≤ 200mA	-	20	240	mV
		5.0mA ≤ I _{OUT} ≤ 500mA	-	75	480	
Temperature Coefficient of Output Voltage	$\Delta V_{OUT} / \Delta T$	I _{OUT} = 5.0mA	-	-1.0	-	mV/°C
Output Noise Voltage	Vn	10Hz ≤ f ≤ 100kHz	-	600	-	μV
Ripple Rejection	P _{RR}	$-38V \le V_{IN} \le -28V$, f = 120Hz	54	60	-	dB
Dropout Voltage	VD	I _{OUT} = 350mA	-	1.6	-	V
Bias Current	Ι _Β		-	2.0	3.0	mA
Bias Current Change	ΔI_B	$-38V \le V_{IN} \le -27V$	-	0.04	1.0	mA
		5.0mA ≤ I _{OUT} ≤ 350mA	-	0.06	0.5	
Peak Output Current	I _{OMAX}		-	0.85	-	А

Note 3. Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately.

TYPICAL OPERATING CHARACTERISTICS

T.B.D.

APPLICATION INFORMATION

T.B.D.

REVISION NOTICE

The description in this datasheet is subject to change without any notice to describe its electrical characteristics properly.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Switching Controllers category:

Click to view products by HTC Korea manufacturer:

Other Similar products are found below :

NCP1218AD65R2G NCP1244BD065R2G NCP6153MNTWG NCP81101BMNTXG NCP81205MNTXG SJE6600 SG3845DM NCP4204MNTXG NCP6132AMNR2G NCP81102MNTXG NCP81206MNTXG MAX1653ESET NCP1240FD065R2G NCP1361BABAYSNT1G NCP1230P100G NX2124CSTR NCP1366BABAYDR2G NCP81174NMNTXG NCP4308DMTTWG NCP4308AMTTWG NCP1366AABAYDR2G NCP1251FSN65T1G NCP1246BLD065R2G NTE7233 ISL69122IRAZ MB39A136PFT-G-BND-ERE1 NCP1256BSN100T1G LV5768V-A-TLM-E NCP1365BABCYDR2G NCP1365AABCYDR2G NCP1246ALD065R2G AZ494AP-E1 CR1510-10 NCP4205MNTXG XC9221C093MR-G XRP6141ELTR-F RY8017 LP6260SQVF LP6298QVF ISL6121LIB ISL6225CA ISL6244HRZ ISL6268CAZ ISL6315IRZ ISL6420AIAZ-TK ISL6420AIRZ ISL6420IAZ ISL6421ERZ ISL6440IA ISL64411RZ-TK