
#### **FEATURES**

- Operational V<sub>IN</sub> up to +40V
- +70V/-50V Voltage Transients
- Available with 3.3V or 5.0V Output Voltage
- Ultra Low Ground Pin Current, 25μA Typical for 100μA Load
- V<sub>OUT</sub> Initial Accuracy of ±1.5%
- V<sub>OUT</sub> Accurate to ±3% Over Load and Temperature Conditions
- Low Dropout Voltage, 200mV Typical with 150mA Load
- Low Off State Ground Pin Current for LM9076D in 8-pin SOP Package
- Delayed RESET Output Pin for Low V<sub>OUT</sub> Detection



The LM9076 is a ±3%, 150mA logic controlled voltage regulator. The regulator features an active low delayed reset output flag which can be used to reset a microprocessor system at turn-on and in the event that the regulator output voltage falls below a minimum value. An external capacitor programs a delay times interval before the reset output pin can return high.

Designed for automotive and industrial applications, the LM9076 contains a variety of protection features such as thermal shutdown, input transient protection and a wide operating temperature range. The LM9076 uses a PNP pass transistor which allows low drop-out voltage operation.



#### ORDERING INFORMATION

| Device      | Package   |
|-------------|-----------|
| LM9076D-x.x | SOP-8     |
| LM9076R-x.x | TO-263-5L |

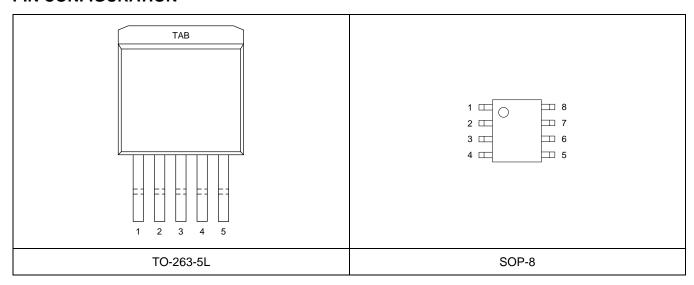
xx: Output Voltage

# ABSOLUTE MAXIMUM RATINGS (Note 1)

| CHARACTERISTIC                                      | SYMBOL                | MIN  | MAX                    | UNIT |
|-----------------------------------------------------|-----------------------|------|------------------------|------|
| Input Voltage (DC)                                  | V <sub>IN</sub>       | -15  | 50                     | V    |
| Input Voltage (+Transient) t< 10ms, Duty Cycle <1%  | V <sub>IN</sub>       | -    | 60                     | V    |
| Input Voltage (-Transient) t< 1.0ms, Duty Cycle <1% | V <sub>IN</sub>       | -50  | -                      | V    |
| SHUTDOWN Pin                                        | V <sub>SHUTDOWN</sub> | -15  | 52                     | V    |
| RESET Pin                                           | V <sub>RESET</sub>    | -0.3 | 20                     | V    |
| DELAY Pin                                           | V <sub>DELAY</sub>    | -0.3 | V <sub>OUT</sub> + 0.3 | V    |
| ESD Immunity (HBM)                                  | V <sub>ESD</sub>      | -    | ±2                     | kV   |
| Maximum Junction Temperature                        | TJ                    | -    | 175                    | °C   |
| Storage Temperature                                 | T <sub>STG</sub>      | -65  | 150                    | °C   |

Note 1. Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

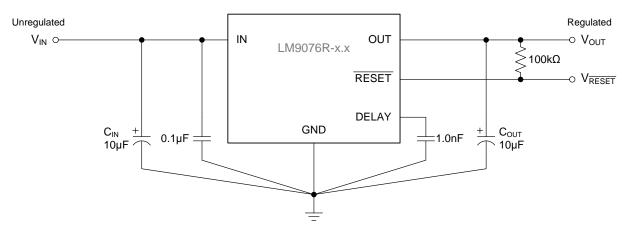
# RECOMMENDED OPERATING RATINGS (Note 2)


| CHARACTERISTIC                       | SYMBOL                | MIN  | MAX | UNIT |
|--------------------------------------|-----------------------|------|-----|------|
| IN Pin                               | V <sub>IN</sub>       | 5.35 | 40  | V    |
| SHUTDOWN Pin                         | V <sub>SHUTDOWN</sub> | 0    | 40  | V    |
| Operating Junction Temperature Range | TJ                    | -40  | 125 | °C   |

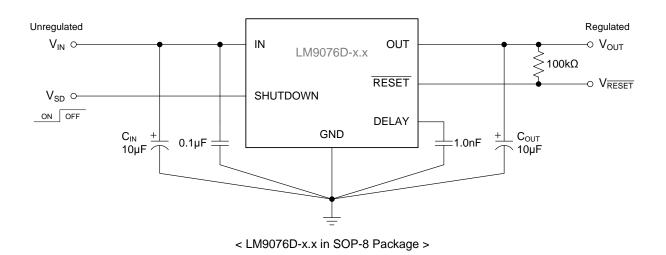
Note 2. The device is not guaranteed to function outside its operating ratings.

### **ORDERING INFORMATION**

| VOUT | Package   | Order No.   | Description            | Supplied As | Status     |
|------|-----------|-------------|------------------------|-------------|------------|
| 3.3V | TO-263-5L | LM9076R-3.3 |                        | Tape & Reel | Contact us |
|      | SOP-8     | LM9076D-3.3 | With Shutdown Function | Tape & Reel | Active     |
| 5.0V | TO-263-5L | LM9076R-5.0 |                        | Tape & Reel | Active     |
|      | SOP-8     | LM9076D-5.0 | With Shutdown Function | Tape & Reel | Contact us |


# **PIN CONFIGURATION**




# **PIN DESCRIPTION**

| Pin       | No.   | Pin Name  | Pin Function                                                                                                                                                                                                           |
|-----------|-------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TO-263-5L | SOP-8 | Fill Name | FIII FUNCTION                                                                                                                                                                                                          |
| 1         | 5     | IN        | Input Voltage.                                                                                                                                                                                                         |
| 2         | 8     | OUT       | Output Voltage.                                                                                                                                                                                                        |
| 3         | 4     | GND       | Ground.                                                                                                                                                                                                                |
| 4         | 1     | RESET     | Delayed Reset Output Flag pin. An Open Collector Output which Requires an External Pull-Up Resistor to Develop the Reset Signal. The external pull-up resistor should be in the range of $10k\Omega$ to $200k\Omega$ . |
| 5         | 2     | DELAY     | Connect Capacitor to Control Reset Delay Time.                                                                                                                                                                         |
| -         | 3     | SHUTDOWN  | Shutdown Control Input. On/Off Control for the Regulator. By pulling the SHUTDOWN pin high the regulator output is switched off.                                                                                       |
| -         | 6     | N.C.      | Not Connected.                                                                                                                                                                                                         |
| -         | 7     | N.C.      | Not Connected.                                                                                                                                                                                                         |
| TAB       | -     | TAB       | Connect to GND.                                                                                                                                                                                                        |

### TYPICAL APPLICATION CIRCUITS



< LM9076R-x.x in TO-263-5L Package >



- $^{\star}$  C<sub>IN</sub> required for stability. Value given may be increased.
- \*\* C<sub>OUT</sub> required for stability. Value given may be increased.
- \*\*\* For the details, refer to the Application Information.

#### **ELECTRICAL CHARACTERISTICS: LM9076-3.3**

The following specifications apply for  $T_J = 25^{\circ}\text{C}$ ;  $V_{IN} = 14\text{V}$ ;  $I_{LOAD} = 10\text{mA}$ ;  $C_{OUT} = 10\mu\text{F}$ ,  $0.5\Omega < \text{ESR} < 4.0\Omega$ ; unless otherwise specified. (Note 3, 4, 5) Minimum and maximum limits are specified through test, design or statistical correlation.

| specified.         | T                                              | innits are specified through test, design                                                                                                        |                         |                                |                  | 1             |
|--------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------|------------------|---------------|
| SYMBOL             | PARAMETER                                      | TEST CONDITIONS                                                                                                                                  | MIN                     | TYP                            | MAX              | UNIT          |
| V <sub>OUT</sub>   | Output Voltage                                 |                                                                                                                                                  | 3.251                   | 3.3                            | 3.349            | V             |
|                    |                                                | $1.0\text{mA} \le I_{\text{LOAD}} \le 150\text{mA},$<br>$-20^{\circ}\text{C} \le T_{\text{J}} \le 85^{\circ}\text{C}$                            | 3.234                   | 3.3                            | 3.366            | V             |
|                    |                                                | 1.0mA ≤ $I_{LOAD}$ ≤ 150mA,<br>-40°C ≤ $T_J$ ≤ 125°C                                                                                             | 3.201                   | 3.3                            | 3.399            | V             |
|                    |                                                | $V_{IN} = 50V$ , $R_{LOAD} = 1.0k\Omega$ , $t \le 40ms$                                                                                          | 2.970                   | 3.3                            | 3.630            | V             |
|                    | Output Voltage Off (LM9076D)                   | $V_{SHUTDOWN} \ge 2.0V, R_{LOAD} = 1k\Omega$                                                                                                     | -                       | 0                              | 250              | mV            |
|                    | Reverse Battery                                | $V_{IN} = -15V$ , $R_{LOAD} = 1.0k\Omega$                                                                                                        | -300                    | 0                              | -                | mV            |
| $\Delta V_{LINE}$  | Line Regulation                                | 9.0V ≤ V <sub>IN</sub> ≤ 16V, I <sub>LOAD</sub> = 10mA                                                                                           | -                       | 4.0                            | 25               | mV            |
|                    |                                                | 16V ≤ V <sub>IN</sub> ≤ 40V, I <sub>LOAD</sub> = 10mA                                                                                            | -                       | 17                             | 35               | mV            |
| $\Delta V_{LOAD}$  | Load Regulation                                | 1.0mA ≤ I <sub>LOAD</sub> ≤ 150mA                                                                                                                | -                       | 42                             | 60               | mV            |
| $V_{DO}$           | Dropout Voltage                                | I <sub>LOAD</sub> = 10mA                                                                                                                         | -                       | 30                             | 50               | mV            |
|                    |                                                | I <sub>LOAD</sub> = 50mA                                                                                                                         | -                       | 80                             | -                | mV            |
|                    |                                                | I <sub>LOAD</sub> = 150mA                                                                                                                        | -                       | 150                            | 250              | mV            |
| I <sub>GND</sub>   | Ground Pin Current                             | $9.0V \le V_{IN} \le 16V$ , $I_{LOAD} = 100\mu A$                                                                                                | -                       | 25                             | 50               | μA            |
|                    |                                                | 9.0V ≤ V <sub>IN</sub> ≤ 40V, I <sub>LOAD</sub> = 10mA                                                                                           | -                       | 125                            | 160              | μA            |
|                    |                                                | $9.0V \le V_{IN} \le 40V$ , $I_{LOAD} = 50mA$                                                                                                    | -                       | 0.6                            | -                | mA            |
|                    |                                                | $9.0V \le V_{IN} \le 16V$ , $I_{LOAD} = 150 \text{mA}$                                                                                           | -                       | 3.6                            | 4.5              | mA            |
| I <sub>SC</sub>    | V <sub>OUT</sub> Short Circuit Current         | $V_{IN} = 14V$ , $R_{LOAD} = 1\Omega$                                                                                                            | 200                     | 400                            | 750              | mA            |
| PSRR               | Ripple Rejection                               | $V_{IN} = (14V_{DC}) + (1V_{RMS} @ 120Hz),$<br>$I_{LOAD} = 50mA$                                                                                 | 50                      | 60                             | -                | dB            |
| RESET PI           | N CHARACTERISTICS                              |                                                                                                                                                  |                         |                                |                  | •             |
| V <sub>OR</sub>    | Minimum V <sub>IN</sub> for Valid RESET Status | (Note 5)                                                                                                                                         | -                       | 1.3                            | 2.0              | V             |
| $V_{THR}$          | V <sub>OUT</sub> Threshold for RESET Low       | (Note 5)                                                                                                                                         | 0.83                    | 0.89                           | 0.94             | × Vou<br>(Nom |
| V <sub>OH</sub>    | RESET Pin High Voltage                         | External pull-up resistor to $V_{OUT} = 100k\Omega$                                                                                              | V <sub>OUT</sub> × 0.90 | V <sub>OUT</sub> <b>×</b> 0.99 | V <sub>оит</sub> | V             |
| V <sub>OL</sub>    | RESET Pin Low Voltage                          | V <sub>DELAY</sub> < 4.0V, I <sub>SINK</sub> = 250μA                                                                                             | -                       | 0.2                            | 0.3              | V             |
| DELAY PII          | N CHARACTERISTICS                              |                                                                                                                                                  |                         |                                |                  | •             |
| I <sub>DELAY</sub> | DELAY Pin Charging Current                     | $V_{IN} = 14V$ , $V_{DELAY} = 0V$                                                                                                                | -0.70                   | -0.42                          | -0.25            | μA            |
| V <sub>OL</sub>    | DELAY Pin Low Voltage                          | V <sub>OUT</sub> < 4.0V, I <sub>SINK</sub> = I <sub>DELAY</sub>                                                                                  | -                       | 0.1                            | -                | V             |
| t <sub>DELAY</sub> | Reset Delay Time                               | $V_{IN}$ = 14V, $C_{DELAY}$ = 0.001 $\mu$ F,<br>$V_{OUT}$ rising from 0V, $\Delta t$ from $V_{OUT}$ ><br>$V_{OR}$ to $\overline{RESET}$ pin HIGH | 4.7                     | 7.8                            | 13.2             | ms            |

Note 3. The regulated output voltage specification is not ensured for the entire range of V<sub>IN</sub> and output loads. Device operational range is limited by the maximum junction temperature (T<sub>J</sub>). The junction temperature is influenced by the ambient temperature (T<sub>A</sub>), package selection, input voltage (V<sub>IN</sub>), and the output load current (I<sub>LOAD</sub>). When operating with maximum load currents the input voltage and/or ambient temperature will be limited. When operating with maximum input voltage the load current and/or the ambient temperature will be limited.

Note 4. Pulse testing used maintain constant junction temperature (T<sub>J</sub>).

Note 5. Not Production tested, Specified by Design. Minimum, Typical, and/or Maximum values are provided for informational purposes only.

#### **ELECTRICAL CHARACTERISTICS: LM9076-5.0**

The following specifications apply for  $T_J = 25^{\circ}\text{C}$ ;  $V_{IN} = 14\text{V}$ ;  $I_{LOAD} = 10\text{mA}$ ;  $C_{OUT} = 10\mu\text{F}$ ,  $0.5\Omega < \text{ESR} < 4.0\Omega$ ; unless otherwise specified. (Note 3, 4, 5) Minimum and maximum limits are specified through test, design or statistical correlation.

| SYMBOL                   | PARAMETER                                      | TEST CONDITIONS                                                  | MIN                     | TYP                     | MAX              | UNIT                     |
|--------------------------|------------------------------------------------|------------------------------------------------------------------|-------------------------|-------------------------|------------------|--------------------------|
| Vout                     | Output Voltage                                 |                                                                  | 4.925                   | 5.0                     | 5.075            | V                        |
|                          |                                                | 1.0mA ≤ $I_{LOAD}$ ≤ 150mA,<br>-20°C ≤ $T_J$ ≤ 85°C              | 4.900                   | 5.0                     | 5.100            | V                        |
|                          |                                                | 1.0mA ≤ $I_{LOAD}$ ≤ 150mA,<br>-40°C ≤ $T_J$ ≤ 125°C             | 4.850                   | 5.0                     | 5.150            | V                        |
|                          |                                                | $V_{IN} = 50V$ , $R_{LOAD} = 1.0k\Omega$ , $t \le 40ms$          | 4.500                   | 5.0                     | 5.500            | V                        |
|                          | Output Voltage Off (LM9076D)                   | $V_{SHUTDOWN} \ge 2.0V$ , $R_{LOAD} = 1k\Omega$                  | -                       | 0                       | 250              | mV                       |
|                          | Reverse Battery                                | $V_{IN} = -15V$ , $R_{LOAD} = 1.0k\Omega$                        | -300                    | 0                       | -                | mV                       |
| $\Delta V_{\text{LINE}}$ | Line Regulation                                | $9.0V \le V_{IN} \le 16V$ , $I_{LOAD} = 10mA$                    | -                       | 4.0                     | 25               | mV                       |
|                          |                                                | $16V \le V_{IN} \le 40V$ , $I_{LOAD} = 10mA$                     | -                       | 17                      | 35               | mV                       |
| $\Delta V_{\text{LOAD}}$ | Load Regulation                                | 1.0mA ≤ I <sub>LOAD</sub> ≤ 150mA                                | -                       | 42                      | 60               | mV                       |
| $V_{DO}$                 | Dropout Voltage                                | I <sub>LOAD</sub> = 10mA                                         | -                       | 30                      | 50               | mV                       |
|                          |                                                | $I_{LOAD} = 50mA$                                                | -                       | 80                      | -                | mV                       |
|                          |                                                | I <sub>LOAD</sub> = 150mA                                        | -                       | 150                     | 250              | mV                       |
| $I_{GND}$                | Ground Pin Current                             | $9.0V \le V_{IN} \le 16V$ , $I_{LOAD} = 100\mu A$                | -                       | 25                      | 50               | μA                       |
|                          |                                                | 9.0V ≤ V <sub>IN</sub> ≤ 40V, I <sub>LOAD</sub> = 10mA           | -                       | 125                     | 160              | μΑ                       |
|                          |                                                | $9.0V \le V_{IN} \le 40V$ , $I_{LOAD} = 50mA$                    | -                       | 0.6                     | 1                | mA                       |
|                          |                                                | 9.0V ≤ V <sub>IN</sub> ≤ 16V, I <sub>LOAD</sub> = 150mA          | -                       | 3.6                     | 4.5              | mA                       |
|                          | Ground Pin Current in<br>Shutdown Mode         | 9.0V ≤ V <sub>IN</sub> ≤ 40V, V <sub>SHUTDOWN</sub> = 2V         | -                       | 15                      | 25               | μA                       |
| I <sub>SC</sub>          | V <sub>OUT</sub> Short Circuit Current         | $V_{IN} = 14V$ , $R_{LOAD} = 1\Omega$                            | 200                     | 400                     | 750              | mA                       |
| PSRR                     | Ripple Rejection                               | $V_{IN} = (14V_{DC}) + (1V_{RMS} @ 120Hz),$<br>$I_{LOAD} = 50mA$ | 50                      | 60                      | -                | dB                       |
| RESET PI                 | N CHARACTERISTICS                              |                                                                  |                         |                         |                  |                          |
| $V_{OR}$                 | Minimum V <sub>IN</sub> for Valid RESET Status | (Note 5)                                                         | -                       | 1.3                     | 2.0              | V                        |
| $V_{THR}$                | V <sub>OUT</sub> Threshold for RESET Low       | (Note 5)                                                         | 0.83                    | 0.89                    | 0.94             | × V <sub>OUT</sub> (Nom) |
| V <sub>OH</sub>          | RESET Pin High Voltage                         | External pull-up resistor to $V_{OUT} = 100k\Omega$              | V <sub>OUT</sub> × 0.90 | V <sub>OUT</sub> × 0.99 | V <sub>OUT</sub> | V                        |
| V <sub>OL</sub>          | RESET Pin Low Voltage                          | $V_{DELAY} < 4.0V$ , $I_{SINK} = 250\mu A$                       | -                       | 0.2                     | 0.3              | V                        |
| DELAY PI                 | N CHARACTERISTICS                              |                                                                  |                         |                         |                  |                          |
| I <sub>DELAY</sub>       | DELAY Pin Charging Current                     | V <sub>IN</sub> = 14V, V <sub>DELAY</sub> = 0V                   | -0.70                   | -0.42                   | -0.25            | μA                       |
| V <sub>OL</sub>          | DELAY Pin Low Voltage                          | V <sub>OUT</sub> < 4.0V, I <sub>SINK</sub> = I <sub>DELAY</sub>  | -                       | 0.1                     | -                | V                        |

Note 3. The regulated output voltage specification is not ensured for the entire range of V<sub>IN</sub> and output loads. Device operational range is limited by the maximum junction temperature (T<sub>J</sub>). The junction temperature is influenced by the ambient temperature (T<sub>A</sub>), package selection, input voltage (V<sub>IN</sub>), and the output load current (I<sub>LOAD</sub>). When operating with maximum load currents the input voltage and/or ambient temperature will be limited. When operating with maximum input voltage the load current and/or the ambient temperature will be limited.

Note 4. Pulse testing used maintain constant junction temperature ( $T_{\rm J}$ ).

Note 5. Not Production tested, Specified by Design. Minimum, Typical, and/or Maximum values are provided for informational purposes only.

#### **ELECTRICAL CHARACTERISTICS: LM9076-5.0** (continued)

The following specifications apply for  $T_J = 25^{\circ}C$ ;  $V_{IN} = 14V$ ;  $I_{LOAD} = 10 \text{mA}$ ;  $C_{OUT} = 10 \mu\text{F}$ ,  $0.5\Omega < \text{ESR} < 4.0\Omega$ ; unless otherwise specified. (Note 3, 4, 5) Minimum and maximum limits are specified through test, design or statistical correlation.

| •                   |                                        |                                                                                                                                                                                                                                                           |     |      |      |      |
|---------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|------|------|
| SYMBOL              | PARAMETER                              | TEST CONDITIONS                                                                                                                                                                                                                                           | MIN | TYP  | MAX  | UNIT |
| t <sub>DELAY</sub>  | Reset Delay Time                       | $\begin{split} V_{\text{IN}} &= 14 \text{V, } C_{\text{DELAY}} = 0.001 \mu\text{F,} \\ V_{\text{OUT}} \text{ rising from OV, } \Delta t \text{ from } V_{\text{OUT}} > \\ V_{\text{OR}} \text{ to } \overline{\text{RESET}} \text{ pin HIGH} \end{split}$ | 7.1 | 11.9 | 20.0 | ms   |
| SHUTDOV             | VN CONTROL LOGIC (LM9076D              | Only)                                                                                                                                                                                                                                                     |     |      |      |      |
| V <sub>IL(SD)</sub> | SHUTDOWN Pin Low<br>Threshold Voltage  | $V_{SHUTDOWN}$ pin falling from 5.0V until $V_{OUT} > 4.5V$ ( $V_{OUT} = On$ )                                                                                                                                                                            | 1.0 | 1.5  | -    | V    |
| $V_{\text{IH(SD)}}$ | SHUTDOWN Pin High<br>Threshold Voltage | $V_{SHUTDOWN}$ pin rising from 0V until $V_{OUT} < 0.5V$ ( $V_{OUT} = Off$ )                                                                                                                                                                              | -   | 1.5  | 2.0  | V    |
| I <sub>IH(SD)</sub> | SHUTDOWN Pin High Bias                 | V <sub>SHUTDOWN</sub> = 40V                                                                                                                                                                                                                               | •   | 35   | •    | μA   |
|                     | Current                                | V <sub>SHUTDOWN</sub> = 5.0V                                                                                                                                                                                                                              | -   | 15   | 45   | μA   |
|                     |                                        | V <sub>SHUTDOWN</sub> = 2.0V                                                                                                                                                                                                                              | -   | 6.0  | 12   | μA   |
| I <sub>IL(SD)</sub> | SHUTDOWN Pin Low Bias<br>Current       | V <sub>SHUTDOWN</sub> = 0V                                                                                                                                                                                                                                | -   | 0    | -    | μΑ   |

Note 3. The regulated output voltage specification is not ensured for the entire range of V<sub>IN</sub> and output loads. Device operational range is limited by the maximum junction temperature (T<sub>J</sub>). The junction temperature is influenced by the ambient temperature (T<sub>A</sub>), package selection, input voltage (V<sub>IN</sub>), and the output load current (I<sub>LOAD</sub>). When operating with maximum load currents the input voltage and/or ambient temperature will be limited. When operating with maximum input voltage the load current and/or the ambient temperature will be limited.

Note 4. Pulse testing used maintain constant junction temperature (T<sub>J</sub>).

Note 5. Not Production tested, Specified by Design. Minimum, Typical, and/or Maximum values are provided for informational purposes only.

# 150mA Ultra-Low IQ LDO Voltage Regulator

LM9076

# TYPICAL OPERATING CHARACTERISTICS

T.B.D.

#### APPLICATION INFORMATION

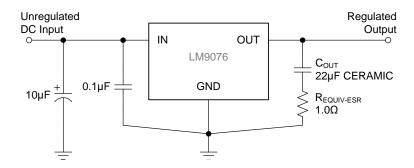
#### **REGULATOR BASICS**

The LM9076 regulator is suitable for Automotive and Industrial applications where continuous connection to a battery supply is required (refer to *Typical Application Circuits*).

The pass element of the regulator is a PNP device which requires an output bypass capacitor for stability. The minimum bypass capacitance for the output is  $10\mu F$  (refer to ESR limitations). A  $22\mu F$  or larger, output bypass capacitor is recommended for typical applications.

#### **INPUT CAPACITOR**

The LM9076 requires a low source impedance to maintain regulator stability because critical portions of the internal bias circuitry are connected to directly to IN pin. In general, a 10µF electrolytic capacitor, located within two inches of the LM9076, is adequate for a majority of applications. Additionally, and at a minimum, a 0.1µF ceramic capacitor should be located between the LM9076 IN pin and GND pin, and as close as is physically possible to the LM9076 itself.


#### **OUTPUT CAPACITOR**

An output bypass capacitor is required for stability. This capacitance must be placed between the LM9076 OUT pin and GND pin, as close as is physically possible, using traces that are not part of the load current path.

The output capacitor must meet the requirements for minimum capacitance and also maintain the appropriate ESR value across the entire operating ambient temperature range. There is no limit to the maximum output capacitance as long as ESR is maintained.

The minimum bypass capacitance for the output is  $10\mu F$  (refer to ESR limitations). A  $22\mu F$ , or larger, output bypass capacitor is recommended for typical applications.

Solid tantalums capacitors are recommended as they generally maintain capacitance and ESR ratings over a wide temperature range. Ceramic capacitor types XR7 and XR5 may be used if a series resistor is added to simulate the minimum ESR requirement.



Aluminum electrolytic capacitors are not recommended as they are subject to wide changes in capacitance and ESR across temperature.

#### **DELAY CAPACITOR**

The capacitor on the DELAY pin must be a low leakage type since the charge current is minimal (420nA typical) and the pin must fully charge to  $V_{OUT}$ . Ceramic, Mylar, and polystyrene capacitor types are generally recommended, although changes in capacitance values across temperature changes will have some effect on the delay timing.

Any leakage of the  $I_{DELAY}$  current, be it through the delay capacitor or any other path, will extend the delay time, possibly to the point that the  $\overline{RESET}$  pin output does not go high.

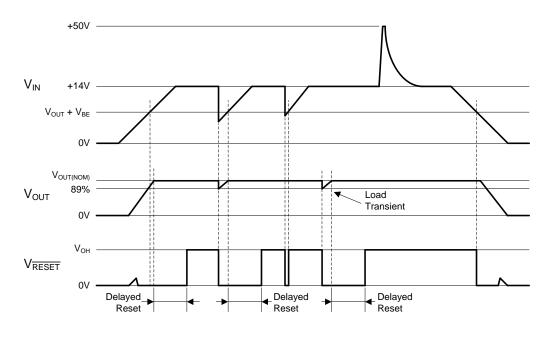
#### SHUTDOWN PIN (LM9076D ONLY)

The basic On/Off control of the regulator is accomplished with the SHUTDOWN pin. By pulling the SHUTDOWN pin high the regulator output is switched off. When the regulator is switched off the load on the battery will be primarily due to the SHUTDOWN pin current.

When the SHUTDOWN pin is low, or left open, the regulator is switched on. When an unregulated supply, such as V BATTERY, is used to pull the SHUTDOWN pin high a series resistor in the range of  $10k\Omega$  to  $50k\Omega$  is recommended to provide reverse voltage transient protection of the SHUTDOWN pin. Adding a small capacitor  $(0.001\mu F \ typical)$  from the SHUTDOWN pin to GND will add noise immunity to prevent accidental turn on due to noise on the supply line.

#### **RESET FLAG**

The  $\overline{\text{RESET}}$  pin is and is an open collector output which requires an external pull-up resistor to develop the reset signal. The external pull-up resistor should be in the range of  $10k\Omega$  to  $200k\Omega$ .


At  $V_{IN}$  values of less than typically 2V the  $\overline{RESET}$  pin voltage will be high. For  $V_{IN}$  values between typically 2V and approximately  $V_{OUT} + V_{BE}$  the  $\overline{RESET}$  pin voltage will be low. For  $V_{IN}$  values greater than approximately  $V_{OUT} + V_{BE}$  the  $\overline{RESET}$  pin voltage will be dependent on the status of the OUT pin voltage and the Delayed Reset circuitry. The value of  $V_{BE}$  is typically 600mV at 25°C and will decrease approximately 2mV for every 1°C increase in the junction temperature. During normal operation the  $\overline{RESET}$  pin voltage will be high.

Any load condition that causes the OUT pin voltage to drop below typically 89% of normal will activate the Delayed Reset circuit and the  $\overline{\text{RESET}}$  pin will go low for the duration of the delay time.

Any line condition that causes IN pin voltage to drop below typically  $V_{OUT} + V_{BE}$  will cause the  $\overline{RESET}$  pin to go low without activating the Delayed Reset circuitry.

Excessive thermal dissipation will raise the junction temperature and could activate the Thermal Shutdown circuitry which, in turn, will cause the  $\overline{\mathsf{RESET}}$  pin to go low.

For the LM9076D, pulling the SHUTDOWN pin high will turn off the output which, in turn, will cause the  $\overline{\text{RESET}}$  pin to go low once the  $V_{\text{OUT}}$  voltage has decayed to a value that is less than typically 89% of normal.



#### **RESET DELAY TIME**

When the regulator output is switched on, or after recovery from brief  $V_{OUT}$  fault condition, the RESET flag can be programmed to remain low for an additional delay time. This will give time for any system reference voltages, clock signals, etc., to stabilize before the micro-controller resumes normal operation.

This delay time is controlled by the capacitor value on the DELAY pin. During normal operation the DELAY capacitor is charged to near  $V_{OUT}$ . When a  $V_{OUT}$  fault is removed, the  $V_{OUT}$  returns to the normal operating value, the DELAY capacitor begins charging at a typical constant 0.420 $\mu$ A rate. When the voltage on the DELAY capacitor reaches the same potential as the OUT pin the RESET pin will be allowed to return high.

The typical RESET delay time can be calculated with following formula:

$$t_{DELAY} = V_{OUT} \times (C_{DELAY} / I_{DELAY}) \tag{1}$$

For the LM9076-3.3 with a  $C_{DELAY}$  value of 0.001 $\mu$ F and a  $I_{DELAY}$  of 0.420 $\mu$ A the typical  $\overline{RESET}$  delay time is:

$$t_{DELAY} = 3.3V \times (0.001 \mu F / 0.420 \mu A) = 7.8 ms$$
 (2)

For the LM9076-5.0 with a C<sub>DELAY</sub> value of 0.001µF and a I<sub>DELAY</sub> value of 0.420µA the typical RESET delay time is:

$$t_{DELAY} = 5.0V \times (0.001 \mu F / 0.420 \mu A) = 11.9 ms$$
 (3)

#### THERMAL PROTECTION

Device operational range is limited by the maximum junction temperature  $(T_J)$ . The junction temperature is influenced by the ambient temperature  $(T_A)$ , package selection, input voltage  $(V_{IN})$ , and the output load current. When operating with maximum load currents the input voltage and/or ambient temperature will be limited.

Even though the LM9076 is equipped with circuitry to protect itself from excessive thermal dissipation, it is not recommended that the LM9076 be operated at, or near, the maximum recommended die junction temperature (T<sub>J</sub>) as this may impair long term device reliability.

The thermal protection circuitry monitors the temperature at the die level. When the die temperature exceeds typically 160°C the voltage regulator output will be switched off.

# 150mA Ultra-Low IQ LDO Voltage Regulator

LM9076

# **REVISION NOTICE**

The description in this datasheet is subject to change without any notice to describe its electrical characteristics properly.

# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Linear Voltage Regulators category:

Click to view products by HTC Korea manufacturer:

Other Similar products are found below:

LV5684PVD-XH MCDTSA6-2R L7815ACV-DG 714954EB ZMR500QFTA BA033LBSG2-TR LV5680P-E L79M05T-E L78LR05D-MA-E NCV317MBTG NTE7227 MP2018GZD-33-P MP2018GZD-5-P LV5680NPVC-XH LT1054CN8 ZTS6538SE UA78L09CLP UA78L09CLPR CAT6221-PPTD-GT3 MC78M09CDTRK NCV51190MNTAG 78M05 HT7150-1 UM1540DB-18 XC6234H281VR-G WL2834CA-6/TR TPL730F33-5TR TLS850F1TA V50 TPS549B22RVFR UM1540DB-33 WL9200P3-50B WL9100P3-33B WL9005D4-33 XC6219B152MR WL2855K33-3/TR PJ54BM33SE PJ9500M25SA MD7218E33PC1 H7533-2PR SK7812AU SD1A30 78L33 TP78L33T3 L78L33ACUTR SK6513ST3A-50 SK6054D4-09 SK6054D4-18 SK6054D4-11 SK6054D4-10 LM79L12F