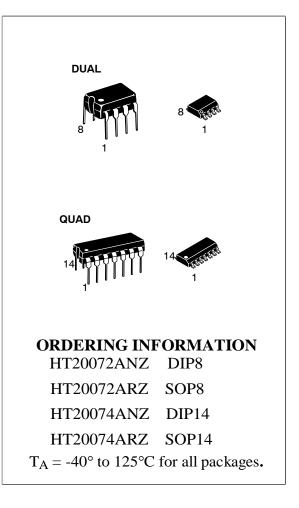


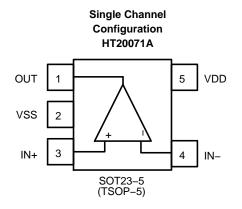
Operational Amplifier, Rail-to-Rail Output, 3 MHz BW

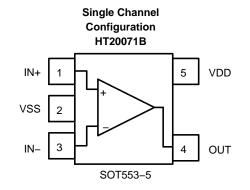
The HT2007x series operational amplifiers provide rail-to-rail output operation, 3 MHz bandwidth, and are available in single, dual, and quad configurations. Rail-to-rail operation enables the user to make optimal use of the entire supply voltage range while taking advantage of 3 MHz bandwidth. The HT2007x can operate on supply voltages as low as 2.7 V over the temperature range of -40° C to 125°C. At a 2.7 V supply, the high bandwidth provides a slew rate of 2.8 V/µs while only consuming 405 µA of quiescent current per channel. The wide supply range allows the HT2007x to run on supply voltages as high as 36 V, making it ideal for a broad range of applications. Since this is a CMOS device, high input impedance and low bias currents make it ideal for interfacing to a wide variety of signal sensors. The HT2007x devices are available in a variety of compact packages. Automotive qualified options are available under the NCV prefix.

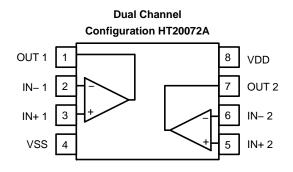
Features

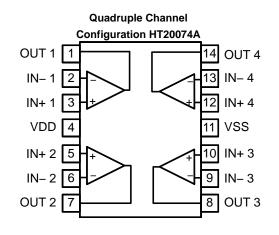

- Rail-To-Rail Output
- Wide Supply Range: 2.7 V to 36 V
- Wide Bandwidth: 3 MHz typical at $V_S = 2.7 V$
- High Slew Rate: 2.8 V/ μ s typical at V_S = 2.7 V
- Low Supply Current: 405 μ A per channel at V_S = 2.7 V
- Low Input Bias Current: 5 pA typical
- Wide Temperature Range: -40°C to 125°C
- Available in a variety of packages
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications


- Current Sensing
- Signal Conditioning
- Automotive


End Products


- Notebook Computers
- Portable Instruments
- Power Supplies



ABSOLUTE MAXIMUM RATINGS (Note 1)

Rating	Symbol	Limit	Unit
Supply Voltage $(V_{DD} - V_{SS})$ (Note 4)	V _S	40	V
Input Voltage	V _{CM}	V_{SS} – 0.2 to V_{DD} + 0.2	V
Differential Input Voltage (Note 2)	V _{ID}	±V _s	V
Maximum Input Current	I _{IN}	±10	mA
Maximum Output Current (Note 3)	Ι _Ο	±100	mA
Continuous Total Power Dissipation (Note 4)	PD	200	mW
Maximum Junction Temperature	TJ	150	°C
Storage Temperature Range	T _{STG}	-65 to 150	°C
Mounting Temperature (Infrared or Convection – 20 sec)	T _{mount}	260	°C
ESD Capability (Note 5) Human Body Model	HBM	2000	V
Latch–Up Current (Note 6)	I _{LU}	100	mA
Moisture Sensitivity Level (Note 7)	MSL	Level 1	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.

2. Maximum input current must be limited to ± 10 mA. Series connected resistors of at least 500 Ω on both inputs may be used to limit the maximum input current to ±10 mA.

Total power dissipation must be limited to prevent the junction temperature from exceeding the 150°C limit. 3.

Continuous short circuit operation to ground at elevated ambient temperature can result in exceeding the maximum allowed junction 4. temperature of 150°C. Output currents in excess of the maximum output current rating over the long term may adversely affect reliability. Shorting output to either VDD or VSS will adversely affect reliability.

- 5. This device series incorporates ESD protection and is tested by the following methods: ESD Human Body Model tested per JEDEC standard JS-001 (AEC-Q100-002) ESD Machine Model tested per JEDEC standard JESD22-A115 (AEC-Q100-003) ESD Charged Device Model tested per JEDEC standard JESD22-C101 (AEC-Q100-011)
- 6. Latch-up Current tested per JEDEC standard JESD78 (AEC-Q100-004)
- 7. Moisture Sensitivity Level tested per IPC/JEDEC standard J-STD-020A

THERMAL INFORMATION

Parameter	Symbol	Package	Single Layer Board (Note 8)	Multi–Layer Board (Note 9)	Unit
		SOT23-5 / TSOP5	265	195	
Junction-to-Ambient	θ _{JA}	SOT553-5	325	244	
		Micro8 / MSOP8	236	167	
		SOIC-8	190	131	°C/W
		TSSOP-8	253	194	
		SOIC-14	142	101	
		TSSOP-14	179	128	

8. Values based on a 1S standard PCB according to JEDEC51-3 with 1.0 oz copper and a 300 mm² copper area

9. Values based on a 1S2P standard PCB according to JEDEC51-7 with 1.0 oz copper and a 100 mm² copper area

OPERATING RANGES

Parameter	Symbol	Min	Max	Unit
Operating Supply Voltage (Single Supply)	VS	2.7	36	V
Operating Supply Voltage (Split Supply)	VS	±1.35	±18	V
Differential Input Voltage (Note 10)	V _{ID}		VS	V
Input Common Mode Voltage Range	V _{CM}	V _{SS}	V _{DD} – 1.35	V
Ambient Temperature	T _A	-40	125	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

10. Maximum input current must be limited to ±10 mA. See Absolute Maximum Ratings for more information.

ELECTRICAL CHARACTERISTICS AT V_S = 2.7 V $T_A = 25^{\circ}C; R_L \ge 10 k\Omega; V_{CM} = V_{OUT} = mid$ -supply unless otherwise noted. All limits are guaranteed by testing or statistical analysis. **Boldface** limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to 125°C. (Notes 11, 12)

Parameter	Symbol	Con	ditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS							
			20074		1.3	±3.5	
In put Offent Velterre	N	HT20071				±4.5	
Input Offset Voltage	V _{OS}	11720072	1170074		1.3	±3	mV
		H120072	HT20072, HT20074			±4	
Offset Voltage Drift	$\Delta V_{OS} / \Delta T$	T _A = 25°C to 125°C			2		μV/°C
Input Pige Current (Note 12)					5	200	54
Input Bias Current (Note 12)	Ι _{ΙΒ}					1500	рА
		HT20071, HT20072			2	75	рА
nout Offact Current (Note 12)	I _{OS} –					500	
Input Offset Current (Note 12)		HT20074			2	75	
						200	
Channel Separation	XTLK	DC	HT20072		100		dB
Channel Separation	AILK	DC	HT20074		115		uБ
Differential Input Resistance	R _{ID}				5		GΩ
Common Mode Input Resistance	R _{IN}				5		GΩ
Differential Input Capacitance	C _{ID}				1.5		pF
Common Mode Input Capacitance	C _{CM}				3.5		pF
Common Made Dejection Datio	CMDD			90	110		15
ommon Mode Rejection Ratio	CMRR	$V_{CM} = V_{SS} + 0.2$ V to $V_{DD} - 1.35$ V		69			dB

OUTPUT CHARACTERISTICS

Open Loop Voltage Gain	Aug		96	118		dB
Open Loop Voltage Gain	A _{VOL}		86			uв
Output Current Canability (Nata 12)	1.	Op amp sinking current		70		mA
Output Current Capability (Note 13)	I _O	Op amp sourcing current		50		mA
	V _{OH}	Voltage output owing from positive roll		0.006	0.15	V
Output Voltage High		Voltage output swing from positive rail			0.22	
Output Voltage Low	V _{OL}	Voltage output owing from pagetive roll		0.005	0.15	V
		Voltage output swing from negative rail			0.22	

AC CHARACTERISTICS

Unity Gain Bandwidth	UGBW	C _L = 25 pF			3		MHz
Slew Rate at Unity Gain	SR	$C_L = 20 \text{ pF}, R_L = 2 \text{ k}\Omega$			2.8		V/μs
Phase Margin	φm	C _L = 25 pF			50		0
Gain Margin	A _m	C _L =	C _L = 25 pF		14		dB
Settling Time		V _O = 1 Vpp, Gain = 1, C _L = 20 pF	Settling time to 0.1%		0.6		μs
	t _S		Settling time to 0.01%		1.2		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 11. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.

 Performance guaranteed over the indicated operating temperature range by design and/or characterization.
 Power dissipation must be limited to prevent junction temperature from exceeding 150°C. See Absolute Maximum Ratings for more information.

ELECTRICAL CHARACTERISTICS AT V_S = 2.7 V

 $T_A = 25^{\circ}C$; $R_L \ge 10 \text{ k}\Omega$; $V_{CM} = V_{OUT}$ = mid-supply unless otherwise noted. All limits are guaranteed by testing or statistical analysis. **Boldface** limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to 125°C. (Notes 11, 12)

Parameter	Symbol	Cond	litions	Min	Тур	Max	Unit
NOISE CHARACTERISTICS							
Total Harmonic Distortion plus Noise	THD+N	$V_{IN} = 0.5 \text{ Vpp}, f = 1 \text{ kHz}, Av = 1$			0.05		%
Incut Deferred Malterie Maine		f = 1 kHz			30		
Input Referred Voltage Noise	en	f = 10	0 kHz		20		nV/√Hz
Input Referred Current Noise	i _n	f = 1 kHz			90		fA/√Hz
SUPPLY CHARACTERISTICS							
Device Currely Dejection Detie				114	135		dB
Power Supply Rejection Ratio	PSRR	INO I	No Load				
		HT20071	No load		420	625	
Device Superly Outercost Consert		H120071	100 1080			765	μΑ
Power Supply Quiescent Current	I _{DD}			405	405	525	
		HT20072,HT20074 Per channel, no load				625	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

11. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.

12. Performance guaranteed over the indicated operating temperature range by design and/or characterization.

13. Power dissipation must be limited to prevent junction temperature from exceeding 150°C. See Absolute Maximum Ratings for more information.

ELECTRICAL CHARACTERISTICS AT V_S = 5 V

 $T_A = 25^{\circ}C$; $R_L \ge 10 \text{ k}\Omega$; $V_{CM} = V_{OUT}$ = mid-supply unless otherwise noted. All limits are guaranteed by testing or statistical analysis. **Boldface** limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to $125^{\circ}C$. (Notes 14, 15)

Parameter	Symbol	C	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						-	
			1700074		1.3	±3.5	
		HT20071				±4.5	
Input Offset Voltage	V _{OS}	LT200			1.3	±3	mV
		HT20072, HT20074				±4	
Offset Voltage Drift	$\Delta V_{OS} / \Delta T$	$T_A = 25^{\circ}C$ to 125 $^{\circ}C$			2		μV/°C
Input Diag Current (Note 15)					5	200	pА
Input Bias Current (Note 15)	I _{IB}					1500	РА
		HT20071, HT20072			2	75	рA
Innut Offeet Current (Note 15)						500	
Input Offset Current (Note 15)	los				2	75	
		г	HT20074			200	1
Channel Concretion	XTLK	DC	HT20072		100		
Channel Separation	XILK	DC	HT20074		115		dB
Differential Input Resistance	R _{ID}		-		5		GΩ
Common Mode Input Resistance	R _{IN}				5		GΩ
Differential Input Capacitance	C _{ID}				1.5		pF
Common Mode Input Capacitance	C _{CM}				3.5		pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

14. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.

 Performance guaranteed over the indicated operating temperature range by design and/or characterization.
 Performance function must be limited to prevent junction temperature from exceeding 150°C. See Absolute Maximum Ratings for more information.

ELECTRICAL CHARACTERISTICS AT V_S = 5 V $T_A = 25^{\circ}C; R_L \ge 10 k\Omega; V_{CM} = V_{OUT} = mid-supply unless otherwise noted. All limits are guaranteed by testing or statistical analysis.$ **Boldface** $limits apply over the specified temperature range, <math>T_A = -40^{\circ}C$ to $125^{\circ}C$. (Notes 14, 15)

Parameter	Symbol	Cond	litions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS							
Oceanie Made Deiestien Detie	OMDD			102	125		JD
Common Mode Rejection Ratio	CMRR	$V_{CM} = V_{SS} + 0.2$	V to V _{DD} – 1.35 V	80			dB
OUTPUT CHARACTERISTICS							
Open Leen Veltage Coin	^			96	120		dD
Open Loop Voltage Gain	A _{VOL}			86			dB
Output Current Capability (Note 16)	1	Op amp sin	king current		50		mA
Output Current Capability (Note 16)	Ι _Ο	Op amp sou	Op amp sourcing current		60		mA
	M		na from positivo roil		0.013	0.20	V
Output Voltage High	V _{OH}	voltage output swi	ng from positive rail			0.25	
Output Voltage Low	M.		ng from negative rail		0.01	0.10	V
	V _{OL}	voltage output swir	ig nom negative rail			0.15	, ,
AC CHARACTERISTICS							
Unity Gain Bandwidth	UGBW	C _L = 25 pF			3		MHz
Slew Rate at Unity Gain	SR	C _L = 20 pF	$C_L = 20 \text{ pF}, R_L = 2 \text{ k}\Omega$		2.7		V/μs
Phase Margin	ϕ_{m}	C _L =	25 pF		50		0
Gain Margin	A _m	C _L =	25 pF		14		dB
Settling Time		V _O = 3 Vpp,	Settling time to 0.1%		1.2		
Setting Time	t _S	Gain = 1, C_L = 20 pF	Settling time to 0.01%		5.6		μs
NOISE CHARACTERISTICS							
Total Harmonic Distortion plus Noise	THD+N	V _{IN} = 2.5 Vpp, f	f = 1 kHz, Av = 1		0.009		%
Innut Deferred Vieltere Neise		f = 1	kHz		30		nV/√Hz
Input Referred Voltage Noise	e _n	f = 10	0 kHz		20		NV/VHZ
Input Referred Current Noise	i _n	f = 1	kHz		90		fA/√Hz
SUPPLY CHARACTERISTICS							
Dower Supply Dejection Datio	PSRR	No.		114	135		
Power Supply Rejection Ratio	PSRR		Load	100			dB
		HT20071	Noload		430	635	
Power Supply Quiescent Current		HT20071	No load			775	
	I _{DD}	HT20072, HT20074 Fer channel, no load			410	530	μA
						630	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 14. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.

15. Performance guaranteed over the indicated operating temperature range by design and/or characterization. 16. Power dissipation must be limited to prevent junction temperature from exceeding 150°C. See Absolute Maximum Ratings for more information.

ELECTRICAL CHARACTERISTICS AT V_S = 10 V

 $T_A = 25^{\circ}C$; $R_L \ge 10 \text{ k}\Omega$; $V_{CM} = V_{OUT} = \text{mid-supply unless otherwise noted}$. All limits are guaranteed by testing or statistical analysis. Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to 125°C. (Notes 17, 18)

Parameter	Symbol	Conc	litions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS							
	N/		0074		1.3	±3.5	mV
Input Offset Voltage	Vos	HT20	5071			±4.5	mV
	M	LIT20072	UT20074		1.3	±3	mV
Input Offset Voltage	V _{OS}	HT20072,	H120074			±4	mV
Offset Voltage Drift	$\Delta V_{OS} / \Delta T$	T _A = 25°0	C to 125°C		2		μV/°C
Input Bias Current (Note 18)	I _{IB}				5	200	pА
input bias current (Note 10)	ıΒ					1500	PΑ
		HT20071,	HT20072		2	75	
Input Offset Current (Note 18)	loo	11120071,	11120072			500	n۵
input Onset Current (Note 10)	l _{os}	НТ20	0074		2	75	рА
		HT20074				200	<u> </u>
Channel Separation	XTLK	DC	HT20072		100		dB
Charmer Separation	AILK	HT20074			115		
Differential Input Resistance	R _{ID}				5		GΩ
Common Mode Input Resistance	R _{IN}				5		GΩ
Differential Input Capacitance	C _{ID}				1.5		pF
Common Mode Input Capacitance	C _{CM}				3.5		pF
Common Mode Rejection Ratio	CMRR	$V_{abc} = V_{abc} \pm 0.2$	V to V _{DD} – 1.35 V	110	130		dB
	CIMINI	VCM - VSS + 0.2	v to v _{DD} = 1.55 v	87			
OUTPUT CHARACTERISTICS							
Open Loop Voltage Gain	A. (a)			98	120		dB
Open Loop voltage Gain	A _{VOL}			88			uВ
Output Current Capability (Note 19)	l-	Op amp sir	nking current		50		mA
Culput Culterit Capability (Note 19)	Ι _Ο	Op amp sou	urcing current		65		ШA
Output Voltage High	V		ng from positive rail		0.023	0.08	V
Output voltage High	V _{OH}	voltage output swi	ng from positive rai			0.10	v
	Max	Voltago output owi	ag from pogotivo roil		0.022	0.3	V
Output Voltage Low	V _{OL}	voltage output swil	ng from negative rail			0.35	v
AC CHARACTERISTICS							
Unity Gain Bandwidth	UGBW	C _L =	25 pF		3		MHz
Slew Rate at Unity Gain	SR		$R_{L} = 2 k\Omega$		2.6		V/μs
Phase Margin	φm	C _L =	25 pF		50		0
Gain Margin	A _m	C _L =	25 pF		14		dB
Settling Time	$V_{O} = 8.5 V_{DD}$. Settling time to 0.1%		Settling time to 0.1%		3.4		
	t _S	Gain = 1, C_L = 20 pF	Settling time to 0.01%		6.8		μs

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 17. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.

 Performance guaranteed over the indicated operating temperature range by design and/or characterization.
 Power dissipation must be limited to prevent junction temperature from exceeding 150°C. See Absolute Maximum Ratings for more information.

ELECTRICAL CHARACTERISTICS AT V_S = 10 V $T_A = 25^{\circ}C; R_L \ge 10 k\Omega; V_{CM} = V_{OUT} = mid$ -supply unless otherwise noted. All limits are guaranteed by testing or statistical analysis. Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to 125°C. (Notes 17, 18)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
NOISE CHARACTERISTICS						
Total Harmonic Distortion plus Noise	THD+N	V_{IN} = 7.5 Vpp, f = 1 kHz, Av = 1		0.004		%
Input Referred Voltage Noise		f = 1 kHz		30		nV/√ Hz
	e _n	f = 10 kHz		20		
Input Referred Current Noise	i _n	f = 1 kHz		90		fA/√Hz
SUPPLY CHARACTERISTICS						
Dower Supply Dejection Datio	2022	Nolood	114	135		dB
Power Supply Rejection Ratio	PSRR	No Load	100			uв
				1	1	

				100					
			HT20071	No load		430	645		
Power Supply Quiescent Current		H120071	NO IOAU			785			
	Power Supply Quiescent Current	IDD	HT20072, HT20074 Fer	er channel, no load		416	540	μΑ	
							640		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

17. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.

18. Performance guaranteed over the indicated operating temperature range by design and/or characterization.

19. Power dissipation must be limited to prevent junction temperature from exceeding 150°C. See Absolute Maximum Ratings for more information.

ELECTRICAL CHARACTERISTICS AT V_S = 36 V

 $T_A = 25^{\circ}$ C; $R_L \ge 10 \text{ k}\Omega$; $V_{CM} = V_{OUT} = \text{mid-supply}$ unless otherwise noted. All limits are guaranteed by testing or statistical analysis. Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}$ C to 125°C. (Notes 20, 21)

Parameter	Symbol	Con	ditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS							
			0074		1.3	±3.5	mV
Innut Offent Veltere		HI2	0071			±4.5	mV
Input Offset Voltage	V _{OS}	HT20072	HT20074		1.3	±3	mV
		HT20072,	H120074			±4	mV
Offset Voltage Drift	$\Delta V_{OS} / \Delta T$	T _A = 25°	C to 125°C		2		μV/°C
					5	200	0
Input Bias Current (Note 21)	I _{IB}	HT20071, HT20072				2000	рА
		HT20074				1500	
		11720074	11700070		2	75	
Innut Offent Current (Nets 24)		HT20071, HT20072				1000	pA
Input Offset Current (Note 21)	IOS	los		2	75		
		HT20074				200	1
Channel Concretion	VTLK	DC	HT20072		100		
Channel Separation	XTLK	DC	HT20074		115		dB
Differential Input Resistance	R _{ID}		-		5		GΩ
Common Mode Input Resistance	R _{IN}				5		GΩ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

20. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.

21. Performance guaranteed over the indicated operating temperature range by design and/or characterization.

22. Power dissipation must be limited to prevent junction temperature from exceeding 150°C. See Absolute Maximum Ratings for more information.

ELECTRICAL CHARACTERISTICS AT V_S = 36 V $T_A = 25^{\circ}C; R_L \ge 10 \text{ k}\Omega; V_{CM} = V_{OUT} = \text{mid-supply unless otherwise noted. All limits are guaranteed by testing or statistical analysis. Boldface limits apply over the specified temperature range, <math>T_A = -40^{\circ}C$ to $125^{\circ}C$. (Notes 20, 21)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Differential Input Capacitance	C _{ID}			1.5		pF
Common Mode Input Capacitance	C _{CM}			3.5		pF
			118	135		
			95			
Orana Mada Dairatian Datia			120	145		-10
Common Mode Rejection Ratio	CMRR		95			dB
			120	145		1
			85			

OUTPUT CHARACTERISTICS

	•			98	120		dB
Open Loop Voltage Gain	A _{VOL}			88			aв
		Op amp sir	king current		50		
Output Current Capability (Note 22)	lo	Op amp sou	ircing current		65		mA
	V _{OH}		HT20071		0.074	0.15	- V
						0.22	
		Voltage output swing	HT20072		0.074	0.10	
Output Voltage High		from positive rail				0.15	
			11700074		0.074	0.10	
			HT20074			0.12	
	Itage Low V _{OL} Voltage output				0.065	0.3	V
Output Voltage Low		Voltage output swing from negative rail		voltage output swing from negative rail			0.35

AC CHARACTERISTICS

Unity Gain Bandwidth	UGBW	C _L =	25 pF	3	MHz
Slew Rate at Unity Gain	SR	C _L = 20 pF	$R_{L} = 2 k\Omega$	2.4	V/μs
Phase Margin	φ _m	C _L =	25 pF	50	0
Gain Margin	A _m	C _L =	25 pF	14	dB
Cattling Time	4	V _O = 10 Vpp,	Settling time to 0.1%	3.2	
Settling Time	t _S	V _O = 10 Vpp, Gain = 1, C _L = 20 pF	Settling time to 0.01%	7	μS

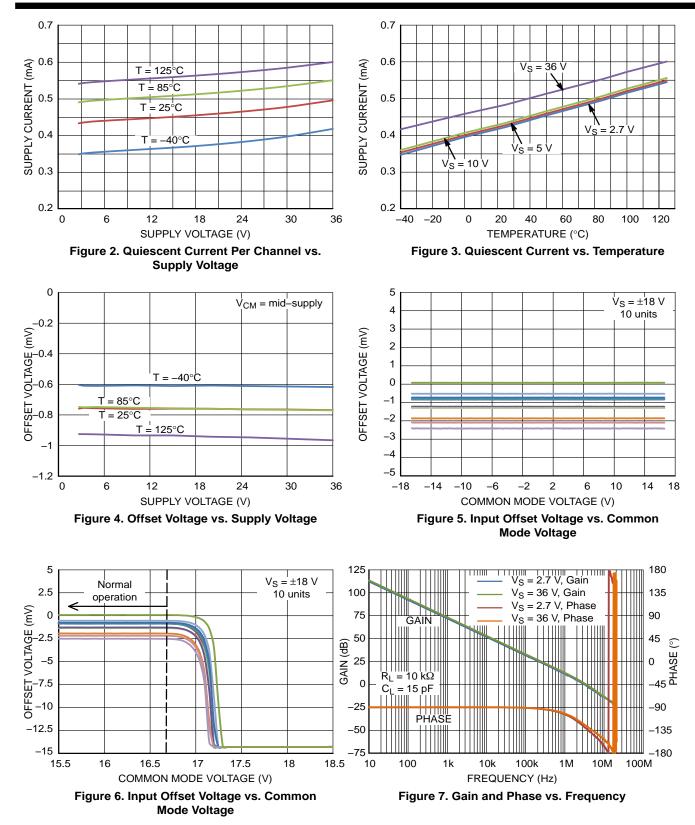
NOISE CHARACTERISTICS

Total Harmonic Distortion plus Noise	THD+N	V _{IN} = 28.5 Vpp, f = 1 kHz, Av = 1	0.001	%
Input Referred Voltage Noise		f = 1 kHz	30	nV/√ Hz
input Referred Voltage Noise	e _n	f = 10 kHz	20	IIV/VHZ
Input Referred Current Noise	i _n	f = 1 kHz	90	fA/√Hz

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

20. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.

21. Performance guaranteed over the indicated operating temperature range by design and/or characterization. 22. Power dissipation must be limited to prevent junction temperature from exceeding 150°C. See Absolute Maximum Ratings for more information.



ELECTRICAL CHARACTERISTICS AT V_S = 36 V $T_A = 25^{\circ}C; R_L \ge 10 \text{ k}\Omega; V_{CM} = V_{OUT} = \text{mid-supply unless otherwise noted. All limits are guaranteed by testing or statistical analysis.$

Parameter	Symbol	Cond	ditions	Min	Тур	Max	Unit
SUPPLY CHARACTERISTICS							
	DODD	N -	l and	114	135		
Power Supply Rejection Ratio	PSRR	No Load –		100			dB
			No load		480	700	
		HT20071				840	
	I _{DD}				465	570	
Power Supply Quiescent Current		HT20072	Per channel, no load			700	μA
					465	600	
		HT20074 Per channel, no load			700		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
20. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.
21. Performance guaranteed over the indicated operating temperature range by design and/or characterization.
22. Power dissipation must be limited to prevent junction temperature from exceeding 150°C. See Absolute Maximum Ratings for more information.

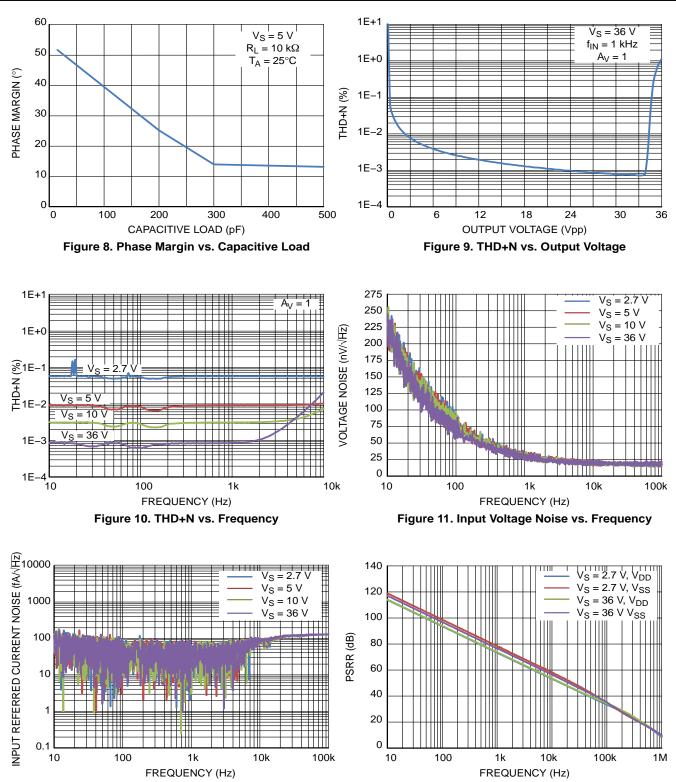
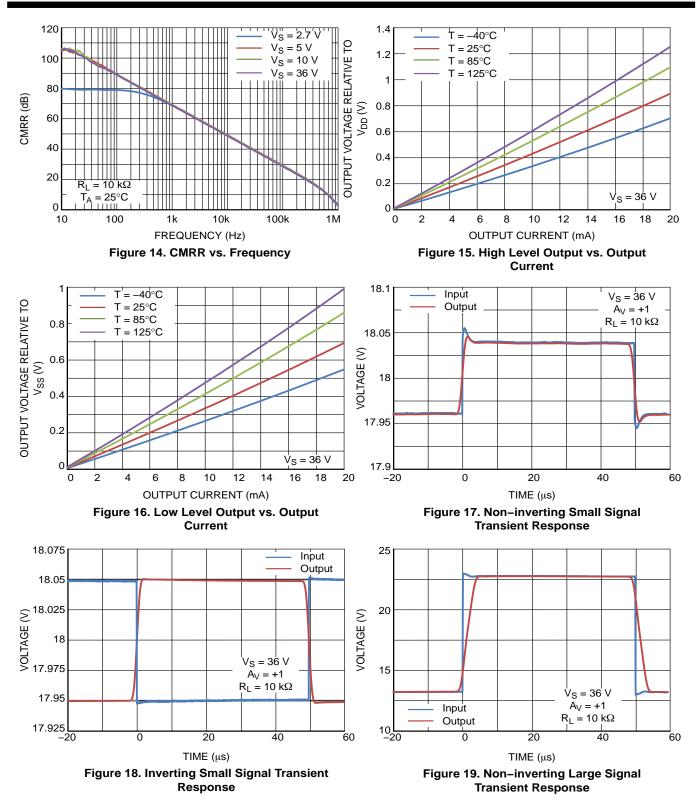
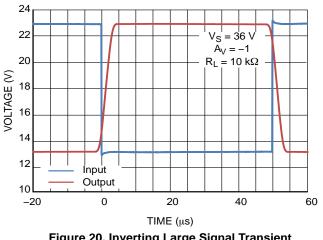
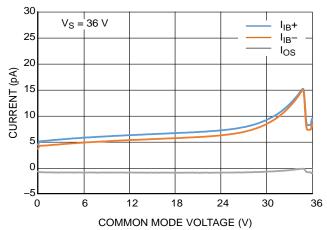
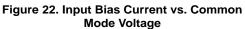
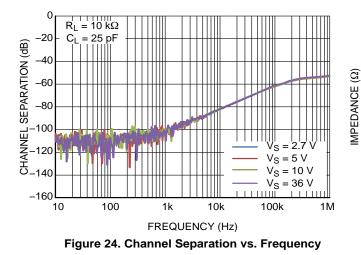




Figure 12. Input Current Noise vs. Frequency







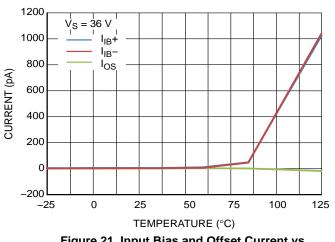
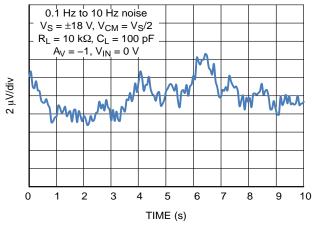
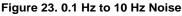




Figure 21. Input Bias and Offset Current vs. Temperature

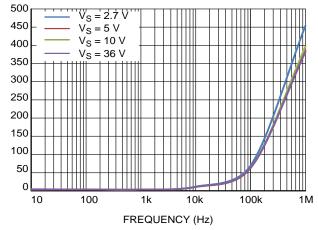
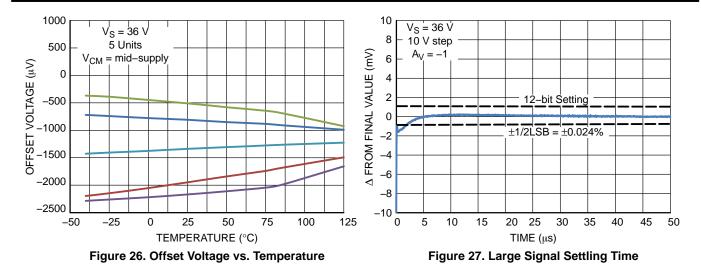



Figure 25. Open Loop Output Impedance

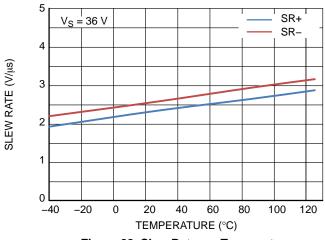


Figure 28. Slew Rate vs. Temperature

APPLICATIONS INFORMATION

Input Circuit

The HTS2007x input stage has a PMOS input pair and ESD protection diodes. The input pair is internally connected by back–to–back Zener diodes with a reverse voltage of 5.5 V. To protect the internal circuitry, the input current must be limited to 10 mA. When operating the

HTS2007x at differential voltages greater than $V_{ID} = 26$ V, series resistors can be added externally to limit the input current flowing between the input pins. Adding 500 Ω resistors in series with the input prevents the current from exceeding 10 mA over the entire operating range up to 36 V.

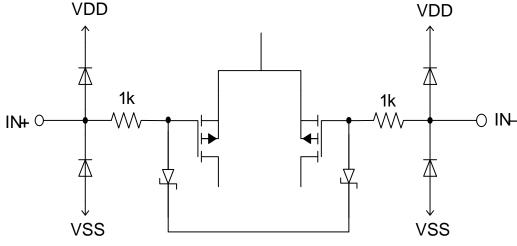


Figure 29. Differential Input Pair

Output

The HTS2007x has a class AB output stage with rail-to-rail output swing.

High output currents can cause the junction temperature to exceed the 150°C absolute maximum rating. In the case of a short circuit where the output is connected to either supply rail, the amount of current the op amp can source and sink is described by the output current capability parameter listed in the Electrical Characteristics. The junction temperature at a given power dissipation, P, can be calculated using the following formula:

 $T_J = T_A + P \ x \ \theta_{JA}$

The thermal resistance between junction and ambient, θ_{JA} , is provided in the Thermal Information section of this datasheet.

HT20071A / HT20072A / HT20074A

N SUFFIX PLASTIC DIP (MS - 001BA)

	Dimens	sion, mm
Symbol	MIN	MAX
Α	8.51	10.16
В	6.1	7.11
С		5.33
D	0.36	0.56
F	1.14	1.78
G	2	.54
Н	7	.62
J	0°	10°
K	2.92	3.81
L	7.62	8.26
М	0.2	0.36
Ν	0.38	

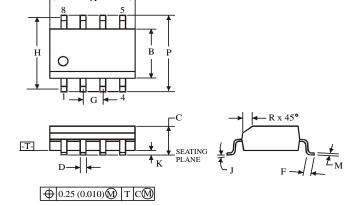
NOTES:

 Dimensions "A", "B" do not include mold flash or protrusions. Maximum mold flash or protrusions 0.25 mm (0.010) per side.

T- SEATING PLANE

M

в

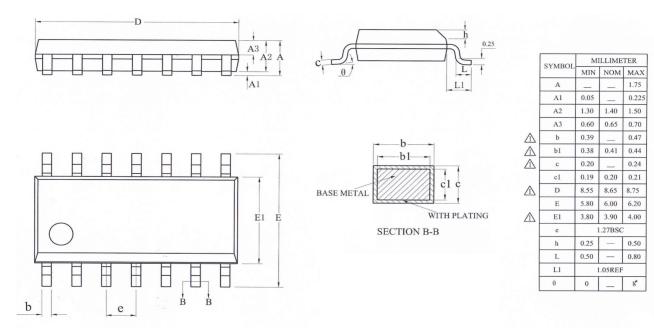

N_

⊕ 0.25 (0.010) ∭ T

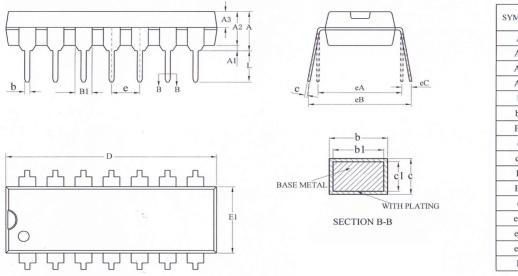
8	
	1

	Dimens	ion, mm
Symbol	MIN	MAX
Α	4.8	5
В	3.8	4
С	1.35	1.75
D	0.33	0.51
F	0.4	1.27
G	1.1	27
Н	5.	72
J	0°	8°
K	0.1	0.25
М	0.19	0.25
Р	5.8	6.2
R	0.25	0.5

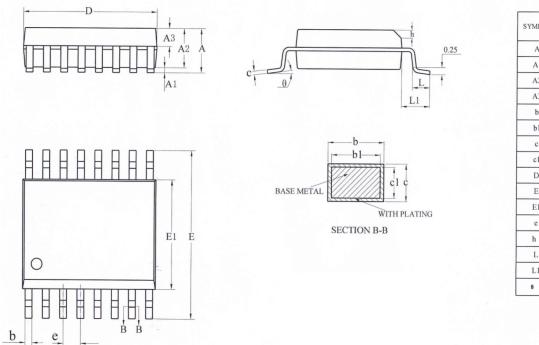
D SUFFIX SOIC (MS - 012AA)



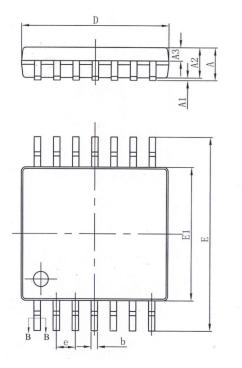
NOTES:

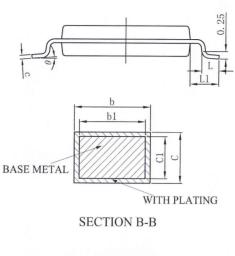

- 1. Dimensions A and B do not include mold flash or protrusion.
- 2. Maximum mold flash or protrusion 0.15 mm (0.006) per side for A; for B 0.25 mm (0.010) per side.

SOP14


DIP14

SYMBOL	M	MILLIMETER					
OTHIDOL	MIN	NOM	MAX				
А	3.60	3.80	4.00				
A1	0.51						
A2	3.20	3.30	3.40				
A3	1.47	1.52	1.57				
b	0.44		0.52				
b1	0.43	0.46	0.49				
B1		1.52REF					
с	0.25		0.29				
c 1	0.24	0.25	0.26				
D	19.00	19.10	19.20				
E1	6.25	6.35	6.45				
e	2.54BSC						
eA	7.62REF						
eB	7.62		9.30				
eC	0	· · · · ·	0.84				
L	3.00	_					




SSOP14

SYMBOL	MILLIMETER					
SYMBOL	MIN	NOM	MAX			
А	_	_	1.75			
A1	0.10	_	0.225			
A2	1.30	1.40	1.50			
A3	0.55	0.60	0.65			
b	0.23		0.31			
b1	0.22	0.25	0.28			
с	0.20		0.24			
c1	0.19	0.20	0.21			
D	4.80	4.90	5.00			
Е	5.80	6.00	6.20			
E1	3.80	3.90	4.00			
e		0.635BSC				
h	0.25		0.50			
L	0.50	0.65	0.80			
L1	1.05REF					
θ	0		8°			

TSSOP14

SYMBOL	M	ILLIMET	ER	
SIMBOL	MIN	NOM	MAX	
А	_	_	1.20	
A1	0.05	_	0.15	
A2	0.90	1.00	1.05	
A3	0.39	0.44	0.49	
b	0.20		0.28	
b1	0.19	0.22	0.25	
с	0.13	_	0.17	
c1	0.12	0.13	0.14	
D	4.90	5.00	5.10	
E1	4.30	4.40	4.50	
Е	6.20	6.40	6.60	
e		0.65BSC	2	
L	0.45	0.60	0.75	
L1	1.00BSC			
θ	0		8°	

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Operational Amplifiers - Op Amps category:

Click to view products by HTCSEMI manufacturer:

Other Similar products are found below :

430227FB AZV831KTR-G1 UPC451G2-A UPC824G2-A LT1678IS8 042225DB 058184EB UPC822G2-A UPC258G2-A NCS5651MNTXG NCV33202DMR2G NJM324E NTE925 5962-9080901MCA* AP4310AUMTR-AG1 HA1630D02MMEL-E HA1630S01LPEL-E SCY33178DR2G NJU77806F3-TE1 NCV5652MUTWG NCV20034DR2G LM2902EDR2G NTE778S NTE871 NTE924 NTE937 MCP6V16UT-E/OT MCP6V17T-E/MS MCP6V19T-E/ST SCY6358ADR2G LTC2065IUD#PBF NCS20282FCTTAG LM4565FVT-GE2 EL5420CRZ-T7A TSV791IYLT TSV772IQ2T TLV2772QPWR NJM2100M-TE1 NJM4556AM-TE1 MCP6487-E/SN MCP6487-E/MS AS324MTR-E1 AS358MMTR-G1 MCP6232T-EMNY MCP662-E/MF TLC081AIP TLC082AIP TLE2074ACDW TLV07IDR TLV2170IDGKT