

100 mA Adjustable Output, Positive Voltage Regulator

The HT317L is an adjustable 3-terminal positive voltage regulator capable of supplying in excess of 100 mA over an output voltage range of 1.2 V to 37 V. This voltage regulator is exceptionally easy to use and requires only two external resistors to set the output voltage. Further, it employs internal current limiting, thermal shutdown and safe area compensation, making them essentially blow-out proof. The HT317L serves a wide variety of applications including local, on card regulation. This device can also be used to make a programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the HT317L can be used as a precision current regulator.

Features

- Output Current in Excess of 100 mA
- Output Adjustable Between 1.2 V and 37 V
- Internal Thermal Overload Protection
- Internal Short Circuit CurrentLimiting
- Output Transistor Safe-Area Compensation
- Floating Operation for High Voltage Applications
- Standard 3–Lead Transistor Package
- · Eliminates Stocking Many Fixed Voltages
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- These are Pb-Free Devices

Simplified Application

Since I_{Adj} is controlled to less than 100 μ A, the error associated with this term is negligible in most applications.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Input-Output Voltage Differential	VI-VO	40	Vdc
Power Dissipation Case 29 (TO-92) $T_A = 25^{\circ}C$ Thermal Resistance, Junction-to-Ambient Thermal Resistance, Junction-to-Case	PD R _{8JA} R _{8JC}	Internally Limited 160 83	W °C/W °C/W
Case 751 (SOIC-8) (Note 1) T _A = 25°C Thermal Resistance, Junction-to-Ambient Thermal Resistance, Junction-to-Case	Pd R _{8JA} R _{8JC}	Internally Limited 180 45	W °C/W °C/W
Operating Junction Temperature Range	TJ	-40 to +150	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. SOIC-8 Junction-to-Ambient Thermal Resistance is for minimum recommended pad size. Refer to Figure 24 for Thermal Resistance variation versus pad size.

 This device series contains ESD protection and exceeds the following tests: Human Body Model, 2000 V per MIL STD 883, Method 3015. Machine Model Method, 200 V.

Figure 1. Representative Schematic Diagram

Figure 10. Minimum Operating Current

Vin = 4.25 V to 41.25 V

 $V_{out} = V_{ref}$ I_L = 5 mA

0.4

0.2

0 -0.2

-0.4

-0.6 -0.8

-1.0

-50 -25 0 25 50

Figure 13. Adjustment Pin Current

APPLICATIONS INFORMATION

Basic Circuit Operation

The HT317L is a 3-terminal floating regulator. In operation, the HT317L develops and maintains a nominal 1.25 V reference (V_{ref}) between its output and adjustment terminals. This reference voltage is converted to a programming current (I_{PROG}) by R₁ (see Figure 13), and this constant current flows through R₂ to ground. The regulated output voltage is given by:

$$V_{out} = V_{ref} \left(1 + \frac{R_2}{1}\right) + I_{Adj} R_2$$

Since the current from the adjustment terminal (I_{Adj}) represents an error term in the equation, the HT317L was designed to control I_{Adj} to less than 100 µA and keep it constant. To do this, all quiescent operating current is returned to the output terminal. This imposes the requirement for a minimum load current. If the load current is less than this minimum, the output voltage will rise.

Since the HT317L is a floating regulator, it is only the voltage differential across the circuit which is important to performance, and operation at high voltages with respect to ground is possible.

Figure 18. Basic Circuit Configuration

Load Regulation

The HT317L is capable of providing extremely good load regulation, but a few precautions are needed to obtain maximum performance. For best performance, the programming resistor (R1) should be connected as close to the regulator as possible to minimize line drops which effectively appear in series with the reference, thereby degrading regulation. The ground end of R2 can be returned near the load ground to provide remote ground sensing and improve load regulation.

External Capacitors

A 0.1 μ F disc or 1.0 μ F tantalum input bypass capacitor (C_{in}) is recommended to reduce the sensitivity to input line impedance.

The adjustment terminal may be bypassed to ground to improve ripple rejection. This capacitor (C_{Adj}) prevents ripple from being amplified as the output voltage is increased. A 10 μ F capacitor should improve ripple rejection about 15 dB at 120 Hz in a 10 V application.

Although the HT317L is stable with no output capacitance, like any feedback circuit, certain values of external capacitance can cause excessive ringing. An output capacitance (C_0) in the form of a 1.0 μ F tantalum or 25 μ F aluminum electrolytic capacitor on the output swamps this effect and insures stability.

Protection Diodes

+25V

HT317L

When external capacitors are used with any IC regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator.

Figure 14 shows the HT317L with the recommended protection diodes for output voltages in excess of 25 V or high capacitance values ($C_O > 10 \ \mu\text{F}$, $C_{Adj} > 5.0 \ \mu\text{F}$). Diode D_1 prevents C_O from discharging thru the IC during an input short circuit. Diode D_2 protects against capacitor C_{Adj} discharging through the IC during an output short circuit. The combination of diodes D_1 and D_2 prevents C_{Adj} from discharging through the IC during an input short circuit.

Vout

 R_1

w

٧o

l₀

Figure 19. Voltage Regulator with Protection Diodes

D1 protects the device during an input short circuit.

Figure 21. 5.0 V Electronic Shutdown Regulator

Figure 23. Current Regulator

Figure 22. Slow Turn-On Regulator

SOLDERING FOOTPRINT*

mm inches

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Linear Voltage Regulators category:

Click to view products by HTCSEMI manufacturer:

Other Similar products are found below :

LV56831P-E LV5684PVD-XH MCDTSA6-2R L7815ACV-DG PQ3DZ53U LV56801P-E L78L05CZ/1SX L78LR05DL-MA-E 636416C 714954EB LV5680P-E L78M15CV-DG L79M05T-E MIC5283-5.0YML-T5 TLS202A1MBVHTSA1 L78LR05D-MA-E NCV317MBTG NTE7227 MP2018GZD-33-P MP2018GZD-5-P LV5680NPVC-XH LT1054CN8 MP2018GZD-5-Z MP2018GZD-33-Z AT55EL50ESE APL5934DKAI-TRG CL9193A15L5M CL9036A30F4M CL9036A18F4M CL9036A25F4M CL9036A28F4M CL9036A33F4M CL9906A18F4N CL9906A30F4N CL9908A30F4M CL9908A33F4M CL9908A18F4M CL9908A28F4M TL431ACM/TR TL431AIM/TR LM78L05ACM/TR HT7812ARMZ HT7805ARMZ HXY6206I-3.0 HXY6206I-3.3 XC6206P252MR XC6206P282MR XC6206P302MR XC6206P332MR CJ6211B12F