

Single Supply 3.0 V to 36V Operational Amplifiers

Quality bipolar fabrication with innovative design concepts are employed for the HT33071/72/74, HT34071/72/74, A series of monolithic operational amplifiers. This series of operational amplifiers offer 4.5 MHz of gain bandwidth product, 13 V/ms slew rate and fast settling time without the use of JFET device technology. Although this series can be operated from split supplies, it is particularly suited for single supply operation, since the common mode input voltage range

includes ground potential (VEE). With a Darlington input stage, this series exhibits high input resistance, low input offset voltage and high gain. The all NPN output stage, characterized by no deadband crossover distortion and large output voltage swing, provides high capacitance drive capability, excellent phase and gain margins, low open loop high frequency output impedance and symmetrical source/sink AC frequency response.

The HT33071/72/74, HT34071/72/74, ,A series of devices are available in standard or prime performance (A Suffix) grades and are specified over the commercial, industrial/vehicular or military temperature ranges. The complete series of single, dual and quad operational amplifiers are available in plastic DIP, SOIC, QFN and TSSOP surface mount packages.

Features

- Wide Bandwidth: 4.5 MHz
- \Box High Slew Rate: 13 V/ms
- \Box Fast Settling Time: 1.1 ms to 0.1%
- \Box Wide Single Supply Operation: 3.0 V to 36 V
- \Box Wide Input Common Mode Voltage Range: Includes Ground (VEE)
- \Box Low Input Offset Voltage: 3.0 mV Maximum (A Suffix)
- $□$ Large Output Voltage Swing: -14.7 V to $+14$ V (with ± 15) V Supplies)
- \Box Large Capacitance Drive Capability: 0 pF to 10,000 pF
- □ Low Total Harmonic Distortion: 0.02%
- \square Excellent Phase Margin: 60°
- \Box Excellent Gain Margin: 12 dB
- □ Output Short Circuit Protection
- ESD Diodes/Clamps Provide Input Protection for Dual and Quad
- \Box HTV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP Capable
- These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS

ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = −15 V, RL = connected to ground, unless otherwise noted. See Note 4 for ELECTRICAL CHARACTERISTICS (V_{CC} = +15 V, V_{EE} = −15 V, R_L = connected to ground, unless otherwise noted. See Note 4 for T
= T _ to T _)
low Unigh

AC ELECTRICAL CHARACTERISTICS (V_{CC} = +15 V, V_{EE} = −15 V, R_L = connected to ground. T_A = +25°C, unless otherwise noted.)

Single Supply Split Supplies

Figure 2. Power Supply Configurations Figure 3. Offset Null Circuit

Offset nulling range is approximately \pm 80 mV with a 10 k potentiometer (HT33071, HT34071 only).

Temperature for Representative Units

Input Common Mode Voltage Supply Voltage Swing versus Supply Voltage

Figure 10. Split Supply Output Saturation versus Load Current

Figure 13. Output Short Circuit Current versus Temperature

Figure 14. Output Impedance Figure 15. Output Voltage Swing versus Frequency versus Frequency

Ω(Ã)

IMPEDA
NCE

Phase versus Frequency Product versus Temperature

Figure 23. Phase Margin versus Load Capacitance

Figure 24. Gain Margin versus Load Capacitance

Figure 25. Phase Margin versus Temperature

Figure 26. Gain Margin versus Temperature Figure 27. Phase Margin and Gain Margin

versus Differential Source Resistance

 $TA = 25^{\circ}G$ Compensated Unco mpensated

versus Frequency versus Frequency

Figure 36. Channel Separation versus Frequency Figure 37. Input Noise versus Frequency

APPLICATIONS INFORMATION CIRCUIT DESCRIPTION/PERFORMANCE FEATURES

Although the bandwidth, slew rate, and settling time of the HT34071 amplifier series are similar to op amp products utilizing JFET input devices, these amplifiers offer other additional distinct advantages as a result of the PNP transistor differential input stage and an all NPN transistor output stage.

Since the input common mode voltage range of this input

stage includes the V_{EE} potential, single supply operation is feasible to as low as 3.0 V with the common mode input voltage at ground potential.

The input stage also allows differential input voltages up to 44 V, provided the maximum input voltage range is not exceeded. Specifically, the input voltages must range between

 V_{EE} and V_{CC} supply voltages as shown by the maximum rating table. In practice, although not recommended, the input

voltages can exceed the V_{CC} voltage by approximately 3.0 V

and decrease below the VEE voltage by 0.3 V without causing product damage, although output phase reversal may occur. It is also possible to source

up to approximately 5.0 mA of current from VEE through either inputs clamping diode without damage or latching, although phase reversal may again occur.

If one or both inputs exceed the upper common mode voltage limit, the amplifier output is readily predictable and may be in a low or high state depending on the existing input bias conditions.

Since the input capacitance associated with the small geometry input device is substantially lower (2.5 pF) than the typical JFET input gate capacitance (5.0 pF), better frequency response for a given input source resistance can be achieved using the HT34071 series of amplifiers. This performance feature becomes evident, for example, in fast settling D−to−A current to voltage conversion applications where the feedback resistance can form an input pole with the input capacitance of the op amp. This input pole creates a 2nd order system with the single pole op amp and is therefore detrimental to its settling time. In this context, lower input capacitance is desirable especially for higher

values of feedback resistances (lower current DACs). This input pole can be compensated for by creating a feedback zero with a capacitance across the feedback resistance, if necessary, to reduce overshoot. For 2.0 kW of feedback resistance, the HT34071 series can settle to within 1/2 LSB of 8−bits in 1.0 ms, and within 1/2 LSB of 12−bits in 2.2 ms for a 10 V step. In a inverting unity gain fast settling configuration, the symmetrical slew rate is ± 13 V/ms. In the classic noninverting unity gain configuration, the output positive slew rate is $+10$ V/ms, and the corresponding negative slew rate will exceed the positive slew rate as a function of the fall time of the input waveform.

Since the bipolar input device matching characteristics are superior to that of JFETs, a low untrimmed maximum offset voltage of 3.0 mV prime and 5.0 mV downgrade can be economically offered with high frequency performance characteristics. This combination is ideal for low cost precision, high speed quad op amp applications.

The all NPN output stage, shown in its basic form on the equivalent circuit schematic, offers unique advantages over the more conventional NPN/PNP transistor Class AB output stage. A 10 kW load resistance can swing within 1.0 V of the

positive rail (V_{CC}), and within 0.3 V of the negative rail

(V_{EE}), providing a 28.7 V_{pp} swing from ± 15 V supplies. This large output swing becomes most noticeable at lower supply voltages.

The positive swing is limited by the saturation voltage of the current source transistor Q_7 , and V_{BE} of the NPN pull up transistor Q17, and the voltage drop associated with the short circuit resistance, R7. The negative swing is limited by the saturation voltage of the pull−down transistor Q16, the voltage drop ILR6, and the voltage drop associated with resistance R_7 , where I_L is the sink load current. For small valued sink currents, the above voltage drops are negligible, allowing the negative swing voltage to approach within millivolts of V_{FE} . For large valued sink currents (>5.0 mA), diode D3 clamps the voltage across R_6 , thus limiting the negative swing to the saturation voltage of Q16, plus the forward diode drop of D3 (\approx V_{EE} +1.0 V). Thus for a given supply voltage, unprecedented peak−to−peak output voltage swing is possible as indicated by the output swing specifications.

If the load resistance is referenced to V_{CC} instead of ground for single supply applications, the maximum possible output swing can be achieved for a given supply voltage. For light load currents, the load resistance will pull the output to

V_{CC} during the positive swing and the output will pull the load resistance near ground during the negative swing. The load resistance value should be much less than that of the feedback resistance to maximize pull up capability.

Because the PNP output emitter−follower transistor has been eliminated, the HT34071 series offers a 20 mA minimum current sink capability, typically to an output voltage of (V_{EE} +1.8 V). In single supply applications the output can directly source or sink base current from a common emitter NPN transistor for fast high current switching applications.

In addition, the all NPN transistor output stage is inherently fast, contributing to the bipolar amplifier's high gain bandwidth product and fast settling capability. The associated high frequency low output impedance (30 W typ

 (a) 1.0 MHz) allows capacitive drive capability from 0 pF to 10,000 pF without oscillation in the unity closed loop gain configuration. The 60° phase margin and 12 dB gain margin as well as the general gain and phase characteristics are virtually independent of the source/sink output swing conditions. This allows easier system phase compensation, since output swing will not be a phase consideration. The high frequency characteristics of the HT34071 series also allow excellent high frequency active filter capability, especially for low voltage single supply applications.

Although the single supply specifications is defined at

5.0 V, these amplifiers are functional to 3.0 V ω 25 °C although slight changes in parametrics such as bandwidth, slew rate, and DC gain may occur.

If power to this integrated circuit is applied in reverse polarity or if the IC is installed backwards in a socket, large unlimited current surges will occur through the device that may result in device destruction.

Special static precautions are not necessary for these bipolar amplifiers since there are no MOS transistors on the die.

As with most high frequency amplifiers, proper lead dress, component placement, and PC board layout should be exercised for optimum frequency performance. For example, long unshielded input or output leads may result in unwanted input−output coupling. In order to preserve the relatively low input capacitance associated with these amplifiers, resistors connected to the inputs should be immediately adjacent to the input pin to minimize additional stray input capacitance. This not only minimizes the input pole for optimum frequency response, but also minimizes extraneous "pick up" at this node. Supply decoupling with adequate capacitance immediately adjacent to the supply pin is also important, particularly over temperature, since many types of decoupling capacitors exhibit great impedance changes over temperature.

The output of any one amplifier is current limited and thus protected from a direct short to ground. However, under such conditions, it is important not to allow the device to exceed the maximum junction temperature rating. Typically for ± 15 V supplies, any one output can be shorted continuously to ground without exceeding the maximum temperature rating.

(Typical Single Supply Applications VCC = 5.0 V)

Figure 38. AC Coupled Noninverting Amplifier

Figure 40. DC Coupled Inverting Amplifier Maximum Output Swing

Figure 42. Active High−Q Notch Filter Figure 43. Active Bandpass Filter

Figure 39. AC Coupled Inverting Amplifier

Figure 41. Unity Gain Buffer TTL Driver

Figure 44. Low Voltage Fast D/A Converter

Figure 45. High Speed Low Voltage Comparator

Figure 46. LED Driver

Figure 48. AC/DC Ground Current Monitor Figure 49. Photovoltaic Cell Amplifier

Figure 47. Transistor Driver

Figure 50. Low Input Voltage Comparator with Hysteresis

Figure 52. High Input Impedance Differential Amplifier

Figure 54. Low Voltage Peak Detector Figure 55. High Frequency Pulse

Figure 51. High Compliance Voltage to Sink Current Converter

Figure 53. Bridge Current Amplifier

Width Modulation

GENERAL ADDITIONAL APPLICATIONS INFORMATION VS = 15.0 V

Figure 56. Second Order Low−Pass Active Filter Figure 57. Second Order High−Pass Active Filter

Figure 59. Basic Inverting Amplifier

Figure 62. High Impedance Differential Amplifier

N SUFFIX PLASTIC DIP (MS – 001BA)

NOTES:

1. Dimensions "A", "B" do not include mold flash or protrusions. Maximum mold flash or protrusions 0.25 mm (0.010) per side.

D SUFFIX SOIC (MS - 012AA)

- 1. Dimensions A and B do not include mold flash or protrusion. **M** 0.19 0.25
- 2. Maximum mold flash or protrusion 0.15 mm (0.006) per side **P** 5.8 6.2 for A; for B – 0.25 mm (0.010) per side. **R** 0.25 0.5

SOP14

DIP14

MILLIMETER

 NOM MAX

 1.40 1.50

 0.60 0.65

 0.25

 \overline{a}

 0.20

4.90 5.00

 6.00

 3.90 $4.00\,$

0.635BSC

 $\overline{}$

 0.65 0.80

1.05REF

1.75

 0.225

0.31

0.28

 0.24

 0.21

 6.20

 0.50

 8°

SSOP14

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for [Operational Amplifiers - Op Amps](https://www.x-on.com.au/category/semiconductors/integrated-circuits-ics/amplifier-ics/operational-amplifiers-op-amps) category:

Click to view products by [HTCSEMI](https://www.x-on.com.au/manufacturer/htcsemi) *manufacturer:*

Other Similar products are found below :

[430227FB](https://www.x-on.com.au/mpn/texasinstruments/430227fb) [AZV831KTR-G1](https://www.x-on.com.au/mpn/diodesincorporated/azv831ktrg1) [UPC451G2-A](https://www.x-on.com.au/mpn/renesas/upc451g2a) [UPC824G2-A](https://www.x-on.com.au/mpn/renesas/upc824g2a) [LT1678IS8](https://www.x-on.com.au/mpn/nology/lt1678is8) [042225DB](https://www.x-on.com.au/mpn/texasinstruments/042225db) [058184EB](https://www.x-on.com.au/mpn/texasinstruments/058184eb) [UPC822G2-A](https://www.x-on.com.au/mpn/renesas/upc822g2a) [UPC258G2-A](https://www.x-on.com.au/mpn/renesas/upc258g2a) [NCS5651MNTXG](https://www.x-on.com.au/mpn/onsemiconductor/ncs5651mntxg) [NCV33202DMR2G](https://www.x-on.com.au/mpn/onsemiconductor/ncv33202dmr2g) [NJM324E](https://www.x-on.com.au/mpn/nisshinbo/njm324e) [NTE925](https://www.x-on.com.au/mpn/nte/nte925) [5962-9080901MCA*](https://www.x-on.com.au/mpn/texasinstruments/59629080901mca_1) [AP4310AUMTR-AG1](https://www.x-on.com.au/mpn/diodesincorporated/ap4310aumtrag1) [HA1630D02MMEL-E](https://www.x-on.com.au/mpn/renesas/ha1630d02mmele) [HA1630S01LPEL-E](https://www.x-on.com.au/mpn/renesas/ha1630s01lpele) [SCY33178DR2G](https://www.x-on.com.au/mpn/onsemiconductor/scy33178dr2g) [NJU77806F3-TE1](https://www.x-on.com.au/mpn/nisshinbo/nju77806f3te1) [NCV5652MUTWG](https://www.x-on.com.au/mpn/onsemiconductor/ncv5652mutwg) [NCV20034DR2G](https://www.x-on.com.au/mpn/onsemiconductor/ncv20034dr2g) [LM2902EDR2G](https://www.x-on.com.au/mpn/onsemiconductor/lm2902edr2g) [NTE778S](https://www.x-on.com.au/mpn/nte/nte778s) [NTE871](https://www.x-on.com.au/mpn/nte/nte871) [NTE924](https://www.x-on.com.au/mpn/nte/nte924) [NTE937](https://www.x-on.com.au/mpn/nte/nte937) [MCP6V16UT-E/OT](https://www.x-on.com.au/mpn/microchip/mcp6v16uteot) [MCP6V17T-E/MS](https://www.x-on.com.au/mpn/microchip/mcp6v17tems) [MCP6V19T-E/ST](https://www.x-on.com.au/mpn/microchip/mcp6v19test) [SCY6358ADR2G](https://www.x-on.com.au/mpn/onsemiconductor/scy6358adr2g) [LTC2065IUD#PBF](https://www.x-on.com.au/mpn/analogdevices/ltc2065iudpbf) [NCS20282FCTTAG](https://www.x-on.com.au/mpn/onsemiconductor/ncs20282fcttag) [LM4565FVT-GE2](https://www.x-on.com.au/mpn/rohm/lm4565fvtge2) [EL5420CRZ-T7A](https://www.x-on.com.au/mpn/renesas/el5420crzt7a) [TSV791IYLT](https://www.x-on.com.au/mpn/stmicroelectronics/tsv791iylt) [TSV772IQ2T](https://www.x-on.com.au/mpn/stmicroelectronics/tsv772iq2t) [TLV2772QPWR](https://www.x-on.com.au/mpn/texasinstruments/tlv2772qpwr) [NJM2100M-TE1](https://www.x-on.com.au/mpn/jrc/njm2100mte1) [NJM4556AM-TE1](https://www.x-on.com.au/mpn/jrc/njm4556amte1) [AS324MTR-E1](https://www.x-on.com.au/mpn/diodesincorporated/as324mtre1) [AS358MMTR-G1](https://www.x-on.com.au/mpn/diodesincorporated/as358mmtrg1) [MCP6232T-EMNY](https://www.x-on.com.au/mpn/microchip/mcp6232temny) [MCP662-E/MF](https://www.x-on.com.au/mpn/microchip/mcp662emf) [TLC081AIP](https://www.x-on.com.au/mpn/texasinstruments/tlc081aip) [TLC082AIP](https://www.x-on.com.au/mpn/texasinstruments/tlc082aip) [TLE2074ACDW](https://www.x-on.com.au/mpn/texasinstruments/tle2074acdw) [TLV07IDR](https://www.x-on.com.au/mpn/texasinstruments/tlv07idr) [TLV2170IDGKT](https://www.x-on.com.au/mpn/texasinstruments/tlv2170idgkt) [TLV2455IDR](https://www.x-on.com.au/mpn/texasinstruments/tlv2455idr) [TLV2461IDR](https://www.x-on.com.au/mpn/texasinstruments/tlv2461idr)