Power Factor Controllers

There are active power factor controllers specifically designed for use as a preconverter in electronic ballast and in off－line power converter applications．

These integrated circuits feature an internal startup timer for stand－alone applications，a one quadrant multiplier for near unity power factor，zero current detector to ensure critical conduction operation，transconductance error amplifier，quick
start circuit for enhanced startup，trimmed internal bandgap reference，current sensing comparator，and a totem pole output ideally suited for driving a power MOSFET．

Also included are protective features consisting of an overvoltage comparator to eliminate runaway output voltage due to load removal，input undervoltage lockout with hysteresis，cycle－by－cycle current limiting，multiplier output clamp that limits maximum peak switch current，an RS latch for single pulse metering，and a drive output high state clamp for MOSFET gate protection．These devices are available in dual－in－line and surface mount plastic packages．
－Overvoltage Comparator Eliminates Runaway Output Voltage
－Internal Startup Timer
－One Quadrant Multiplier
－Zero Current Detector
－Trimmed 2\％Internal Bandgap Reference
－Totem Pole Output with High State Clamp
－Undervoltage Lockout with 6.0 V of Hysteresis
－Low Startup and Operating Current
－Supersedes Functionality of SG3561，TDA4817 and MC34262

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Total Power Supply and Zener Current	（Icc + Iz $)$	30	mA
Output Current，Source or Sink	lo	500	mA
Current Sense，Multiplier，and Voltage Feedback Inputs	Vin	-1.0 to +10	V
Zero Current Detect Input High State Forward Current Low State Reverse Current	Iin	mA	
Power Dissipation and Thermal Characteristics N Suffix，Plastic Package Maximum Power Dissipation＠TA $=70^{\circ} \mathrm{C}$ Thermal Resistance，Junction－to－Air D Suffix，Plastic Package Maximum Power Dissipation＠TA $=70^{\circ} \mathrm{C}$ Thermal Resistance，Junction－to－Air	PD	50	
Operating Junction Temperature	ReJa	-10	mW
Operating Ambient Temperature	Reja	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Storage Temperature	TJ	450	mW
${ }^{\circ} \mathrm{C} / \mathrm{W}$			

＊Stresses beyond those listed under＂absolute maximum ratings＂may cause permanent damage to the device． These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under＂recommended operating conditions＂is not implied．
Exposure to absolute－maximum－rated conditions for extended periods may affect device reliability．

ELECTRICAL CHARACTERISTICS $(\mathrm{V} c \mathrm{c}=12 \mathrm{~V}$ ，for min $/ \mathrm{max}$ values TA is the operating ambient
temperature range that applies unless otherwise noted．）

Characteristic	Symbol	Min	Max	Unit
ERROR AMPLIFIER				
Voltage Feedback Input Threshold $\begin{aligned} & \mathrm{TA}=25^{\circ} \mathrm{C} \\ & \mathrm{TA}=\mathrm{T} \text { low to } \mathrm{T} \text { high }(\mathrm{Vcc}=12 \mathrm{~V} \text { to } 28 \mathrm{~V}) \end{aligned}$	VFB	$\begin{gathered} 2.465 \\ 2.44 \end{gathered}$	$\begin{gathered} 2.535 \\ 2.54 \end{gathered}$	V
Line Regulation（ $\mathrm{VCC}=12 \mathrm{~V}$ to $28 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$ ）	Regline	－	10	mV
Input Bias Current（ $\mathrm{VFB}=0 \mathrm{~V}$ ）	IIB	－	－0．5	$\mu \mathrm{A}$
Transconductance（ $\mathrm{TA}=25^{\circ} \mathrm{C}$ ）	gm_{m}	80	130	$\mu \mathrm{mho}$
Output Current Source（ $\mathrm{VFB}=2.3 \mathrm{~V}$ ） Sink（VFB＝2．7 V）	lo	-	-	$\mu \mathrm{A}$
Output Voltage Swing High State $(\mathrm{VFB}=2.3 \mathrm{~V})$ Low State $(\mathrm{VFB}=2.7 \mathrm{~V})$	$\begin{aligned} & \mathrm{V}_{\mathrm{OH}}(\mathrm{ea}) \\ & \mathrm{V}_{\mathrm{OL}}(\mathrm{ea}) \\ & \hline \end{aligned}$	5.8	2.4	V

Characteristic	Symbol	Min	Max	Unit
OVERVOLTAGE COMPARATOR				
Voltage Feedback Input Threshold	$\mathrm{V}_{\mathrm{FB}}(\mathrm{OV})$	1.065 VFB	1.095 VFB	V
MULTIPLIER				
Input Bias Current，Pin 3 （VFB＝0 V）	IIB	－	－0．5	$\mu \mathrm{A}$
Input Threshold，Pin 2	Vth（M）	1.05 Vol （ea）	－	V
Dynamic Input Voltage Range Multiplier Input（Pin 3） Compensation（Pin 2）	$\begin{aligned} & \text { Vpin3 } \\ & \text { Vpin2 } \end{aligned}$	$\begin{gathered} 0 \text { to } 2.5 \mathrm{Vth}(\mathrm{M}) \text { to } \\ (\mathrm{Vth}(\mathrm{M})+1.0) \end{gathered}$	－	V
$\begin{aligned} & \text { Multiplier Gain (Vpin } 3=0.5 \mathrm{~V} \text {, Vpin } 2=\mathrm{Vth}(\mathrm{M})+ \\ & 1.0 \mathrm{~V}) \end{aligned}$	K	0.43	0.87	1／V
ZERO CURRENT DETECTOR				
Input Threshold Voltage（Vjn Increasing）	Vth	1.33	1.87	V
Hysteresis（Vin Decreasing）	VH	100	300	mV
Input Clamp Voltage High State $($ IDET $=+3.0 \mathrm{~mA})$ Low State（IDET $=-3.0 \mathrm{~mA}$ ）	$\begin{aligned} & \text { VIH } \\ & \text { VIL }^{2} \end{aligned}$	$\begin{aligned} & 6.1 \\ & 0.3 \end{aligned}$	1.0	V
CURRENT SENSE COMPARATOR				
Input Bias Current（Vpin $4=0 \mathrm{~V}$ ）	Iı	－	－1．0	$\mu \mathrm{A}$
Input Offset Voltage（Vpm $2=1.6 \mathrm{~V}, \mathrm{Vpm} 3=0 \mathrm{~V}$ ）	Vio	－	25	mV
Maximum Current Sense Input Threshold（Note 1）	$\mathrm{V}_{\text {th（max）}}$	1.3	1.8	V
Delay to Output	tpHL（in／out）	－	400	ns
DRIVE OUTPUT				
$\begin{aligned} & \text { Output Voltage }\left(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}\right) \\ & \text { Low State }\left(\mathrm{I}_{\text {sink }}=20 \mathrm{~mA}\right) \\ & \left(\mathrm{I}_{\text {sink }}=200 \mathrm{~mA}\right) \\ & \text { High State }\left(\mathrm{I}_{\text {source }}=20 \mathrm{~mA}\right) \\ & \left(\mathrm{I}_{\text {source }}=200 \mathrm{~mA}\right) \end{aligned}$	VoL Voн	$\begin{aligned} & - \\ & - \\ & 9.8 \\ & 7.8 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 3.3 \\ & 0.8 \\ & 3.3 \\ & \hline \end{aligned}$	V
Output Voltage（ $\mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}$ ） High State $\left(\mathrm{I}_{\text {source }}=20 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\right)$	$\mathrm{VO}_{\mathrm{omax})}$	14	18	V
Output Voltage Rise Time（ $\mathrm{C}_{\mathrm{L}} 1.0 \mathrm{nF}$ ）	t_{r}	－	120	ns
Output Voltage Fall Time（ $\mathrm{C}_{\mathrm{L}} 1.0 \mathrm{nF}$ ）	t_{f}	－	120	ns
Output Voltage with UVLO Activated $\left(\mathrm{Vcc}=7.0 \mathrm{~V}, \mathrm{l}_{\text {Sink }}=1.0 \mathrm{~mA}\right)$	Vo（UvLO）	－	0.5	V
RESTART TIMER				
Restart Time Delay	tDLY	200	－	$\mu \mathrm{s}$

Note 1：This parameter is measured with $\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}$ ，and $\mathrm{V}_{\text {Pin3 }}=3.0 \mathrm{~V}$

Characteristic	Symbol	Min	Max	Unit
UNDERVOLTAGE LOCKOUT				
Startup Threshold（ V_{CC} Increasing）	$\mathrm{V}_{\mathrm{th}(\mathrm{on})}$	11.5	14.5	V
Minimum Operating Voltage After Turn－On（ V_{CC} Decreasing）	$\mathrm{V}_{\text {Shutdown }}$	7.0	9.0	V
Hysteresis	V_{H}	3.8	6.2	V
TOTAL DEVICE				
Power Supply Current Startup（Vcc＝7．0 V） Operating Dynamic Operating（ $50 \mathrm{kHz}, \mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}$ ）	Icc	－	$\begin{gathered} 0.4 \\ 12 \\ 20 \\ \hline \end{gathered}$	mA
Power Supply Zener Voltage（Ice $=25 \mathrm{~mA}$ ）	V_{Z}	30	－	V

Simplified Block Diagram

Notes	Calculation	Formula
Calculate the maximum required output power．	Required Converter Output Power	$\mathrm{P}_{\mathrm{O}}=\mathrm{V}_{\mathrm{O}} \mathrm{I}_{0}$
Calculated at the minimum required ac line voltage for output regulation．Let the efficiency $\eta=0.92$ for low line operation．	Peak Inductor Current	$\mathrm{I}_{\mathrm{L}(\mathrm{pk})}=\frac{2 \sqrt{2} \mathrm{P}_{\mathrm{O}}}{\eta \operatorname{Vac}_{(\mathrm{LL})}}$
Let the switching cycle $t=40 \mu \mathrm{~s}$ for universal input （ 85 to 265 Vac ）operation and 20μ s for fixed input （ 92 to 138 Vac ，or 184 to 276 Vac ）operation．	Inductance	$L_{P}=\frac{t\left(\frac{\mathrm{~V}_{\mathrm{O}}}{\sqrt{2}}-\mathrm{Vac}_{(\mathrm{LL})}\right) \eta \mathrm{Vac}_{(\mathrm{LL})^{2}}}{\sqrt{2} \mathrm{~V}_{\mathrm{O}} \mathrm{P}_{\mathrm{O}}}$
In theory the on－time $t_{\text {an }}$ is constant．In practice $t_{\text {on }}$ tends to increase at the ac line zero crossings due to the charge on capacitor C_{5} ．Let $\mathrm{Vac}=\mathrm{Vac}_{(\mathrm{LL})}$ for initial $\mathrm{t}_{\text {on }}$ and $\mathrm{t}_{\text {off }}$ calculations．	Switch On－Time	$t_{o n}=\frac{2 \mathrm{P}_{\mathrm{O}} L_{\mathrm{p}}}{\eta \mathrm{Vac}^{2}}$
The off－time $t_{\text {off }}$ is greatest at the peak of the ac line voltage and approaches zero at the ac line zero crossings．Theta（ θ ）represents the angle of the ac line voltage．	Switch Off－Time	$\mathrm{t}_{\text {off }}=\frac{\mathrm{t}_{\text {on }}}{\frac{\mathrm{V}_{\mathrm{O}}}{\sqrt{2} \mathrm{Vac}\|\operatorname{Sin} \theta\|}-1}$
The minimum switching frequency occurs at the peak of the ac line voltage．As the ac line voltage traverses from peak to zero， $\mathrm{t}_{\text {off }}$ approaches zero producing an increase in switching frequency．	Switching Frequency	$f=\frac{1}{t_{\text {on }}+t_{\text {off }}}$
Set the current sense threshold V_{CS} to 1.0 V for universal input（ 85 Vac to 265 Vac ）operation and to 0.5 V for fixed input（ 92 Vac to 138 Vac ，or 184 Vac to 276 Vac ）operation．Note that V_{CS} must be $<1.4 \mathrm{~V}$ ．	Peak Switch Current	$\mathrm{R}_{7}=\frac{\mathrm{V}_{\mathrm{CS}}}{\mathrm{I}_{\mathrm{L}(\mathrm{pk})}}$
Set the multiplier input voltage V_{M} to 3.0 V at high line．Empirically adjust V_{M} for the lowest distortion over the ac line voltage range while guaranteeing startup at minimum line．	Multiplier Input Voltage	$V_{M}=\frac{\operatorname{Vac} \sqrt{2}}{\left(\frac{R_{5}}{R_{3}}+1\right)}$
The $\mathrm{I}_{\mathrm{IB}} \mathrm{R}_{1}$ error term can be minimized with a divider current in excess of $50 \mu \mathrm{~A}$ ．	Converter Output Voltage	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {ref }}\left(\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}+1\right)-\mathrm{I}_{\mathrm{IB}} \mathrm{R}_{2}$
The calculated peak－to－peak ripple must be less than 16% of the average dc output voltage to prevent false tripping of the Overvoltage Comparator．Refer to the Overvoltage Comparator text．ESR is the equivalent series resistance of C_{3}	Converter Output Peak to Peak Ripple Voltage	$\Delta \mathrm{V}_{\mathrm{O}(\mathrm{pp})}=\mathrm{I}_{\bigcirc} \sqrt{\left(\frac{1}{2 \pi \mathrm{f}_{\mathrm{ac}} \mathrm{C}_{3}}\right)^{2}+\mathrm{ESR}^{2}}$
The bandwidth is typically set to 20 Hz ．When operating at high ac line，the value of C_{1} may need to be increased．（See Figure 25）	Error Amplifier Bandwidth	$\mathrm{BW}=\frac{\mathrm{gm}}{2 \pi \mathrm{C}_{1}}$

The following converter characteristics must be chosen：

$\mathrm{V}_{\mathrm{O}}-$ Desired output voltage	$\mathrm{Vac}-\mathrm{AC}$ RMS line voltage
$\mathrm{I}_{\mathrm{O}}-$ Desired output current	$\mathrm{Vac}_{(L L)}-\mathrm{AC} R \mathrm{RMS}$ low line voltage
$\Delta \mathrm{V}_{\mathrm{O}}-$ Converter output peak－to－peak ripple voltage	
＜Design Equations＞	

APPLICATION INFORMATION

The application circuits shown in Figures 1， 2 and 3 reveal that few external components are required for a complete power factor preconverter．Each circuit is a peak detecting current－mode boost converter that operates in critical conduction mode with a fixed on－time and variable off－time．A major benefit of critical conduction operation is that the current loop is inherently stable，thus elimination the need for ramp compensation． The application in Figure 1 operates over an input voltage range if 90 Vac to 138 Vac and provides an
output power of $80 \mathrm{~W}(230 \mathrm{~V}$ at 350 mA$)$ with an associated power factor of approximately 0.998 at nominal line．Figures 2 and 3 are universal input preconverter examples that operate over a continuous input voltage range of 90 Vac to 268 Vac ．Figure 2 provides an output power of $175 \mathrm{~W}(400 \mathrm{~V}$ at 440 mA$)$ while Figure 3 provides 450 W （ 400 V at 1.125 A ）．Both circuits have an observed worst－case power factor of approximately 0.989 ．

Figure 1．80W Power Factor Controller

Power Factor Controller Test Data

AC Line Input									DC Output				
				Current Harmonic Distortion（\％ $\mathrm{l}_{\text {fund }}$ ）									
$\mathrm{V}_{\mathrm{rms}}$	P_{in}	PF	$l_{\text {fund }}$	THD	2	3	5	7	$\mathrm{V}_{\mathrm{O}(\mathrm{pp})}$	V_{0}	10	Po	$\eta(\%)$
90	85.9	0.999	0.93	2.6	0.08	1.6	0.84	0.95	4.0	230.7	0.350	80.8	94.0
100	85.3	0.999	0.85	2.3	0.13	1.0	1.2	0.73	4.0	230.7	0.350	80.8	94.7
110	85.1	0.998	0.77	2.2	0.10	0.58	1.5	0.59	4.0	230.7	0.350	80.8	94.9
120	84.7	0.998	0.71	3.0	0.09	0.73	1.9	0.58	4.1	230.7	0.350	80.8	95.3
130	84.4	0.997	0.65	3.9	0.12	1.7	2.2	0.61	4.1	230.7	0.350	80.8	95.7
138	84.1	0.996	0.62	4.6	0.16	2.4	2.3	0.60	4.1	230.7	0.350	80.8	96.0

Figure 2．175W Universal Input Power Factor Controller

Power Factor Controller Test Data

AC Line Input									DC Output				
				Current Harmonic Distortion（\％ $\mathrm{l}_{\text {fund }}$ ）									
$\mathrm{V}_{\text {rms }}$	$P_{\text {in }}$	PF	$\mathrm{l}_{\text {fund }}$	THD	2	3	5	7	$\mathrm{V}_{\mathrm{O}(\mathrm{pp})}$	V_{0}	Io	Po	$\eta(\%)$
90	193.3	0.991	2.15	2.8	0.18	2.6	0.55	1.0	3.3	402.1	0.44	176.9	91.5
120	190.1	0.998	1.59	1.6	0.10	1.4	0.23	0.72	3.3	402.1	0.44	176.9	93.1
138	188.2	0.999	1.36	1.2	0.12	1.3	0.65	0.80	3.3	402.1	0.44	176.9	94.0
180	184.9	0.998	1.03	2.0	0.10	0.49	1.2	0.82	3.4	402.1	0.44	176.9	95.7
240	182.0	0.993	0.76	4.4	0.09	1.6	2.3	0.51	3.4	402.1	0.44	176.9	97.2
268	180.9	0.989	0.69	5.9	0.10	2.3	2.9	0.46	3.4	402.1	0.44	176.9	97.8

Figure 3．450W Universal Input Power Factor Controller

Power Factor Controller Test Data

AC Line Input									DC Output				
				Current Harmonic Distortion（\％ $\mathrm{I}_{\text {fund }}$ ）									
$\mathrm{V}_{\text {rms }}$	$\mathrm{P}_{\text {in }}$	PF	$1_{\text {fund }}$	THD	2	3	5	7	$\mathrm{V}_{\mathrm{O}(\mathrm{pp})}$	V_{0}	10	Po	$\eta(\%)$
90	489.5	0.990	5.53	2.2	0.10	1.5	0.25	0.83	8.8	395.5	1.14	450.9	92.1
120	475.1	0.998	3.94	2.5	0.12	0.29	0.62	0.52	8.8	395.5	1.14	450.9	94.9
138	470.6	0.998	3.38	2.1	0.06	0.70	1.1	0.41	8.8	395.5	1.14	450.9	95.8
180	463.4	0.998	2.57	4.1	0.21	2.0	1.6	0.71	8.9	395.5	1.14	450.9	97.3
240	460.1	0.996	1.91	4.8	0.14	4.3	2.2	0.63	8.9	395.5	1.14	450.9	98.0
268	459.1	0.995	1.72	5.8	0.10	5.0	2.5	0.61	8.9	395.5	1.14	450.9	98.2

（DIP8）

\section*{| $\phi \mid 0.25(0.010)$ | (1) | T |
| :--- | :--- | :--- |}

NOTES：

1．Dimensions＂A＂，＂B＂do not include mold flash or protrusions． Maximum mold flash or protrusions $0.25 \mathrm{~mm}(0.010)$ per side．

（SOP8）

NOTES：

1．Dimensions A and B do not include mold flash or protrusion．
2．Maximum mold flash or protrusion $0.15 \mathrm{~mm}(0.006)$ per side for A；for B $-0.25 \mathrm{~mm}(0.010)$ per side．

	Dimension，mm	
Symbol	MIN	MAX
\mathbf{A}	8.51	10.16
\mathbf{B}	6.1	7.11
\mathbf{C}		5.33
\mathbf{D}	0.36	0.56
\mathbf{F}	1.14	1.78
\mathbf{G}	2.54	
\mathbf{H}	7.62	
\mathbf{J}	0°	10°
\mathbf{K}	2.92	3.81
\mathbf{L}	7.62	8.26
\mathbf{M}	0.2	0.36
\mathbf{N}	0.38	

	Dimension，mm	
Symbol	MIN	MAX
\mathbf{A}	4.8	5
\mathbf{B}	3.8	4
\mathbf{C}	1.35	1.75
\mathbf{D}	0.33	0.51
\mathbf{F}	0.4	1.27
\mathbf{G}	1.27	
\mathbf{H}	5.72	
\mathbf{J}	0°	8°
\mathbf{K}	0.1	0.25
\mathbf{M}	0.19	0.25
\mathbf{P}	5.8	6.2
\mathbf{R}	0.25	0.5

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Switching Voltage Regulators category:
Click to view products by HTCSEMI manufacturer:
Other Similar products are found below :
FAN53610AUC33X FAN53611AUC123X MP2374DS-LF-Z AP3602AKTR-G1 NCP81108MNTXG NCP81109BMNTXG
FAN48610BUC45X FAN48617UC50X R3 430464BB FAN53611AUC12X MAX809TTR NCV891234MW50R2G AST1S31PUR NCP81103MNTXG NCP81203PMNTXG NCP81208MNTXG NCP81109GMNTXG SCY1751FCCT1G NCP81109JMNTXG

NCP81241MNTXG MP2388GQEU-Z MPQ4481GU-AEC1-P MPQ2171GJ-P IR3888MTRPBFAUMA1 MPQ2171GJ-AEC1-P MP2171GJ-
\underline{P} NCV1077CSTBT3G MP28160GC-Z LTM4691EV\#PBF XCL207A123CR-G XDPE132G5CG000XUMA1 XDPE12284C0000XUMA1 LTM4691IV\#PBF MP5461GC-P MIC23356YFT-TR ISL95338IRTZ TPS55162QPWPRQ1 MP3416GJ-P BD9S201NUX-CE2 ISL9113AIRAZ-T MP5461GC-Z MPQ2172GJ-AEC1-Z MPQ4415AGQB-Z MPQ4590GS-Z FAN53526UC224X S-19903DA-A8T1U7 S-19903CA-A6T8U7 S-19915BA-A8T1U7 S-19903CA-S8T1U7

