HT358A

Low Power Dual Operational Amplifier

GENERAL DESCRIPTION

The HT358A consists of two independent, high-gain, internally frequency-compensated operational amplifiers, which were designed specifically to operate from a single power supply over a wide range of voltages. The device operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage.

Its application areas include transducer amplifiers, dc gain blocks and all the conventional operational amplifier circuits.

FEATURES

- Wide range of supply voltages
- Low supply current drain independent of the supply voltage
- Low input biasing current
- Low input offset voltage and offset current
- Input common-mode voltage range including the Ground
- Differential input voltage range equal to the power supply voltage
- DC voltage gain 100 V/mV (typ.)
- Internal frequency compensation

APPLICATIONS

- Transducer amplifiers
- Dc gain blocks
- Conventional op-amp circuits in single power supply systems

Package pin connections

DFN2x2 8L

SOP-8L / MSOP-8L/SOT23-8

HT358A

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Ratings
Supply voltage	V _{cc}	45V
Input voltage	V _{IN}	-0.3V to +45V
Input current	I _{IN}	50mA at V _{IN} = -0.3V
Maximum output current	I _{OUT}	100mA
Maximum Operating Junction Temperature	TJ	-40°C to 125°C
Storage Temperature Range	T _{STG}	-65°C to 150°C
Lead Temperature (soldering, 10 seconds)	-	260°C
ESD protection (HBM)	-	700V

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Ratings
Input Voltage	V _{IN}	40V
Junction Temperature	Tj	-40°C to +85°C

ELECTRICAL CHARACTERISTICS

(At specified free-air temperature, V_{CC} = 5V, unless otherwise specified)

Parameter	Symbol	Conditions		Min	Тур	Max	Unit
Input Offset Voltage	V _{IO}	$V_{CC} = 5V$ to MAX,	25°C		3	7	mV
		$V_{IC} = V_{ICR(min)},$ $V_{O} = 1.4V$	Full range			9	
Average Temperature	αV _{IO}		Full range		7		μV/°C
Coefficient of Input Offset							-
Voltage							
Input Offset Current	I _{IO}	V ₀ = 1.4V	25°C		2	50	nA
			Full range			150	
Average Temperature	αΙιο		Full range		10		pA/°C
Coefficient of Input Offset							-
Current							
Input Bias Current	I _{IB}	V ₀ = 1.4V	25°C		-20	-250	nA
			Full range			-500	
Common-mode Input Voltage	VICR	V_{CC} = 5V to MAX	25°C	0 to Vcc-1.5			V
Range			Full range	0 to Vcc-2.0			
High-level Output Voltage	V _{он}	V_{CC} = MAX, R_L = 2k Ω	Full range	26			V
		V_{CC} = MAX, $R_L \ge 10 k\Omega$	Full range	27	28		
Low-level Output Voltage	V _{OL}	$R_L \ge 10 k \Omega$	Full range		5	20	mV
Large-signal Differential	A _{VD}	V _{CC} = 15V,	25°C	25	100		V/mV
Voltage Amplification		$V_{OUT} = 1V$ to 11V, $R_1 \ge 2k\Omega$	Full range	15			
Common-mode Rejection	CMRR	$V_{cc} = 5V$ to MAX,	25°C	65	80		dB
Ratio		$V_{IC} = V_{ICR(min)}$					
Supply Voltage Rejection	k _{svr}	V _{CC} = 5V to MAX	25°C	65	100		dB
Ratio ($\Delta Vcc/\Delta V_{IO}$)							
Crosstalk Attenuation	V ₀ 1/V ₀ 2	f =1 kHz to 20 kHz	25°C		120		dB
Output Current	I _{OUT}	V _{CC} = 15V,	25°C	-30	-50		mA
		$V_{ID} = 1V, V_{O} = 0$	Full range	-20			_
		$V_{CC} = 15V,$	25°C	15	35		
		$V_{1D} = -1V, V_0 = 15V$	Full range	7			
		$V_{CC} = 15V,$ $V_{D} = -1V, V_{C} = 2V$	25°C	15	28		mA
		$V_{ID} = -1V,$	25°C	12	50		μA
		V ₀ = 200mV		<u> </u>			<u> </u>
Short-circuit Output Current	I _{OS}	V _{ID} = - 1V, V _O = 15V	25°C		50	70	mA

Supply Current (two	I _{cc}	V_0 = 2.5V, No load	Full range	0.7	1.2	mA
amplifiers)		$V_{CC} = MAX,$ $V_0 = 0.5V_{CC}, No load$	Full range	1	2	
Slew Rate	SR	$V_{CC} = 15V,$ $V_{IN} = 0.5 \text{ to } 3V,$ $R_L = 2k\Omega, C_L = 100\text{pF},$ unity gain	25°C	0.7		V/µs
Gain Bandwidth	GBW	$V_{CC} = 30V, \\ f = 100kHz, \\ V_{IN} = 10mV, R_L = 2k\Omega, \\ C_L = 100pF$	25°C	700		kHz
Total Harmonic Distortion	THD	$\label{eq:relation} \begin{array}{l} f=1kHz,A_V=20dB,\\ R_L=2k\Omega,V_O=2Vpp,\\ C_L=100pF, \end{array}$	25°C	0.04		%

*All characteristics are measured under the open-loop conditions with zero common-mode input voltage, unless otherwise specified. MAX V_{CC} for testing purposes is 36V, $V_{cc(max)}$ = 45V. Full range is -40°C to +125°C.

BLOCK DIAGRAM

Typical Single-Supply Applications (V⁺ = 5.0 V_{DC})

*R not needed due to temperature independent IIN

V_O = 0 V_{DC} for V_{IN} = 0 V_{DC} $A_{V} = 10$

Where: $V_0 = V_1 + V_2 - V_3 - V_4$ $(V_1 + V_2) \ge (V_3 + V_4)$ to keep $V_O \ge 0 V_{DC}$

"BI-QUAD" RC Active Bandpass Filter

Fixed Current Sources

Lamp Driver

Squarewave Oscillator

Pulse Generator

HT358A

DFN8 2*2

COMMON DIMENSIONS (UNITS OF MEASURE=MILLIMETER)

SYMBOL	MIN	NQM	MAX
A	0.70	0.75	0.80
Al	0	0.02	0.05
A3		0.20REF	
b	0.15	0.20	0.25
D	1.90	2.00	2.10
E	1.90	2.00	2.10
D2	0.5D	0.60	0.70
E2	1.10	1.20	1.30
e	0.40	0.50	D.60
K	0.20	_	_
L	0.3D	0,35	D.40
R	0.09	_	_

SOT23-8L

HT358A

MSOP8

Small Outline SOP-8

IN IN		HES	MILLIMETERS		NOTES
SIMBOL	MIN	MAX	MIN	MAX	NUTES
A	0.188	0.197	4.80	5.00	-
В	0.149	0.158	3.80	4.00	-
С	0.228	0.244	5.80	6.20	-
D	0.050 BSC		1.27 BSC		-
E	0.013	0.020	0.33	0.51	-
F	0.004	0.010	0.10	0.25	-
Н	0.053	0.069	1.35	1.75	-
J	0.011	0.019	0.28	0.48	
К	0.007	0.010	0.19	0.25	-
М	0.016	0.050	0.40	1.27	
L	0.150 REF		3.81 REF		-
e1	45 ⁰		45 ⁰		-
α	0 ⁰	8 ⁰	00	8 ⁰	-

*All specs and applications shown above subject to change without prior notic.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Operational Amplifiers - Op Amps category:

Click to view products by HTCSEMI manufacturer:

Other Similar products are found below :

430227FB UPC451G2-A UPC824G2-A LT1678IS8 042225DB 058184EB UPC822G2-A UPC258G2-A NCS5651MNTXG NCV33202DMR2G NJM324E NTE925 5962-9080901MCA* AZV358MTR-G1 AP4310AUMTR-AG1 HA1630D02MMEL-E HA1630S01LPEL-E AZV358MMTR-G1 SCY33178DR2G NJU77806F3-TE1 NCV5652MUTWG NCV20034DR2G NTE778S NTE871 NTE924 NTE937 MCP6V16UT-E/OT MCP6V17T-E/MS MCP6V19T-E/ST SCY6358ADR2G NCS20282FCTTAG LM4565FVT-GE2 EL5420CRZ-T7A TSV772IQ2T TSV792IYST NJM2100M-TE1 COS2262MR COS2252MR COS5532SRB COS2272MR LMV358MR COS6002MR LMV358SR LM358SR RC4580MM/TR HGV8544M/TR HGV8541M/TR HGV8634M/TR HGV8542M/TR HGV8544MT/TR