Analog Multiplexer Demultiplexer

High－Performance Silicon－Gate CMOS

The HT4051A analog multiplexer／demultiplexer is digitally controlled analog switches having low ON impedance and very low OFF leakage current．Control of analog signals up to 20 V peak－to－peak can be achieved by digital signal amplitudes of 4.5 to 20 V （if $\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}=3 \mathrm{~V}$ ，a $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$ of up to 13 V can be controlled；for $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$ level differences above 13 V a $\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}$ of at least 4.5 V is required）．

These multiplexer circuits dissipate extremely low quiescent power over the full $\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}$ and $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$ supply－voltage ranges，independent of the logic state of the control signals． When a logic＂ 1 ＂is present at the ENABLE input terminal all channels are off．

The HT4051A is a single 8－channel multiplexer having three binary control inputs， A, B and C ，and an ENABLE input．The three binary signals select 1 of 8 channels to be turned on，and connect one of the 8 inputs to the output．
\square Operating Voltage Range： 3.0 to 18 V
\square Maximum input current of $1 \propto \mathrm{~A}$ at 18 V over full package－ temperature range； 100 nA at 18 V and $25^{\circ} \mathrm{C}$
\square Noise margin（over full package temperature range）：
1.0 V min＠ 5.0 V supply

2．0 V min＠ 10.0 V supply
2.5 V min＠ 15.0 V supply

ORDERING INFORMATION
HT4051AN Plastic
HT4051AR SOIC
$\mathrm{T}_{\mathrm{A}}=-55^{\circ}$ to $125^{\circ} \mathrm{C}$ for all packages

PIN ASSIGNMENT

X 4 ［1＊	16	${ }^{\mathrm{C}} \mathrm{C}$
X6［ 2	15	X 2
X $¢ 3$	14	XI
X7［4	13	X0
x5 5	12	X3
ENABLE 6	11	A
$\mathrm{V}_{\mathrm{EE}} 7$	10	B
GND 8	9	C

LOGIC DIAGRAM

Single－Pole，8－Position Plus Common Off

FUNCTION TABLE

Control Inputs Channel s				
	Select			
	C	B	A	
L	L	L	L	X0
L	L	L	H	X1
L	L	H	L	X2
L	L	H	H	X3
L	H	L	L	X4
L	H	L	H	X5
L	H	H	L	X6
L	H	H	H	X7
H	X	X	X	None

X＝don＇t care

MAXIMUM RATINGS＊

Symbol	Parameter	Value	Unit
V_{cc}	DC Supply Voltage（Referenced to GND）	-0.5 to +20	V
VIN^{2}	DC Input Voltage（Referenced to GND）	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
Vout	DC Output Voltage（Referenced to GND）	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
IIN	DC Input Current，per Pin	± 10	mA
P_{D}	Power Dissipation in Still Air，Plastic DIP＋		
	SOIC Package＋	750	mW
P_{D}	Dissipation per Output Transistor	500	
Tstg	Storage Temperature	100	mW
$\mathrm{~T}_{\mathrm{L}}$	Lead Temperature， 1 mm from Case for 10	-65 to +150	${ }^{\circ} \mathrm{C}$
	Seconds	260	${ }^{\circ} \mathrm{C}$
	（Plastic DIP or SOIC Package）		

Maximum Ratings are those values beyond which damage to the device may occur．
Functional operation should be restricted to the Recommended Operating Conditions．
＋Derating－Plastic DIP：－ $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$
SOIC Package：：－ $7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
Vcc	DC Supply Voltage（Referenced to GND）	3.0	18	V
VIIN，Vout	DC Input Voltage，Output Voltage（Referenced to GND）	0	$\mathrm{~V}_{\mathrm{cc}}$	V
T_{A}	Operating Temperature，All Package Types	-55	+125	${ }^{\circ} \mathrm{C}$
I	Multiplexer Switch Input Current Capability	-	25	mA
Roн	Output Load Resistance	100	-	Ω

In certain applications，the external load－resistor current may include both V_{CC} and signal－line components．

This device contains protection circuitry to guard against damage due to high static voltages or electric fields．However，precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high－impedance circuit．For proper operation， V_{IN} and $\mathrm{V}_{\text {OUT }}$ should be constrained to the range $\mathrm{GND} \leq\left(\mathrm{V}_{\text {IN }}\right.$ or $\left.\mathrm{V}_{\text {OUT }}\right) \leq \mathrm{V}_{\text {CC }}$ ．

Unused digital pins must be tied to an appropriate logic voltage level（e．g．，either GND or V_{CC} ）．Unused Analog I／O pins may be left open or terminated．

DC ELECTRICAL CHARACTERISTICS Digital Section

Symbol	Parameter	Test Conditions	$\begin{aligned} & \hline \mathrm{V} c \mathrm{c} \\ & \mathrm{~V} \end{aligned}$	Guaranteed Limit			Unit
				$\begin{gathered} \geq-55 \\ { }^{\geq} \mathrm{C} \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline \leq 25 \\ { }^{\circ} \mathrm{C} \end{array}$	$\begin{gathered} \leq 125 \\ { }^{\circ} \mathrm{C} \end{gathered}$	
VIH	Minimum High－ Level Input Voltage，Channel－ Select or Enable Inputs	$\begin{aligned} & \hline V_{I S}=V_{C C} \text { thru } 1 \mathrm{k} \Omega \\ & V_{E E}=G N D \\ & l_{\mathrm{IS}}<2 \propto A \text { on all OFF Chanels } \\ & R_{L}=1 \mathrm{k} \Omega \text { to } G N D \end{aligned}$	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	$\begin{gathered} 3.5 \\ 7 \\ 11 \end{gathered}$	$\begin{gathered} 3.5 \\ 7 \\ 11 \end{gathered}$	$\begin{gathered} 3.5 \\ 7 \\ 11 \end{gathered}$	V
VIL	Maximum Low－ Level Input Voltage，Channel－ Select or Enable Inputs	$\begin{aligned} & \hline V_{I S}=V_{C C} \text { thru } 1 \mathrm{k} \Omega \\ & V_{E E}=G N D \\ & l_{I S}<2 \propto A \text { on all OFF Chanels } \\ & R_{L}=1 \mathrm{k} \Omega \text { to } G N D \end{aligned}$	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	$\begin{gathered} 1.5 \\ 3 \\ 4 \end{gathered}$	$\begin{gathered} 1.5 \\ 3 \\ 4 \end{gathered}$	$\begin{gathered} 1.5 \\ 3 \\ 4 \end{gathered}$	V
IIN	Maximum Input Leakage Current， Channel－Select or Enable Inputs	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND	18	± 0.1	± 0.1	± 1.0	$\propto \mathrm{A}$
Icc	Maximum Quiescent Supply Current（per Package）	$\begin{aligned} & \text { Channel Select = VCC or } \\ & \text { GND } \end{aligned}$	$\begin{gathered} \hline 5 \\ 10 \\ 15 \\ 20 \\ \hline \end{gathered}$	$\begin{gathered} \hline 5 \\ 10 \\ 20 \\ 100 \\ \hline \end{gathered}$	$\begin{gathered} \hline 5 \\ 10 \\ 20 \\ 100 \\ \hline \end{gathered}$	$\begin{gathered} \hline 150 \\ 300 \\ 600 \\ 3000 \\ \hline \end{gathered}$	$\propto \mathrm{A}$

DC ELECTRICAL CHARACTERISTICS Analog Section

Symbol	Parameter	Test Conditions	$\begin{gathered} \mathrm{Vcc} \\ \mathrm{~V} \end{gathered}$	Guaranteed Limit			Unit
				$\begin{gathered} \geq-55 \\ { }^{\circ} \mathrm{C} \\ \hline \end{gathered}$	$\begin{gathered} \leq 25 \\ { }^{\circ} \mathrm{C} \\ \hline \end{gathered}$	$\begin{gathered} \leq 125 \\ { }^{\circ} \mathrm{C} \\ \hline \end{gathered}$	
Ron	Maximum＂ON＂ Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=\mathrm{GND}=0 \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{GND} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	$\begin{gathered} \hline 5 \\ 10 \\ 15 \end{gathered}$	$\begin{aligned} & \hline 800 \\ & 310 \\ & 200 \end{aligned}$	$\begin{gathered} \hline 1050 \\ 400 \\ 240 \end{gathered}$	$\begin{gathered} 1300 \\ 550 \\ 320 \end{gathered}$	Ω
$\triangle \mathrm{R}_{\text {ON }}$	Maximum Difference in ＂ON＂Resistance Between Any Two Channels in the Same Package	$\mathrm{V}_{\mathrm{EE}}=\mathrm{GND}=0$	$\begin{gathered} 5 \\ \hline 10 \\ 15 \end{gathered}$	- - -	$\begin{gathered} 10 \\ 15 \\ 5 \end{gathered}$	- - -	Ω
loff	Maximum Off－Channel Leakage Current，Any One Channel	$\mathrm{V}_{\mathrm{EE}}=\mathrm{GND}=0$	18	± 100	± 100	± 1000	nA
	Maximum Off－Channel Leakage Current， Common Channel	$\mathrm{V}_{\mathrm{EE}}=\mathrm{GND}=0$	18	± 100	± 100	± 1000	

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\right.$ ，Input $\left.\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20.0 \mathrm{~ns}\right)$

Symbol	Parameter	$\begin{gathered} \hline \mathrm{Vcc} \\ \mathrm{~V} \end{gathered}$	Guaranteed Limit			Unit
			$\begin{gathered} \geq-55 \\ { }^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \leq 25 \\ { }^{\circ} \mathrm{C} \\ \hline \end{gathered}$	$\begin{gathered} \leq 125 \\ { }^{\circ} \mathrm{C} \end{gathered}$	
$\begin{aligned} & \text { tpLH, } \\ & \text { tPHLL } \end{aligned}$	Maximum Propagation Delay，Analog	5	60	60	120	ns
	Input to Analog Output（Figure 1）	10	30	30	60	
	$\mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega$	15	20	20	40	
$\begin{aligned} & \begin{array}{l} \text { tplz, } \end{array} \\ & \text { tphz } \end{aligned}$	Maximum Propagation Delay，Address	5	720	720	1440	ns
	to Analog Output（Figure 2） $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	10	320	320	640	
	$\mathrm{V}_{\mathrm{EE}}=\mathrm{GND}=0$	15	240	240	480	
	$\mathrm{V}_{\mathrm{EE}}=-5 \mathrm{~V}$	5	450	450	900	
$\begin{aligned} & \text { tplz, } \\ & \text { tpzL } \end{aligned}$	Maximum Propagation Delay，Enable to	5	720	720	1440	ns
	Analog Output（Figure 2） $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	10	320	320	640	
	$\mathrm{V}_{\mathrm{EE}}=\mathrm{GND}=0$	15	240	240	480	
	$\mathrm{V}_{\text {EE }}=-10 \mathrm{~V}$	5	400	400	800	
$\begin{aligned} & \hline \text { tpHz, } \\ & \text { tpzz } \end{aligned}$	Maximum Propagation Delay，Enable to	5	450	450	900	ns
	Analog Output（Figure 2） $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	10	210	210	420	
	$\mathrm{V}_{\mathrm{EE}}=\mathrm{GND}=0$	15	160	160	320	
	$\mathrm{V}_{\text {EE }}=-10 \mathrm{~V}$	5	300	300	600	
CIN	Maximum Input Capacitance，Channel－ Select or Enable Inputs	－	7.5	7.5	7.5	pF
CI／o	Maximum Capacitance $\mathrm{V}_{\mathrm{EE}}=\mathrm{GND}=-5 \mathrm{~V}$ Cis Cos Feedthrough $\mathrm{C}_{\text {IOS }}$					pF
		5	－	5	－	
		5	－	30	－	
		5	－	0.2	－	

ADDITIONAL APPLICATION CHARACTERISTICS

$\begin{gathered} \text { Sym } \\ \text { bol } \\ \hline \end{gathered}$	Parameter	Test Conditions	$\begin{gathered} \hline \mathrm{Vcc} \\ \mathrm{~V} \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathrm{V}_{18} \\ & \mathrm{~V} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Limit } \\ \hline 25^{\circ} \mathrm{C} \\ \hline \end{array}$	Unit
BW	Maximum On－Channel Bandwidth or Minimum Frequency Response 3db $)$ 	$\begin{aligned} & V_{E E}=G N D, R_{L}=1 \mathrm{k} \Omega, \\ & 20 \log \left(V_{O S} / V_{I S}\right)=-3 d b \\ & V_{O S} \text { at Common OUT/IN } \end{aligned}$	10	5	20	MHz
		Any Channel Vos at	10	5	60	
	（－40db） Feedthrough Frequency （All Channels OFF）	$\begin{aligned} & V_{\text {EE }}=\mathrm{GND}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{y} 0 \log \left(\mathrm{~V}_{\mathrm{OS}} / \mathrm{V}_{\text {IS }}\right)=-40 \mathrm{db} \\ & \mathrm{~V}_{\mathrm{OS}} \text { at Common OUT/IN } \end{aligned}$	10	5	12	
		$\mathrm{V}_{\text {Os }}$ at Any Channel	10	5	8	
	（－40db） Signal Crosstalk Frequency	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=\mathrm{GND}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & 20 \log \left(\mathrm{~V}_{\mathrm{OS}} / V_{I S}\right)=-40 \mathrm{db} \\ & \text { Between Any } 2 \text { Channels } \end{aligned}$	10	5	3	
THD	Total Harmonic Distortion	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=\mathrm{GND} \\ & \mathrm{f}_{I S}=1 \mathrm{kHz} \text { sine wave } \end{aligned}$	$\begin{gathered} \hline 5 \\ 10 \\ 15 \end{gathered}$	$\begin{aligned} & 2^{*} \\ & 3^{*} \\ & 5^{*} \end{aligned}$	$\begin{aligned} & \hline 0.3 \\ & 0.2 \\ & 012 \end{aligned}$	\％
－	Address－or Enable to Signal Crosstalk	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=\mathrm{GND}, \quad \mathrm{R}_{\mathrm{L}=10 \mathrm{k} \Omega^{\star \star}}^{\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}, \text { Square Wave }} \end{aligned}$	10	－	65	$\begin{gathered} \hline \mathrm{mv} \\ \text { (Peak) } \end{gathered}$

＊Peak－to－peak voltage symmetrical about（ $\left.\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right) / 2$ ．
＊＊Both ends of channel．

Figure 1．Switching Waveforms

Figure 2．Switching Waveforms

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by HTCSEMI manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB MAX4762ETB+ NLAS5123MNR2G PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQEX PI5A392AQE FSA634UCX NX3L1T5157GMZ ADG714BCPZ-REEL7 HT4051ARZ TC4066BP(N,F) DG302BDJ-E3 ADG854BCPZ-REEL7 PI5A100WE PI5A100QEX HV2733FG-G HV2701FG-G HV2301FG-G HV2301FG-G-M931 RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX391CPE+ MAX4744ELB+ MAX4730EXT+T MAX4730ELT+ MAX333AEWP+ BU4066BC MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G NX3L4684TK,115 NX5L2750CGUX NLAS4157DFT2G NLAS4599DFT2G NLASB3157DFT2G NLAST4599DFT2G NLAST4599DTT1G

