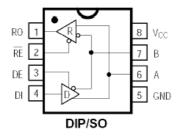
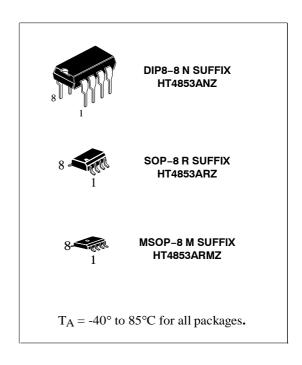


Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers (compatible to ADM4853 (ADI)

Description


The HT4853 is low-power transceivers for RS-485 and RS- 422 communication. IC contains one driver and one receiver. The driver slew rates of the HT4853 is not limited, allowing them to transmit up to 10Mbps.


These transceivers draw between $120\mu A$ and $500\mu A$ of supply current when unloaded or fully loaded with disabled drivers. All parts operate from a single 3.3V supply. Drivers are short-circuit current limited and are protected against excessive power dissipation by thermal shutdown circuitry that places the driver outputs into a high-impedance state. The receiver input has a fail-safe feature that guarantees a logic-high output if the input is open circuit.

Features

- Low Quiescent Current: 120µA
- -7V to +12V Common-Mode Input Voltage Range
- Three-State Outputs
- 80ns Propagation Delays, 5ns Skew
- Half-Duplex Versions Available
- Operate from a Single 3.3V Supply
- Allows up to 32 Transceivers on the Bus
- Data rate: 10 Mbps
- Current-Limiting and Thermal Shutdown for Driver Overload Protection
- Enhanced ESD Specifications:
 - ±15kV IEC61000-4-2 Air Discharge
 - ±8kV IEC61000-4-2 Contact Discharge

Pin Description

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V _{CC}) 7V	Continuous Power Dissipation (T _A = +70°C)
Control Input Voltage -0.3V to 7V	8-Pin Plastic DIP (derate 9.09mW/°C above +70°C) 727mW
Driver Input Voltage (DI) -0.3V to 7V	8-Pin SOP (derate 5.88mW/°C above +70°C) 471mW
Driver Output Voltage (A, B) -7.5V to +12.5V	Operating Temperature Ranges -40°C to +85°C
Receiver Input Voltage (A, B) -7.5V to +12.5V	Storage Temperature Range -65°C to +160°C
Receiver Output Voltage (RO) -0.3V to (V _{CC} +0.3V)	Lead Temperature (soldering, 10sec) +300°C

^{*} Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.

Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

(V_{CC} = 3.3V ±0.3V, T_A = T_{MIN} to T_{MAX} , unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Differential Driver Output (no load)	V _{OD1}				3	V
Differential Driver Output	V _{OD2}	R = 100Ω (RS-422)	1			V
(with load)		R = $54Ω$ (RS-485), Figure 4	0.8			
Change in Magnitude of Driver Differential Output Voltage for Complementary Output States	ΔVοσ	R = 54Ω or 50Ω , Figure 4			0.2	V
Driver Common-Mode Output Voltage	Voc	R = 54Ω or 100Ω , Figure 4			2	V
Change in Magnitude of Driver Common-Mode Output Voltage for Complementary Output States	ΔVος	R = 54Ω or 100Ω , Figure 4			0.2	V
Input High Voltage	VIH	DE, DI, RE	2.0			V
Input Low Voltage	VIL	DE, DI, RE			0.8	V
Input Current	lin1	DE, DI, RE			±2	μA
Input Current	l _{IN2}	DE = 0V; V _{IN} = 12\	/		1.0	mA
(A, B)		$V_{CC} = 0V \text{ or } 3.35V$ $V_{IN} = -7V$	′		-0.8	
Receiver Differential Threshold Voltage	Vтн	-7V ≤ V _{CM} ≤12V	-0.2		0.2	V
Receiver Input Hysteresis	ΔV TH	V _{CM} = 0V		70		mV
Receiver Output High Voltage	Vон	Io = -1.5mA, VID = 200mV	2.5			V
Receiver Output Low Voltage	Vol	Io = 2.5mA, VID = -200mV			0.4	V
Three-State (high impedance) Output Current at Receiver	lozr	0.4V ≤ Vo ≤ 2.4V			±1	μA
Receiver Input Resistance	Rin	-7V ≤ V _{CM} ≤ 12V	12			kΩ

DC ELECTRICAL CHARACTERISTICS (continued)

($Vcc = 3.3V \pm 0.3V$, Ta = Tmin to Tmax, unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
No-Load Supply Current	Icc	DE = V _{CC}		500	800	
(Note 3)		RE = 0V or Vcc		300	400	μA
		DE = 0V] [
Driver Short-Circuit Current,	losd1	-7V ≤ Vo ≤ 12V (Note 4)			250	mA
Vo = High	losd2					
Driver Short-Circuit Current		-7V ≤ Vo ≤12V (Note 4)			250	mA
Vo = Low						
Receiver Short-Circuit Current	losr	0V ≤ Vo ≤ Vcc	±6.5		95	mA
ESD Protection		A, B, Y and Z pins, tested using Human Body Model		±15		kV

SWITCHING CHARACTERISTICS

 $(V_{CC} = 3.3V \pm 0.3V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.})$ (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Driver Input to Output	t PLH	RDIFF = 54Ω	10	80	100	ns
	t PHL	C _{L1} = C _{L2} = 100pF	10	80	100	
Driver Output Skew to Output	tskew	R _{DIFF} = 54Ω , CL1 = CL2 = 100 pF		5	10	ns
Driver Enable to Output High	tzн	C _L = 100pF, S2 closed		55	80	ns
Driver Enable to Output Low	tzl	C _L = 100pF, S1 closed		55	80	ns
Driver Disable Time from Low	tız	C _L = 15pF, S1 closed		60	90	ns
Driver Disable Time from High	t HZ	C _L = 15pF, S2 closed		60	90	ns
$ t_{PLH} - t_{PHL} $ Differential tskD $R_{DIFF} = 54\Omega$		$R_{DIFF} = 54\Omega$		13	20	ns
Pagaivar Input to Output	t_{PLH}	$R_{DIFF} = 54\Omega$	20	120	200	ns
Receiver Input to Output	t_{PHL}	$C_{L1} = C_{L2} = 100pF$	20	120	200	
Receiver Skew t _{PLH} - t _{PHL}		C _{L1} = C _{L2} = 100pF		5	10	
Receiver Enable to Output Low	tzl	C _{RL} = 15pF, S1 closed		50	90	ns
Receiver Enable to Output High	tzн	C _{RL} = 15pF, S2 closed		50	90	ns
Receiver Disable Time from t _{LZ}		C _{RL} = 15pF, S1 closed		40	80	ns
Receiver Disable Time from High	tнz	C _{RL} = 15pF, S2 closed		40	80	ns
Maximum Data Rate fmax			2.5	5	10	Mbps

Note 1: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground unless otherwise specified.

Note 2: All typical specifications are given for V_{CC} =3.3V and T_A =+25°C.

Note 3: Supply current specification is valid for loaded transmitters when DE=0V.

Note 4: Applies to peak current.

TEST CIRCUITS

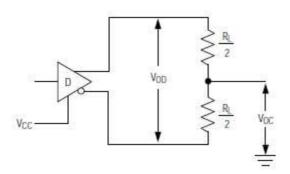


Figure 1. Driver V_{OD} and V_{OC}

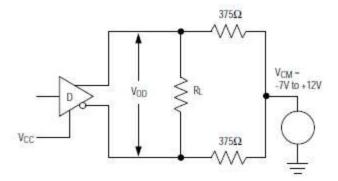


Figure 2. Driver V_{OD} with Varying Common-Mode Voltage

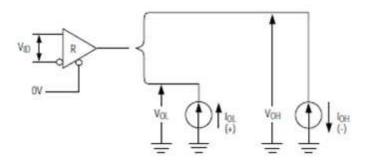


Figure 3. Receiver V_{OH} and V_{OL}

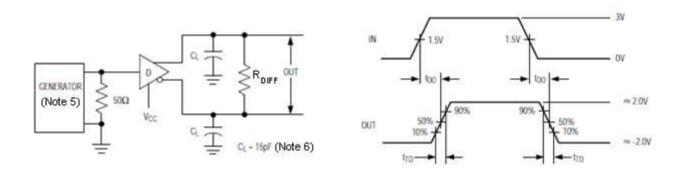


Figure 4. Driver Differential Output Delay and Transition Times

TEST CIRCUITS (continue)

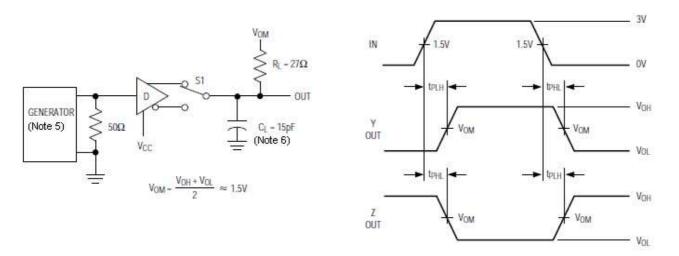


Figure 5. Driver Propagation Times



Figure 6. Driver Enable and Disable Times (t_{PZH}, t_{PSH}, t_{PHZ})

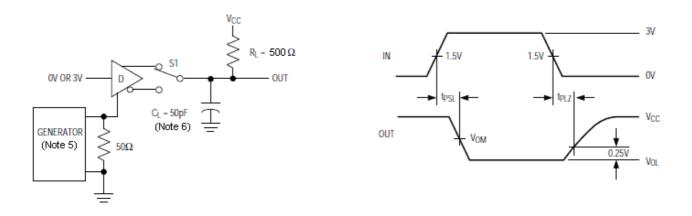


Figure 7. Driver Enable and Disable Times ($t_{PZL},\,t_{PSL},\,t_{PLZ}$)

TEST CIRCUITS (continue)

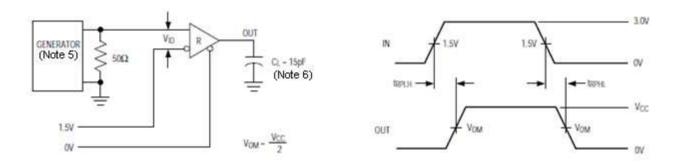


Figure 8. Receiver Propagation Delay

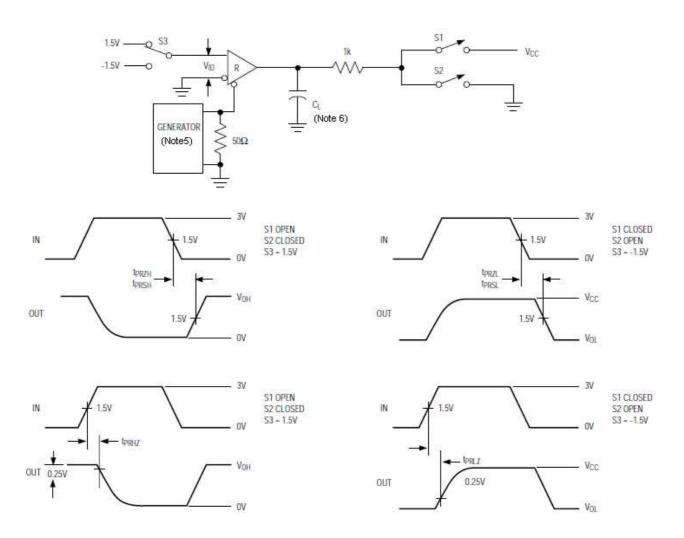


Figure 9. Receiver Enable and Disable Times

Note 5: The input pulse is supplied by a generator with the following characteristics: PRR = 250kHz, 50% duty cycle, tr \leq 6.0ns, Z_O = 50Ω . **Note 6:** C_L includes probe and stray capacitance.

Function Tables

Transmitting						
INPUTS			OUTPUTS X			
RE	DE	DI	Z	Υ		
X	1	1	0	1		
X	1	0	1	0		
0	0	Х	Z	Z		
1	0	Х	Z	Z		

Recei	Receiving					
	INPU	OUTPUTS				
RE	DE	A-B	RO			
0	0	+0.2V	1			
0	0	-0.2V	0			
0	0	open	1			
1	0	Х	Z			

X-don't care Z-high impedance

Typical Information

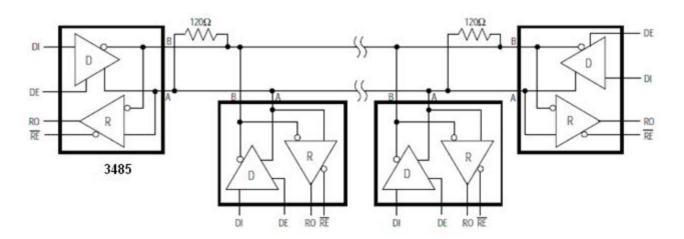


Figure 10. HT4853 Typical RS-485 Network

Driver Output Protection

Excessive output current and power dissipation caused by faults or by bus contention are prevented by two mechanisms. A foldback current limit on the output stage provides immediate protection against short circuits over the whole common-mode voltage range. In addition, a thermal shutdown circuit forces the driver outputs into a high-impedance state if the die temperature rises excessively.

Propagation Delay

Skew time is simply the difference between the low-to-high and high-to-low propagation delay. Small driver/receiver skew times help maintain a symmetrical mark-space ratio (50% duty cycle).

The receiver skew time, |t_{PRLH} - t_{PRHL}|, is under 10ns. The driver skew times are 5ns for the HT4853.

Typical Applications

HT4853 transceivers are designed for bidirectional data communications on multipoint bus transmission lines. Figure 10 shows typical network applications circuits. These parts can also be used as line repeaters, with cable lengths longer than 4000 feet.

To minimize reflections, the line should be terminated at both ends in its characteristic impedance, and stub lengths off the main line should be kept as short as possible.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RS-422/RS-485 Interface IC category:

Click to view products by HTCSEMI manufacturer:

Other Similar products are found below:

SP3494CN-L/TR ISL4486IBZ-T ISL4491EIB ISL4491EIBZ-T ISL81483IB ISL83086EIB ISL83088EIB ISL83488IB ISL8483EIB
ISL8487EIB ISL8489EIB ISL8491IP ADM489AN CA-IF4820HM CS48505M CS485S CS817x22HS MAX485ESA-MS MAX3085
ADM3485EARZ SP3485EEN TP3485ES8 MAX3485ESA ST3485EBDR ADM485ARZ CA-IF4820HD CA-IF1042S-Q1 CA-IF1021D-Q1
CS48520D SN65HVD78EIMM/TR HGX3085ECMM/TR SP3085EIMM/TR HGX3085EIMM/TR SN65HVD72EIMM/TR HGX485EIN
RS1905XK SIT1044QTK THVD1420DR MAX3490EESA+T UM3483EESA HD588L HD568N HD688ADR CA-IS3080WX CA-IS3086WX CS817x20HS CA-IF1044S-Q1 CA-IF4820FS CA-IF4850HS GM3490E