

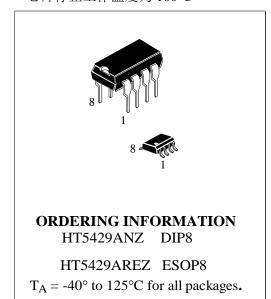
外置功率管3~20V宽输入电压异步升压芯片

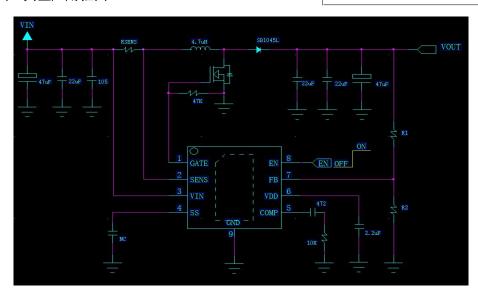
一、产品综述

HT5429 芯片是一款自动调频、最高 600KHz 工作频率、高效率、宽输入电压范围的电流模式异 步升压(BOOST) 芯片,且可调输入限流功能。用 户可灵活地通过外部补偿建立动态环路,获得在所 有条件下最优瞬态性能。

HT5429 芯片还包括欠压锁存,过流保护和过温保护,以防止在输出过载时产生损害。

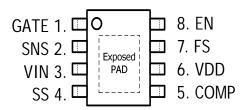
HT5429 采用 ESOP8 小型封装,外围电路简单,功率管外置,可根据实际使用情况,实现更宽功率范围的输出能力。


三、产品应用


- Thunderbolt 接口
- 笔记本电脑和平板电脑
- 热插拔电源管理
- 通信供应电源

四、典型应用框图

二、产品特点


- 完全符合 Intel Thunderbolt Power Spec.
- 开关功率管外置
- PWM 自动动态调频,效率最大化
- · 增强 PWM 模式的快速瞬态响应
- 3.0 V-22V 宽输入电压范围
- 输出电压:5V To 36V
- 芯片停止工作时芯片功耗电流< 1μA
- · 芯片停止工作温度为 160℃

五、采用 ESOP8 封装

六、管脚功能

引脚编号	引脚名称	Description
1	GATE	功率管栅驱动输出端。
2	SENS	SENS 端和 IN 端的电压检测决定了输入电流。
3	IN	输入供应端。
4	SS	软启动控制管脚. 在软启动管脚接一个电容, 该电容被恒流源控制。如果不使用
4	55	软启动电路,将软启动管脚断开。
5	COMP	补偿管脚。为了环路稳定,在该管脚将电容和电阻串联连接到 GND 地面
6	VDD	内部偏置供应端。在尽可能靠近 VDD 端接一个 2.2μf 陶瓷电容器。
7	FB	反馈电压输入。参考电压为 1.25 V。这个管脚连接一个电阻分压器。
		EN 接高电平打开芯片,接低电平关闭芯片。当 EN 管脚不使用时,连接到输入源
8	EN	(如果 VIN>6V,外接 100 kΩ电阻)自动启动。EN 端还可用来作为 Vin 端的 UVLO。
		EN 管脚不能悬空。
9 (Thermal PAD)	GND	芯片接地端。

绝对最大额定参数(1):

IN, SENSE0.5V to +36V
其他管脚0.3V to +6V
EN 偏置电流
结温度150°C
存储温度65°C to +150°C
额定功耗 (TA= +25°C)2.6W ⁽²⁾
VOUT-VIN 压差+10V
高压差环境使用请咨询我司技术支持。

推荐的操作条件 (3)

电源电压 VIN..........3.0V to 20V 输出电压 VOUT......5V to 22V EN 偏置电流.....0mA to 0.3mA 操作临界温度.....40°C to +125°C

注:

1)超过这些额定参数可能损坏设备。

2)最大允许功耗是一个关于最大临界温度 $T_I(MAX)$,过热保护电阻 θ_{IA} ,环境温度 T_A 的函数。在任何环境温度下的最大允许额定功耗计算公式为 $P_D(MAX)$ = $(T_I(MAX)$ - $T_A)/\theta_{IA}$ 。超过了最大允许功耗将导致过温,导致产生过温保护。内部过温保护电路保护芯片免受永久性的损害。

3)芯片不能保证其在操作条件以外运行。

七、芯片电学特性

 V_{IN} = V_{EN} = 3.3V, T_A = +25°C, unless otherwise noted.

Parameter	Symbol	Condition	Min	Тур	Max	Units
工作电压范围宽	VIN		3		22	V
欠压锁定	Vuvlo	VIN Rising		2.90		V
欠压锁定滞后	$\Delta oldsymbol{V}$ uvlo			200		mV
VDD 电压	VDD	C=10nF, VIN=12V -40℃ <t <85℃<="" td=""><td>4.75</td><td>5</td><td>5.25</td><td>V</td></t>	4.75	5	5.25	V
关机电流	ISD	VEN = 0V		0.8		μА
静态电流	IQ	VFB = 1.4V		660		μА
开关频率	FREQ				650	kHz
最低关断时间	Ton	VFB = 0V		100		ns
最低开启时间	Toff	VFB = 1.4V		100		ns
EN 高开启阈值	EN-ON	VEN Rising (switching)		1.584	1.700	V
EN 低电平阈值	EN-OFF	VEN Falling		0.5		V
软启动电流	SS			5.1		μА
FB 阈值电压	VFB		1.23	1.25	1.27	V
FB 偏置电流	IFB			-100		nA
热关机	T _{SD}			150		$^{\circ}$
益 À 由	ICL	RSENSE=5m		11.4		Α
输入电流限制		RSENSE=10m		5.7		А
输入电流限制阈值	VCL	VIN-SENS		57		mV
输入电流限制时间	TCL			500		μs

八、设计说明

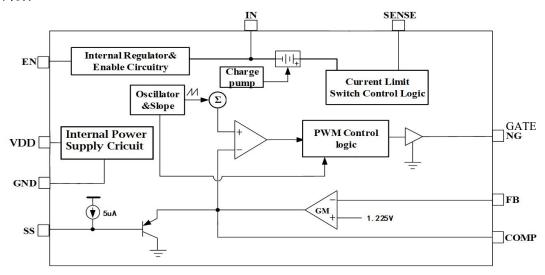


图 1: 功能方框图

参考图 1 的功能方框图,可以理解 HT5429 的工作原理

1、升压功能

HT5429 芯片采用自动调频、峰值电流模式升压结构来调整反馈电压。

在每个周期开时,N沟道 MOSFET 开关管 QB被打开,迫使电感电流上升。同时,开关管 QB源端的电流被测量,该电流被电流检测放大器转换成电压信号,该电压信号和 COMP 端口的电压相比较。COMP 端口的输出电压是 1.25V 的参考电压和反馈电压差值经过误差放大器放大的结果,当二者相等时,PWM 比较器关断开关管QB,打开整流管,使电感的电流流到输出电容上,结果电感电流减小。峰值电感的电流被 COMP 端口的电压调控,COMP 端口的电压反过来受到输出电压调控。因此输出电压被调整使电感电流与负载相匹配。电流模式的调整器结构提高了瞬态响应和控制环路的稳定性。

2、应用说明

元件参考下面的"典型应用"电路

(1) 限流电阻选择

HT5429 芯片具有最大限制电流可调的特点。在输入管脚和 SENSE 管脚之间连接一个电阻 RSENSE 来确定最大限制电流(I_{CL}), V_{CL}典型阈值电压 57mV。

$$I_{CL} = V_{CL} / R_{SENSE}$$

ICL单位是安培(A),RSENSE单位是欧姆(Ohms)。 当过流条件发生时,输入电流值将被限制在I_{CL},该 电流被允许流过限流管一段芯片内部设置的时间,典型 值是 500us。

(2) UVLO 迟滞

HT5429 芯片具有 UVLO 迟滞可调的特点。4uA 下 拉电流沉(current sink)被连接到 EN 管脚相连的电阻分 压器,这意味着供电源 V_{IN} 必须增加一个额外的量来克服 电流沉,额外的电压值等于下拉电流乘以 IN 与 EN 管脚之间的上拉电阻值。一旦 EN 管脚值达到 1.6V,电流沉 将被关断,这会增加 IN 下降时的反向迟滞:

$$UVLO_{Hysteresis} = 4uA \times R_{pullup}$$

同时 IN 启动阈值被下式决定:

$$V_{\mathit{IN}} = 1.5 \times (1 + R_{\mathit{pullup}} \ / \ R_{\mathit{pulldown}}) + \mathit{UVLO}_{\mathit{Hysteres}}$$

(3) 软启动电容的选择

HT5429 芯片包括一个限制 COMP 端口电压的软启动定时器,在启动期间可以阻止过大的输入电流。这阻止了在启动阶段由于输入电流过冲的原因,源电压过早的结束。当 HT5429 芯片上电、使能有效和限流管打开时,一个 5uA 内部电流源给外部的 SS 端的电容充电。随着 SS 端的电容被充电,SS 端的电压随之抬升。当 SS 端的电压达到 250mV,HT5429 芯片开始在 600kHZ 的 1/4 固定开关频率处工作,在 800mV 时,开关频率变为600kHZ。当 SS 端的电压达到 2.5V 时,软启动过程结束。软启动过程限制了电感的电流,强迫输入电流缓慢的达到需要的电流来调整输出电压。

软启动时间有下式决定,单位是 ms。

$$t_{SS} = \frac{C_{ss} \times 2.5}{5}$$

 C_{SS} 是 SS 端口与 GND 之间的软启动电容, t_{SS} 是软启动时间。

(4) 输出电压的设置

这是实际的输出电压,它通过两个检测电阻以串联的形式反馈。典型的反馈电压是1.25V。输出电压方程是:

$$V_{OUT} = V_{REF} \times \left(1 + \frac{R_1}{R_2}\right)$$

R2 是反馈电阻的上电阻。

R3 是反馈电阻的下电阻。

VREF 是反馈电压(典型值是 1.25V)。

为了高的效率,反馈电阻应该在10k以上。

(5) 输出电容的选择

输出电容被用来维持 DC 输出电压。低 ESR 的电容可以让输出电压纹波较小。输出电容的特性也影响调整器控制系统的稳定性。陶瓷电容、钽介质电容、低 ESR 电解电容可以被使用。在使用陶瓷电容的情况下,电容器的在开关频率处的阻值主要由电容值大小决定,因此输出电压纹波与 ESR 关系不大,输出电压纹波大小如下:

$$V_{RIPPLE} = \frac{(1 - \frac{V_{IN}}{V_{OUT}}) \times I_{load}}{C_{OUT} \times F_{SW}}$$

 V_{ripple} 是输出电压纹波, V_{IN} 和 V_{OUT} 是直流输入输出电压, I_{load} 是负载电流, F_{SW} 是 600kHz 的固定开关频率, C_{OUT} 是输出电容的容值。

在钽介质电容或者低的 ESR 电解电容,在开关频率 处 ESR 占主导地位。输出电压纹波可以用下式计算:

$$V_{\mathit{RIPPLE}} = \frac{(1 - \frac{V_{\mathit{LN}}}{V_{\mathit{OUT}}}) \times I_{\mathit{LOAD}}}{C_{\mathit{OUT}} \times F_{\mathit{SW}}} + \frac{I_{\mathit{LOAD}} \times R_{\mathit{ESR}} \times V_{\mathit{OUT}}}{V_{\mathit{IN}}}$$

RESR是输出电容的等效串联电阻。

选择一个输出电容去满足输出电压纹波和设计的负载瞬态要求。一个 4.7uF-22uF 的陶瓷电容适合大多数的应用。

(6) 选择输入电容

AC 纹波电流输入到电感,输入端需要提供电容,从而限制输入源的噪声。一个低 ESR 电容器把在集成电路产生的噪音降到最小值。陶瓷电容器是首选,但是钽介质或 low-ESR 电解电容器也足够了。

选择的输入电容值应大于 10µf。这个电容器可以电解电容、钽介质电容或陶瓷电容。然而,因为它吸收输入开关电流,它需要适合当前足够额定的纹波电流。选择一个 RMS 额定电流大于电感纹波电流的电容器。

以确芯片稳定运行,输入电容器尽可能接近 IC。较

小的高品质的 0.1μf 陶瓷电容器相对于更大的电容器要放置更接近 IC。建议更大的电容器选择钽介质或电解类型电容器。应该把所有的陶瓷电容器都放置在 HT5429 附近。

(7) 电感的选择

当被输入电压驱动时,电感被要求驱动更高的输出 电压。大的电感值导致更小的纹波电流和更低的峰值电 感电流,减小了内部 N 沟道开关的压力。然而,大值电 感有着更大的物理尺寸,更高的串联电阻和更低的饱和 电流。

好的经验规则是允许峰-峰值纹波电流近似为最大输入电流的 30%-50%。确保峰值电感电流在操作占空比下低于电流限制值的 75%, 这是为了阻止由于电流限制调整的损失。确保在最坏的条件和启动条件下, 电感不饱和。需要的电感值由下式计算:

$$L = \frac{V_{IN} \times (V_{OUT} - V_{IN})}{V_{OUT} \times F_{SW} \times \Delta I}$$

I_{LOAD (max)} 是最大负载电流 ΔI 是电感纹波电流的峰峰值 ΔI= (30%-50%) ×ILOAD(MAX) 推荐使用 2.2uH 一体成型功率电感。

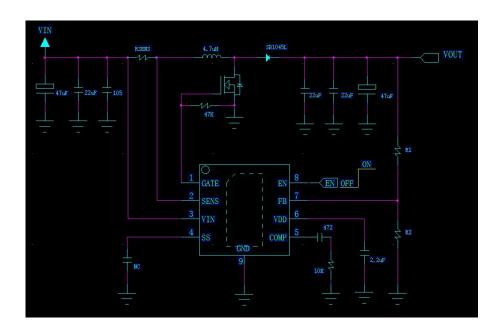
(8) 选择输出整流器

HT5429 在工作过程中,当功率管 MOSFET 关断时, 一个低 VF 的肖特基的整流器可以释放电感电流。

肖特基的反向电压应该大于输出电压。平均电流额 定值应大于预设的最大负载电流,峰值电流必须大于峰 值电感电流。

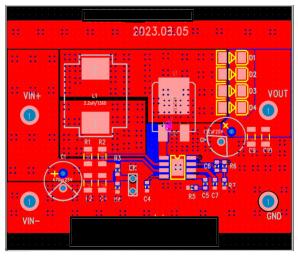
使用肖特基整流器应考虑热耗散问题,选用 DFN 类型是比较理想的,避免器件因结温过高而导致电路损坏。

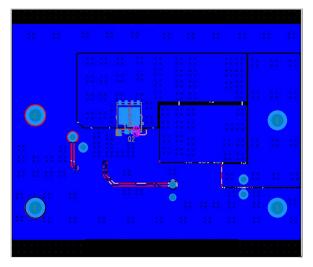
(9) 补偿


跨导误差放大器的输出(COMP)被用来补偿调整器控制系统。系统有两个极点和一个零点稳固。极点 FP1 由跨导放大器的输出阻抗和补偿电容 CCOMP 决定,极点 FP2 由输出电容 COUT 和负载电阻决定,零点 FZ 补偿电容 Ccomp 和补偿电阻 Rcomp 决定。

针对不同的输入电压,输出电压和常使用的输出陶瓷电容阻值,元件选择列表推荐了补偿元件值。陶瓷电容有着极其低的 ESR,因此第二补偿电容(从 COMP 到 GND)不是必须的。为了更快的控制环路和更好的瞬态响应,建议电容 C7 使用表格的推荐值。在测试平台中测试负载阶跃响应过程如下所述,缓慢地增加电阻 R6,确保在负载跳变边缘时输出电压的零振和过冲是最小的。最后,通过计算直流环路增益和交叉频率来检查补偿。交叉频率是环路增益降到 0dB 的频率,可以简单地得到,在每个极点让增益曲线以-20dB/decade 的斜率下降,在每个零点以 20dB/decade 的斜率上升。在最大的输出电流下,为了稳定需要获得足够的相位裕度,这需要交叉频率至少比右半平面零点低 10 倍。

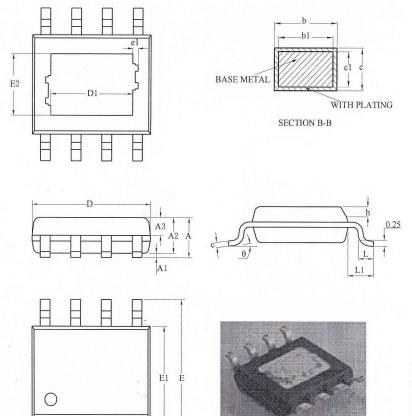
推荐 CCOMP=4700P, RCOMP=4.7K~10K。


九、高效率简化应用电路



十 、 布线指导

- 1.保证功率环路阻抗最低,大电流电路留足线宽,保证足够的过流能力,提升效率。
- 2.GND 环路完整。输入滤波电容、功率管 GND、芯片 GND 和输出滤波电容 GND 环路完整整定,阻抗最低,为环路稳定提供基础。
 - 3.FB 电阻尽量靠近芯片,过长的走线可能会导致环境噪音影响系统稳定性。
 - 4.VIN 与 SENS 采用平行走线,提升电流检测一致性。


十一、布线参考

十一 封装尺寸:

SYMBOL	MILLIMETER				
3 TWBOL	MIN	NOM	MAX		
A	_	_	1.65		
Al	0.05	-	0.15		
A2	1.30	1.40	1.50		
A3	0.60	0.65	0.70		
b	0.39	_	0.47		
b1	0.38	0.41	0.44		
С	0.20	_	0.24		
c1	0.19	0.20	0.21		
D	4.80	4.90	5.00		
Е	5.80	6.00	6.20		
E1	3.80	3.90	4.00		
e	1.27BSC				
h	0.25	_	0.50		
L	0.50	0.60	0.80		
L1	1.05REF				
θ	0		8°		

Size (nm) L/F Size (mil)	DI	E2	el	
90*90	2.09REF	2.09REF	0.16REF	
95*130	3.10REF	2.21REF	0.10REF	

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Isolated DC/DC Converters category:

Click to view products by HTCSEMI manufacturer:

Other Similar products are found below:

PSL486-7LR Q48T30020-NBB0 JAHW100Y1 SPB05C-12 SQ24S15033-PS0S CE-1003 CE-1004 MAU228 J80-0041NL DFC15U48D15

XGS-1205 06322 SPB05B-15 L-DA20 DCG40-5G XKS-2405 DPA423R vi-m13-cw-03 VI-L53-CV 24IBX15-50-0ZG HZZ01204-G

SPU02L-09 SPU02M-09 SPU02N-09 QUINT4-BUFFER/24DC/40 QUINT4-CAP/24DC/5/4KJ 73-551-5039I DFC15U48D15G SEN-6471
1EM AHV2815DF/HBB MI-LC21-IX PAH-48/8.5-D48NB1-C BM3020-7A QRS2050P025K00 CM2320-9EG SKMW15F-05

V300A28H400BF3 TEN 15-1223 TEQ 100-2418WIR TEQ 160-7218WIR R05C05TE05S-R HQA2W085W033V-N07-S AM1SS-2405SJZ

AM2DS-1224SJZ AM2DS-2405DJZ AM10SBO-4824SNZ-B AM15E-2405S-NZ AM2DS-1212SJZ AM30SBO-4805SNZ-B

LT8301ES5#WTRPBF