HTCSETII
海天芯

16V／0．5A－1．5MHzWhite LED／OLED Step－Up Converter

FEATURES

－Adjustable Output Voltage
－Drives OLEDs or White LEDs
－30V High Voltage Switch
－1MHz Switching Frequency
－Tiny Inductors and Capacitors
－Tiny SOT23－5 Package

APPLICATIONS

－OLED Applications
－Cell Phones
－Digital Cameras
－PDAs，Laptops
－MP3 Players
－GPS

GENERAL DESCRIPTION

The HT6311A step－up DC／DC converter is optimized for driving OLEDs or white LEDs．It can provide an output voltage up to 24 V ．The device is capable of driving up to seven LEDs in series from a Lithium－Ion battery，with inherent current matching and uniform brightness．
The HT6311A incorporates a 30 V high voltage switch．The device operates at 1 MHz and allows the use of few external components．The HT6311A is available in the tiny SOT23－5 package．

ORDERING INFORMATION

Figure 1．Typical Application Circuit

Figure 2：Application as White LED Drive

PIN CONFIGURATION

PIN DESCRIPTION

PIN NUMBER	PIN NAME	PIN DESCRIPTION
1	SW	Switch Output．Connect this pin to the inductor and the Schottky diode．To reduce EMI，minimize the PCB trace path between this pin and the input bypass capacitor．
2	G	Ground．
3	FB	Feedback Input．This pin is referenced to 1．24V
4	$\overline{\text { SHDN }}$	Shutdown Control．Connect to a logic high to enable the device．Connect to a logic low to disable the device．Never leave the pin unconnected．
5	IN	Supply Input．Bypass to G with a capacitor 1 $\mu \mathrm{F}$ capacitor or higher．

HTCSEMI
海天芯

ABSOLUTE MAXIMUM RATINGS

（Note：Exceeding these limits may damage the device．Exposure to absolute maximum rating conditions for long periods may affect device reliability．）

PARAMETER	VALUE	UNIT
IN，$\overline{\text { SHDN Voltage }}$	-0.3 to 6	V
SW Voltage	-0.3 to 30	V
FB Voltage	-0.3 to $\mathrm{V}_{\text {IN }}+0.3$	V
Maximum Power Dissipation（derate $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}$ ）	0.4	W
Junction to Ambient Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$	190	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating Junction Temperature	-40 to 150	${ }^{\circ} \mathrm{C}$
Lead Temperature（Soldering， 10 sec）	300	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{I N}=\mathrm{V}_{\text {SHDN }}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ ，unless otherwise specified．$)$

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input Voltage Range			2.5		5.5	V
Feedback Voltage	$\mathrm{V}_{\text {FB }}$	$\mathrm{V}_{1 \mathrm{~N}}=3 \mathrm{~V}$	1.18	1.24	1.30	V
FB Input Current				50		nA
Supply Current		SHDN＝IN		0.7	1.5	mA
Supply Current in Shutdown		SHDN $=\mathrm{G}$		0	1	$\mu \mathrm{A}$
Switching Frequency	$\mathrm{f}_{\text {sw }}$		0.8	1	1.2	MHz
Maximum Duty Cycle	$\mathrm{D}_{\text {MAX }}$		80	85		\％
Switch Current Limit	$\mathrm{I}_{\text {LIM }}$	75\％Duty Cycle		320		mA
Switch On Voltage		$\mathrm{I}_{\mathrm{sw}}=200 \mathrm{~mA}$		350		mV
Switch Leakage Current		$\mathrm{V}_{\mathrm{SW}}=20 \mathrm{~V}, \overline{\mathrm{SHDN}}=\mathrm{G}$			10	$\mu \mathrm{A}$
SHDN Logic High Threshold			1.6			V
SHDN Logic Low Threshold					0.4	V
$\overline{\text { SHDN }}$ Input Current				0	1	$\mu \mathrm{A}$

Figure 3．Functional Block Diagram

FUNCTIONAL DESCRIPTION

The HT6311A is a high efficiency step－up DC／DC converter that employs a current－mode，fixed frequency pulse－width modulation（PWM） architecture with excellent line and load regulation． Figure 3 shows the functional block diagram of the IC．The flip－flop is set at the start of each oscillator cycle，and turns on the power switch．During this on time，the switch current level is sensed and added to a ramp signal，and the resulting sum is compared
with the output of the error amplifier．If the error comparator output is high，the flip－flop is reset and the power switch turns off．Thus，the peak inductor current level is controlled by the error amplifier output，which is integrated from the difference between FB input and the 1.24 V reference point．
The HT6311A operates at a constant switching frequency for output current higher than 4 mA ．If the output current decreases further，the IC will enter frequency modulation mode，resulting in some low frequency ripple．

APPLICATION INFORMATION Inductor Selection

Table 1：
Recommended Inductors

PART NUMBER	CURRENT RATING （MA）	DCR $\mathbf{(\Omega)}$	SUPPLIER
CDRH3D16－220	350	0.5	Sumida
ELJPC220KF	160	4.0	Panasonic
LQH3C220	250	0.7	Murata
LEM2520－220	125	5.5	Taiyo Yuden

A $22 \mu \mathrm{H}$ inductor is typically used for the HT6311A． The inductor should have low DC resistance（DCR） and losses at 1 MHz ．See Table 1 for examples of small size inductors．

Capacitor Selection

The HT6311A only requires a $1 \mu \mathrm{~F}$ input capcitor and a $1 \mu \mathrm{~F}$ output capacitor for most applications． Ceramic capacitors are ideal for these applications． For best performance，use X5R and X7R type ceramic capacitors，which possess less degradation in capacitance over voltage and temperature ranges．

Diode Selection

The HT6311A requires a fast recovery Schottky diode as the rectifier．Select a low forward voltage drop Schottky diode with a forward current（IF） rating of 100 mA to 200 mA and a sufficient peak repetitive reverse voltage（VRRM）．Some suitable Schottkky diodes are listed in Table 2.
Table 2：
Recommended Schottky Diodes

PART NUMBER	IF（MA）	VRRM（V）	SUPPLIER
CMDSH－3	100	30	Central
CMDSH2－3	200	30	Central
BAT54	200	30	Zetex

OLED Application

Figure 1 shows the feedback network necessary to set the output voltage．Select the proper ratio of the two feedback resistors R1 and R2 based on the desired output voltage．Typically choose R1 $=20 \mathrm{k} \Omega$
and determine R2 from the output voltage：

$$
\begin{equation*}
R 2=R 1 \quad V_{\text {OUT }}-1 \tag{1}
\end{equation*}
$$

White LED Application

The LED current is determined by the value of the feedback resistor R1．Because the FB input of the IC is regulated to 1.24 V ，the LED current is determined by $\mathrm{I}_{\mathrm{LED}}=1.24 \mathrm{~V} / \mathrm{R} 1$ ．The value of R 1 for different LED currents is shown in Table 3.

Table 3：
R1 Resistor Value Selection

$\mathbf{I}_{\text {LED }}(\mathbf{M A})$	$\mathbf{R 1}(\mathbf{\Omega})$
5	246
10	124
12	103.3
15	82.7
20	62

To improve efficiency，resistors R2 and R3 can be connected as shown in Figure 4 to lower the effective feedback voltage．
The following are dimming control methods for the HT6311A series white LED application．

1）PWM Signal Driving $\overline{S H D N}$
When a PWM signal is connected to the $\overline{\text { SHDN }}$ pin， the HT6311A is turned on and off alternately under the control of the PWM signal．The current through the LEDs is either zero or full scale．By changing the duty cycle of the PWM signal（typically 1 kHz to 10 kHz ），a controlled average current is obtained．

2）DC Voltage Control
Figure 5 shows an application in which a DC voltage is used to adjust the LED current．The LED current increases when $V_{D C}$ is lower than $V_{F B}$ and decreases when V_{DC} is higher than V_{FB} ．In Figure 5， the LED current range of 15 mA to 0 mA is controlled by $\mathrm{V}_{\mathrm{DC}}=0 \mathrm{~V}$ to 2 V ．

3）Filtered PWM Control
Figure 6 shows an application using a filtered PWM signal to control dimming．

4）Logic Control

A logic signal can be used to adjust the LED current in a discrete step，as shown in Figure 7.

Figure 4．Current Setting for White LED Application

Figure 5．DC Voltage Controlled Dimming

Figure 6．Filtered PWM Controlled Dimming

Figure 7．Logic Controlled Dimming

Start－up and Inrush Current

In order to facilitate quick startup，a soft－start circuit is not incorporated into the HT6311A．When the IC is first turned on with no external soft－start circuit， the peak inrush current is about 400 mA ．Figure 8 shows an implementation for soft－start．When soft－ start and dimming controls are used simultaneously， a low frequency PWM signal（less than 10 kHz ）or the methods in Figures 5， 6 and 7 should be used．

Open－Circuit Protection（White LEDs）

If one of the LEDs is disconnected，the FB voltage drops to zero and the IC switches at maximum duty cycle．This results in a high voltage that may exceed the SW voltage rating．To limit this voltage， use a Zener diode as shown in Figure 9．The Zener voltage must be large than the total forward voltage of the LEDs and the current rating should be higher than 0.1 mA ．

Board Layout

To reduce EMI，minimize the area and path length of all traces connected to SW．Use a ground plane under the switching regulator and connect R1 directly to the G pin of the IC．

Figure 8：Soft－Start Circuit

Figure 9：Open－Circuit Protection

海天芯

TYPICAL PERFORMANCE CHARACTERISTICS

（Circuit of Figure 1，unless otherwise specified．）

Efficiency vs．Output Voltage

Current Limit vs．Duty Cycle

Switching Frequency vs．Temperature

FB Voltage vs．Temperature

TYPICAL PERFORMANCE CHARACTERISTICS CONT＇D

（Circuit of Figure 1，unless otherwise specified．）

Switching Waveform in Discontinuous Mode

Line Step Response

100 $\mu \mathrm{s} / \mathrm{DIV}$

HT6311A

PACKAGE OUTLINE

SOT23－5 PACKAGE OUTLINE AND DIMENSIONS

SYMBOL	DIMENSION IN MILLIMETERS		DIMENSION IN INCHES	
	MIN	MAX	MIN	MAX
A	－	1.450	－	0.057
A1	0.000	0.150	0.000	0.006
A2	0.900	1.300	0.035	0.051
b	0.300	0.500	0.012	0.020
c	0.080	0.220	0.003	0.009
D	2.900 BSC		0.114 BSC	
E	1.600 BSC		0.063 BSC	
E1	2.800 BSC		0．110 BSC	
e	0．950 BSC		0．037 BSC	
e1	1.900 BSC		0.075 BSC	
L	0．60REF		0．024REF	
L1	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Controllers category:
Click to view products by HTCSEMI manufacturer:
Other Similar products are found below :
LV5065VB-TLM-H LV5066V-TLM-H LV5725JAZ-AH NCP1218AD65R2G NCP1234AD100R2G NCP1244BD065R2G NCP1336ADR2G
NCP1587GDR2G NCP6153MNTWG NCP81005MNTWG NCP81101BMNTXG NCP81205MNTXG CAT874-80ULGT3 SJ6522AG
SJE6600 AZ7500BMTR-E1 IR35215MTRPBF SG3845DM NCP4204MNTXG NCP6132AMNR2G NCP81102MNTXG
NCP81203MNTXG NCP81206MNTXG UBA2051C IR35201MTRPBF NCP1240AD065R2G NCP1240FD065R2G
NCP1361BABAYSNT1G NCP1230P100G NX2124CSTR SG2845M NCP1366BABAYDR2G NCP81101MNTXG TEA19362T/1J
NCP81174NMNTXG NCP4308DMTTWG NCP4308DMNTWG NCP4308AMTTWG NCP1366AABAYDR2G NCP1251FSN65T1G NCP1246BLD065R2G iW1760B-10 MB39A136PFT-G-BND-ERE1 NCP1256BSN100T1G LV5768V-A-TLM-E NCP1365BABCYDR2G NCP1365AABCYDR2G MCP1633T-E/MG MCP1633-E/MG NCV1397ADR2G

