Low－Power，Slew－Rate－Limited RS－485／RS－422 Transceivers

Description

The HT6508 is low－power transceivers for RS－ 485 and RS－ 422 communication．IC contains one driver and one receiver．The driver slew rates of the HT6508 is not limited，allowing them to transmit up to 10 Mbps ．
These transceivers draw between $120 \mu \mathrm{~A}$ and $500 \mu \mathrm{~A}$ of supply current when unloaded or fully loaded with disabled drivers．All parts operate from a single 3．3V supply．Drivers are short－circuit current limited and are protected against excessive power dissipation by thermal shutdown circuitry that places the driver outputs into a high－impedance state．The receiver input has a fail－safe feature that guarantees a logic－high output if the input is open circuit．

$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $85^{\circ} \mathrm{C}$ for all packages．

Features

－Low Quiescent Current： $120 \mu \mathrm{~A}$
－-7 V to +12 V Common－Mode Input Voltage Range
－Three－State Outputs
－80ns Propagation Delays，5ns Skew
－Half－Duplex Versions Available
－Operate from a Single 3．3V Supply
－Allows up to 32 Transceivers on the Bus
－Data rate： 10 Mbps
－Current－Limiting and Thermal Shutdown for Driver Overload Protection
－Enhanced ESD Specifications：
$\pm 15 \mathrm{kV}$ IEC61000－4－2 Air Discharge
$\pm 8 \mathrm{kV}$ IEC61000－4－2 Contact Discharge

Pin Descriotion

ABSOLUTE MAXIMUM RATINGS

Supply Voltage（VCc）7V	Continuous Power Dissipation（ $\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$ ）
Control Input Voltage－0．3V to 7V	8－Pin Plastic DIP（derate $9.09 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\left.+70^{\circ} \mathrm{C}\right) 727 \mathrm{~mW}$
Driver Input Voltage（DI）－0．3V to 7V	8 －Pin SOP（derate $5.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ ） 471 mW
Driver Output Voltage（A，B）－7．5V to＋12．5V	Operating Temperature Ranges $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Receiver Input Voltage（A，B）-7.5 V to +12.5 V	Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
Receiver Output Voltage（RO）－0．3V to（ $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$ ）	Lead Temperature（soldering，10sec）$+300^{\circ} \mathrm{C}$

＊Stresses beyond those listed under＂absolute maximum ratings＂may cause permanent damage to the device． These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under＂recommended operating conditions＂is not implied．
Exposure to absolute－maximum－rated conditions for extended periods may affect device reliability．

DC ELECTRICAL CHARACTERISTICS

（ $\mathrm{V}_{\text {CC }}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ ，unless otherwise noted．）（Notes 1，2）

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Differential Driver Output（no load）	Vod1					3	V
Differential Driver Output （with load）	Vod2	$\mathrm{R}=100 \Omega$（RS－422）		1			V
		$\mathrm{R}=54 \Omega$（RS－485），Figure 4		0.8			
Change in Magnitude of Driver Differential Output Voltage for Complementary Output States	$\Delta \mathrm{VoD}$	$R=54 \Omega$ or 50Ω ，Figure 4				0.2	V
Driver Common－Mode Output Voltage	Voc	$\mathrm{R}=54 \Omega$ or 100Ω ，Figure 4				2	V
Change in Magnitude of Driver Common－Mode Output Voltage for Complementary Output States	$\Delta \mathrm{Voc}$	$\mathrm{R}=54 \Omega$ or 100Ω ，Figure 4				0.2	V
Input High Voltage	VIH	DE，DI，RE		2.0			V
Input Low Voltage	VIL	DE，DI，RE				0.8	V
Input Current	lin1	DE，DI，RE				± 2	$\mu \mathrm{A}$
Input Current$(\mathrm{A}, \mathrm{~B})$	lin2	$\begin{aligned} & \mathrm{DE}=0 \mathrm{~V} ; \\ & \mathrm{Vcc}=0 \mathrm{~V} \text { or } 3.35 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$			1.0	mA
			$\mathrm{V}_{\text {IN }}=-7 \mathrm{~V}$			－0．8	
Receiver Differential Threshold Voltage	$V_{\text {TH }}$	$-7 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq 12 \mathrm{~V}$		－0．2		0.2	V
Receiver Input Hysteresis	$\Delta \mathrm{V}_{\text {TH }}$	V см $=0 \mathrm{~V}$			70		mV
Receiver Output High Voltage	Vor	$\mathrm{lo}=-1.5 \mathrm{~mA}, \mathrm{VID}=200 \mathrm{mV}$		2.5			V
Receiver Output Low Voltage	Vol	$\mathrm{lo}=2.5 \mathrm{~mA}, \mathrm{VID}=-200 \mathrm{mV}$				0.4	V
Three－State（high impedance） Output Current at Receiver	lozR	$0.4 \mathrm{~V} \leq \mathrm{Vo}_{0} \leq 2.4 \mathrm{~V}$				± 1	$\mu \mathrm{A}$
Receiver Input Resistance	RIN	$-7 \mathrm{~V} \leq \mathrm{V}$ см $\leq 12 \mathrm{~V}$		12			k Ω

DC ELECTRICAL CHARACTERISTICS（continued）

（ $\mathrm{Vcc}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max，}}$ unless otherwise noted．）（Notes 1，2）

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
No－Load Supply Current （Note 3）	Icc	$\mathrm{DE}=\mathrm{V}_{\mathrm{CC}}$		500	800	
		$\overline{\mathrm{RE}}=0 \mathrm{~V}$ or Vcc		300	400	$\mu \mathrm{A}$
		DE $=0 \mathrm{~V}$				
Driver Short－Circuit Current，	IosD1	$-7 \mathrm{~V} \leq \mathrm{Vo} \leq 12 \mathrm{~V}$（Note 4）			250	mA
$\text { Vo }=\mathrm{High}$ Driver Short－Circuit Current	Iosd2	$-7 \mathrm{~V} \leq \mathrm{Vo}^{\text {s }} 12 \mathrm{~V}$（Note 4）			250	mA
$\begin{aligned} & \text { Vo = Low } \\ & \text { Receiver Short-Circuit Current } \end{aligned}$	losr	$\mathrm{OV} \leq \mathrm{Vo} \leq \mathrm{Vcc}$	± 6.5		95	mA
ESD Protection		A, B, Y and Z pins，tested using Human Body Model		± 15		kV

SWITCHING CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {min }}\right.$ to $\mathrm{T}_{\text {max，}}$ unless otherwise noted．）（Notes 1，2）

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Driver Input to Output	tplh	RDIFF $=54 \Omega$	10	80	100	ns
	tphL	$\mathrm{CLL}^{\prime}=\mathrm{CL}^{2}=100 \mathrm{pF}$	10	80	100	
Driver Output Skew to Output	tskew	$\begin{aligned} & \operatorname{RDIFF}=54 \Omega, \mathrm{CL} 1=\mathrm{CL} 2= \\ & 100 \mathrm{pF} \end{aligned}$		5	10	ns
Driver Enable to Output High	tzH	CL＝100pF，S2 closed		55	80	ns
Driver Enable to Output Low	tzL	$\mathrm{CL}=100 \mathrm{pF}$ ，S1 closed		55	80	ns
Driver Disable Time from Low	tız	$\mathrm{CL}=15 \mathrm{pF}$ ，S1 closed		60	90	ns
Driver Disable Time from High	thz	$\mathrm{CL}=15 \mathrm{pF}$ ，S2 closed		60	90	ns
｜ $\mathrm{t}_{\text {PLH }}-\mathrm{t}_{\text {PHL }}$｜Differential	tskd	RDIFF $=54 \Omega$		13	20	ns
Receiver Input to Output	$\mathrm{t}_{\text {PLH }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{DIFF}}=54 \Omega \\ & \mathrm{C}_{\mathrm{L} 1}=\mathrm{C}_{\mathrm{L} 2}=100 \mathrm{pF} \end{aligned}$	20	120	200	ns
	$\mathrm{t}_{\text {PHL }}$		20	120	200	
Receiver Skew｜ $\mathrm{t}_{\text {PLH }}-\mathrm{t}_{\text {PHL }}$｜		$\mathrm{CLL}^{1}=\mathrm{CL}^{2}=100 \mathrm{pF}$		5	10	
Receiver Enable to Output Low	tzL	$\mathrm{C}_{\mathrm{RL}}=15 \mathrm{pF}$ ，S1 closed		50	90	ns
Receiver Enable to Output High	tzH	$\mathrm{C}_{\mathrm{RL}}=15 \mathrm{pF}$ ，S2 closed		50	90	ns
Receiver Disable Time from Low	tız	$\mathrm{C}_{\mathrm{RL}}=15 \mathrm{pF}$ ，S1 closed		40	80	ns
Receiver Disable Time from High	thz	$\mathrm{C}_{\mathrm{RL}}=15 \mathrm{pF}, \mathrm{S} 2$ closed		40	80	ns
Maximum Data Rate	fmax		2.5	5	10	Mbps

Note 1：All currents into device pins are positive；all currents out of device pins are negative．All voltages are referenced to device ground unless otherwise specified．
Note 2：All typical specifications are given for $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ．
Note 3：Supply current specification is valid for loaded transmitters when DE＝0V．
Note 4：Applies to peak current．

TEST CIRCUITS

Figure 1．Driver V_{OD} and $\mathrm{V}_{O C}$

Figure 2．Driver V_{OD} with Varying Common－Mode Voltage

Figure 3．Receiver V_{OH} and V_{OL}

Figure 4．Driver Differential Output Delay and Transition Times

TEST CIRCUITS（continue）

Figure 5．Driver Propagation Times

Figure 6．Driver Enable and Disable Times（ $\mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\mathrm{PSH}}, \mathrm{t}_{\mathrm{PHZ}}$ ）

Figure 7．Driver Enable and Disable Times（ $\left.\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PSL }}, \mathrm{t}_{\text {PLZ }}\right)$

TEST CIRCUITS（continue）

Figure 8．Receiver Propagation Delay

SI CLOSED S2 OPEN S3 --1.5 V

Figure 9．Receiver Enable and Disable Times
Note 5：The input pulse is supplied by a generator with the following characteristics：PRR $=250 \mathrm{kHz}, 50 \%$ duty cycle， $\mathrm{tr} \leq 6.0 \mathrm{~ns}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$ ．
Note 6： C_{L} includes probe and stray capacitance．

Function Tables

Transmitting				
INPUTS			OUTPUTS X	
RE	DE	DI	Z	Y
X	1	1	0	1
X	1	0	1	0
0	0	X	Z	Z
1	0	X	Z	Z

Receiving			
INPUTS			OUTPUTS
RE	DE	A－B	RO
0	0	+0.2 V	1
0	0	-0.2 V	0
0	0	open	1
1	0	X	Z

X－don＇t care
Z－high impedance

Typical Information

Figure 10．HT6508 Typical RS－485
Network

Driver Output Protection

Excessive output current and power dissipation caused by faults or by bus contention are prevented by two mechanisms．A foldback current limit on the output stage provides immediate protection against short circuits over the whole common－mode voltage range．In addition，a thermal shutdown circuit forces the driver outputs into a high－impedance state if the die temperature rises excessively．

Propagation Delay

Skew time is simply the difference between the low－to－high and high－to－low propagation delay．Small driver／receiver skew times help maintain a symmetrical mark－space ratio（ 50% duty cycle）．
The receiver skew time，$\left|t_{\text {PRLH }}-t_{\text {PRHL }}\right|$ ，is under 10ns．The driver skew times are 5 ns for the HT6508．

Typical Applications

HT6508 transceivers are designed for bidirectional data communications on multipoint bus transmission lines．Figure 10 shows typical network applications circuits．These parts can also be used as line repeaters，with cable lengths longer than 4000 feet．
To minimize reflections，the line should be terminated at both ends in its characteristic impedance，and stub lengths off the main line should be kept as short as possible．

（DIP8）

\section*{| $\phi \mid 0.25(0.010)(M)$ | T |
| :--- | :--- |}

NOTES：

1．Dimensions＂A＂，＂B＂do not include mold flash or protrusions．
Maximum mold flash or protrusions $0.25 \mathrm{~mm}(0.010)$ per side．

	Dimension，mm	
Symbol	MIN	MAX
\mathbf{A}	8.51	10.16
\mathbf{B}	6.1	7.11
\mathbf{C}		5.33
\mathbf{D}	0.36	0.56
\mathbf{F}	1.14	1.78
\mathbf{G}	2.54	
\mathbf{H}	7.62	
\mathbf{J}	0°	10°
\mathbf{K}	2.92	3.81
\mathbf{L}	7.62	8.26
\mathbf{M}	0.2	0.36
\mathbf{N}	0.38	

（SOP8）

NOTES：

1．Dimensions A and B do not include mold flash or protrusion．
2．Maximum mold flash or protrusion $0.15 \mathrm{~mm}(0.006)$ per side for A；for B－0．25 mm（0．010）per side．

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RS-422/RS-485 Interface IC category:
Click to view products by HTCSEMI manufacturer:
Other Similar products are found below :
SP3494CN-L/TR CA-IS3082WX CA-IS3088WX CA-IS3092W XR33038IDTR-F SIT3485ISO XR3077XID-F ADM2687EBRIZ-RL7 SP483EEN-L/TR SN75LBC175ADR SN65ALS1176DR MAX489CPD+ MAX3080CPD+ MXL1535EEWI+ SP483EN-L/TR SP483CNL/TR XR3072XID-F DS16F95J/883 SP1485EEN-L/TR MAX490ESA+T ISL3179EIUZ-T7A ISL3179EIRZ-T7A ISL3179EFRZ-T7A XR33193ESBTR XR33194ESBTR XR3074XID-F XR3082XID-F SP3490EN-L ADM485JN ADM1485JNZ ADM2687EBRIZ ADM3491ARZ-REEL7 ADM489ABRZ ADM3073EARZ ADM4850ACPZ-REEL7 ADM4853ACPZ-REEL7 ADM485ANZ ADM3072EARZ-REEL7 ADM3075EARZ-REEL7 ADM3486EARZ-REEL7 ADM3493ARZ-REEL7 ADM4856ARZ-REEL7 ADM487EARZ-REEL7 ADM1485JRZ-REEL ADM3490ARZ-REEL7 ADM3490EARZ-REEL7 ADM1485ARZ-REEL ADM3071EARZ ADM3483EARZ-REEL7 ADM3485EARZ-REEL7

