HT74922\＆HT74923 16－Key Encoder \＆20－Key Encoder

General Description

The HT74922 and HT74923 CMOS key encoders pro－vide all the necessary logic to fully encode an array of SPST switches．The keyboard scan can be implemented by either an external clock or external capacitor．These encoders also have on－chip pull－up devices which permit switches with up to $50 \mathrm{k} \Omega$ on resistance to be used．No diodes in the switch array are needed to eliminate ghost switches．The internal debounce circuit needs only a single external capacitor and can be defeated by omitting the capacitor．A Data Available output goes to a high level when a valid keyboard entry has been made．The Data Available output returns to a low level when the entered key is released，even if another key is depressed．The Data Available will return high to indicate acceptance of the new key after a normal debounce period；this two－key roll－over is provided between any two switches．
An internal register remembers the last key pressed even after the key is released．The 3－STATE outputs provide for easy expansion and bus operation and are LPTTL compat－ ible．

Features

－ $50 \mathrm{k} \Omega$ maximum switch on resistance
－On or off chip clock
■ On－chip row pull－up devices
－ 2 key roll－over
－Keybounce elimination with single capacitor
－Last key register at outputs
■ 3－STATE output LPTTL compatible
－Wide supply range： 3 V to 15 V
■ Low power consumption

Connection Diagrams

Connection Diagrams

 （Continued）

Truth Tables

（Pins 12 through 19）									
Switch Position		12	13	14	15	16	17	18	19
		Y4，X1	Y4，X2	Y4，X3	Y4，X4	Y5（Note 1），X1	Y5（Note 1），X2	Y5（Note 1），X3	Y5（Note 1），X4
D									
A	A	0	1	0	1	0	1	0	1
T	B	0	0	1	1	0	0	1	1
A	C	1	1	1	1	0	0	0	0
0	D	1	1	1	1	0	0	0	0
U	E（Note 1）	0	0	0	0	1	1	1	1
T									

Note 1：Omit for HT74922

Block Diagram

Absolute Maximum Ratings ${ }_{(\text {Note 2）}}$
Voltage at Any Pin
$\mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{Cc}}+0.3 \mathrm{~V}$
Operating Temperature Range
HT74922，HT74923
Storage Temperature Range

$$
-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}
$$

$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation（ P_{D} ）

Dual－In－Line
Small Outline
Operating V_{CC} Range
$V_{C c}$
Lead Temperature
（Soldering， 10 seconds）

700 mW
500 mW
3 V to 15 V 18 V
$260^{\circ} \mathrm{C}$

Note 2：＂Absolute Maximum Ratings＂are those values beyond which the safety of the device cannot be guaranteed．Except for＂Operating Tempera－ ture Range＂they are not meant to imply that the devices should be oper－ ated at these limits．The table of＂Electrical Characteristics＂provides conditions for actual device operation．

DC Electrical Characteristics

Min／Max limits apply across temperature range unless otherwise specified

Symbol	Parameter	Conditions	Min	Typ	Max	Units
CMOS TO	MOS					
$\mathrm{V}_{\text {T＋}}$	Positive－Going Threshold Voltage at Osc and KBM Inputs	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}} \geq 0.7 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}} \geq 1.4 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}} \geq 2.1 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 6.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & \hline 3.6 \\ & 6.8 \\ & 10 \end{aligned}$	$\begin{gathered} \hline 4.3 \\ 8.6 \\ 12.9 \end{gathered}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {T－}}$	Negative－Going Threshold Voltage at Osc and KBM Inputs	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}} \geq 0.7 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}} \geq 1.4 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}} \geq 2.1 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \hline 0.7 \\ & 1.4 \\ & 2.1 \end{aligned}$	$\begin{gathered} \hline 1.4 \\ 3.2 \\ 5 \end{gathered}$	$\begin{aligned} & \hline 2.0 \\ & 4.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {IN（1）}}$	Logical＂1＂Input Voltage， Except Osc and KBM Inputs	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{gathered} \hline 3.5 \\ 8.0 \\ 12.5 \end{gathered}$	$\begin{gathered} \hline 4.5 \\ 9 \\ 13.5 \end{gathered}$		$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {IN }(0)}$	Logical＂0＂Input Voltage， Except Osc and KBM Inputs	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V} \end{aligned}$		$\begin{gathered} \hline 0.5 \\ 1 \\ 1.5 \end{gathered}$	$\begin{gathered} \hline 1.5 \\ 2 \\ 2.5 \end{gathered}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
I_{rp}	Row Pull－Up Current at Y1，Y2， Y3，Y4 and Y5 Inputs	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.1 \mathrm{~V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V} \end{aligned}$		$\begin{gathered} \hline-2 \\ -10 \\ -22 \end{gathered}$	$\begin{aligned} & \hline-5 \\ & -20 \\ & -45 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
$\mathrm{V}_{\text {OUT（1）}}$	Logical＂1＂Output Voltage	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-10 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-10 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-10 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} \hline 4.5 \\ 9 \\ 13.5 \end{gathered}$			$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {OUT（0）}}$	Logical＂0＂Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mu \mathrm{~A} \end{aligned}$			$\begin{gathered} 0.5 \\ 1 \\ 1.5 \end{gathered}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{R}_{\text {on }}$	Column＂ON＂Resistance at X1，X2，X3 and X4 Outputs	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 500 \\ & 300 \\ & 200 \\ & \hline \end{aligned}$	$\begin{gathered} 1400 \\ 700 \\ 500 \\ \hline \end{gathered}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \end{aligned}$
I_{CC}	$\begin{aligned} & \text { Supply Current } \\ & \text { Osc at OV, (one Y low) } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline 0.55 \\ & 1.1 \\ & 1.7 \end{aligned}$	$\begin{aligned} & \hline 1.1 \\ & 1.9 \\ & 2.6 \end{aligned}$	$\begin{aligned} & \hline \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
$\overline{I N(1)}$	Logical＂1＂Input Current at Output Enable	$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=15 \mathrm{~V}$		0.005	1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\operatorname{IN}(0)}$	Logical＂0＂Input Current at Output Enable	$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$	－1．0	－0．005		$\mu \mathrm{A}$
CMOS／LPTTL INTERFACE						
$\mathrm{V}_{\text {IN（1）}}$	Except Osc and KBM Inputs	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}-1.5$			V
$\mathrm{V}_{\text {IN }(0)}$	Except Osc and KBM Inputs	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$			0.8	V
$\mathrm{V}_{\text {OUT（1）}}$	Logical＂1＂Output Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=-360 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \mathrm{l}_{\mathrm{O}}=-360 \mu \mathrm{~A} \end{aligned}$	2.4			V

DC Electrical Characteristics

（Continued）

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{V}_{\text {OUT }(0)}$	Logical＂0＂Output Voltage	$\mathrm{I}_{\mathrm{O}}=-360 \mu \mathrm{~A}$				
		$\mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}$				
$\mathrm{I}_{\mathrm{O}}=-360 \mu \mathrm{~A}$						

OUTPUT DRIVE（See Family Characteristics Data Sheet）（Short Circuit Current）

$I_{\text {SOURCE }}$	Output Source Current （P－Channel）	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	－1．75	－3．3	mA
$I_{\text {SOURCE }}$	Output Source Current （P－Channel）	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	－8	－15	mA
$\mathrm{I}_{\text {SINK }}$	Output Sink Current （N－Channel）	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	1.75	3.6	mA
$\mathrm{I}_{\text {SINK }}$	Output Sink Current （N－Channel）	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	8	16	mA

AC Electrical Characteristics（Note 3）

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ ，unless otherwise noted

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{t}_{\text {pd0 }}, \mathrm{t}_{\mathrm{pd} 1}$	Propagation Delay Time to Logical＂0＂or Logical＂1＂ from D．A．	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \text { (Figure 1) } \\ & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 60 \\ & 35 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & 150 \\ & 80 \\ & 60 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{\text {OH，}} \mathrm{t}_{1 \mathrm{H}}$	Propagation Delay Time from Logical＂0＂or Logical＂1＂ into High Impedance State	$\begin{aligned} & R_{L}=10 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \text { (Figure 2) } \\ & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, R_{\mathrm{L}}=10 \mathrm{k} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V} \end{aligned}$		$\begin{array}{r} 80 \\ 65 \\ 50 \\ \hline \end{array}$	$\begin{aligned} & 200 \\ & 150 \\ & 110 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{\mathrm{H} 0}, \mathrm{t}_{\mathrm{H} 1}$	Propagation Delay Time from High Impedance State to a Logical＂0＂or Logical＂1＂	$\begin{aligned} & R_{L}=10 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \text { (Figure 2) } \\ & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V} \end{aligned}$		$\begin{array}{r} 100 \\ 55 \\ 40 \\ \hline \end{array}$	$\begin{gathered} 250 \\ 125 \\ 90 \\ \hline \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance	Any Input（Note 4）		5	7.5	pF
Cout	3－STATE Output Capacitance	Any Output（Note 4）		10		pF

Note 3：AC Parameters are guaranteed by DC correlated testing．
Note 4：Capacitance is guaranteed by periodic testing．

Switching Time Waveforms

$T 1 \approx T 2 \approx R C, T 3 \approx 0.7 R C$ ，where $R \approx 10 k$ and C is external capacitor at KBM input．
FIGURE 1.

FIGURE 2.

Typical Performance Characteristics

Typical $I_{r p}$ vs $V_{\text {IN }}$ at Any Y Input

Typical Applications

Synchronous Handshake（HT74922）

The keyboard may be synchronously scanned by omitting the capacitor at osc．and driving osc．directly if the system clock rate is lower than 10 kHz

Typical $R_{\text {on }}$ vs $V_{\text {OUT }}$ at Any X Output

Typical Debounce Period vs $\mathbf{C}_{\text {KBM }}$

Synchronous Data Entry Onto Bus（HT74922）

[^0]
Asynchronous Data Entry Onto Bus（HT74922）

Outputs are in 3－STATE until key is pressed，then data is placed on bus．When key is released，outputs return to 3－STATE．
Expansion to 32 Key Encoder（HT74922）

Theory of Operation

The HT74922／HT74923 Keyboard Encoders imple－ ment all the logic necessary to interface a 16 or 20 SPST key switch matrix to a digital system．The encoder will con－ vert a key switch closer to a 4（HT74922）or 5（HT74923）bit nibble．The designer can control both the keyboard scan rate and the key debounce period by alter－ ing the oscillator capacitor， $\mathrm{C}_{\text {OSE }}$ ，and the key bounce mask capacitor， $\mathrm{C}_{\text {MSK }}$ ．Thus，the HT74922／HT74923＇s performance can be optimized for many keyboards．
The keyboard encoders connect to a switch matrix that is 4 rows by 4 columns（HT74922）or 5 rows by 4 columns （HT74923）．When no keys are depressed，the row inputs are pulled high by internal pull－ups and the column outputs sequentially output a logic＂ 0 ＂．These outputs are open drain and are therefore low for 25% of the time and other－ wise off．The column scan rate is controlled by the oscilla－ tor input，which consists of a Schmitt trigger oscillator，a 2－ bit counter，and a $2-4$－bit decoder．
When a key is depressed，key 0 ，for example，nothing will happen when the X 1 input is off，since Y 1 will remain high． When the X 1 column is scanned， X 1 goes low and Y 1 will go low．This disables the counter and keeps X 1 low． Y 1
going low also initiates the key bounce circuit timing and locks out the other Y inputs．The key code to be output is a combination of the frozen counter value and the decoded Y inputs．Once the key bounce circuit times out，the data is latched，and the Data Available（DAV）output goes high．
If，during the key closure the switch bounces， Y 1 input will go high again，restarting the scan and resetting the key bounce circuitry．The key may bounce several times，but as soon as the switch stays low for a debounce period，the closure is assumed valid and the data is latched．
A key may also bounce when it is released．To ensure that the encoder does not recognize this bounce as another key closure，the debounce circuit must time out before another closure is recognized．
The two－key roll－over feature can be illustrated by assum－ ing a key is depressed，and then a second key is depressed．Since all scanning has stopped，and all other Y inputs are disabled，the second key is not recognized until the first key is lifted and the key bounce circuitry has reset．
The output latches feed 3－STATE，which is enabled when the Output Enable（ $\overline{\mathrm{OE}})$ input is taken low．

20－Lead Small Outline Integrated Circuit（SOIC），JEDEC MS－013，0．300＂Wide Package Number M20B

Physical Dimensions inches（millimeters）unless otherwise noted（Continued）

3MS TO JEDEC REGISTRATION MS－001，
JNS AC，DATED 6／1993．
ILING DIMENSIONS ARE IN INCHES
NCE DIMENSIONS ARE IN MILLIMETERS．
OT INCLUDE MOLD FLASH OR PROTRUSIONS．
ASH OR PROTRUSIONS SHALL NOT EXCEED
HES OR 0.25 MM ．
CTT INSI IIDE DAMARAR DROTRIIGIONG

Physical Dimensions inches（millimeters）unless otherwise noted（Continued）

20－Lead Plastic Dual－In－Line Package（PDIP），JEDEC MS－001，0．300 Wide Package Number N20A

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Encoders, Decoders, Multiplexers \& Demultiplexers category:
Click to view products by HTCSEMI manufacturer:
Other Similar products are found below :
MC74HC163ADTG 74HC253N NLV74VHC1G01DFT1G NLVHC4851ADTR2G NLVHCT4851ADTR2G NLV14051BDR2G
NLV74HC238ADTR2G COMX-CAR-210 SN74LS148N 74HC138D 8CA3052APGGI8 TC74HC4051AF(EL,F) PI3B3251LE PI3B3251QE 74VHC4052AFT(BJ) PI3PCIE3415AZHEX NLV74HC4851AMNTWG MC74LVX257DG M74HCT4851ADWR2G NL7SZ19DBVT1G PI5C3253LEX HT74923ARWZ HT74922ARWZ MC74HC151ADTG MC74LVX257DTR2G 74VHC238FT(BJ) 74VHC4066AFT(BJ) 74VHCT138AFT(BJ) NC7SZ157P6X NLVHC4851ADR2G SN74HC148AN 74HC4052D(BJ) 74VHC138MTC COMX-CAR-P1 8550401EA 74VHC138MTCX 74HC138D(BJ) SN74LS157NE4 MC74LCX158DTR2G NL7SZ19DFT2G M74HC157RM13TR M74HC238RM13TR 74AHCT138T16-13 74LCX138FT(AJ) 74LCX157FT(AJ) NL7SZ18MUR2G 74VHC139FT(BJ) 74VHC157FT(BJ) TC74HC4052AFT-EL SN54LS139AJ

[^0]: Outputs are enabled when valid entry is made and go into 3－STATE when key is released．

 The keyboard may be synchronously scanned by omitting the capacitor at osc．and driving osc．directly if the system clock rate is lower than 10 kHz

