CMOS Voltage Converters

The Intersil HT7660B and HT7660A are monolithic CMOS power supply circuits which offer unique performance advantages over previously available devices．The HT7660B performs supply voltage conversions from positive to negative for an input range of +1.5 V to +10.0 V resulting in complementary output voltages of -1.5 V to－ 10.0 V and the HT7660A does the same conversions with an input range of +1.5 V to +12.0 V resulting in complementary output voltages of -1.5 V to -12.0 V ．Only 2 noncritical external capacitors are needed for the charge pump and charge reservoir functions．The HT7660B and HT7660A can also be connected to function as voltage doublers and will generate output voltages up to +18.6 V with $\mathrm{a}+10 \mathrm{~V}$ input．
Contained on the chip are a series DC supply regulator，RC oscillator，voltage level translator，and four output power MOS switches．A unique logic element senses the most negative voltage in the device and ensures that the output N －Channel switch source－substrate junctions are not forward biased．This assures latchup free operation．

The oscillator，when unloaded，oscillates at a nominal frequency of 10 kHz for an input supply voltage of 5.0 V ． This frequency can be lowered by the addition of an external capacitor to the＂OSC＂terminal，or the oscillator may be overdriven by an external clock．
The＂LV＂terminal may be tied to GROUND to bypass the internal series regulator and improve low voltage（LV） operation．At medium to high voltages $(+3.5 \mathrm{~V}$ to +10.0 V for the HT7660B and +3.5 V to +12.0 V for the HT7660A），the LV pin is left floating to prevent device latchup．

Pinouts

HT7660B，HT7660A
（8 LD PDIP，SOIC） TOP VIEW

Features

－Simple Conversion of +5 V Logic Supply to $\pm 5 \mathrm{~V}$ Supplies
－Simple Voltage Multiplication（VOUT $=(-) \mathrm{nV}$ IN $)$
－Typical Open Circuit Voltage Conversion Efficiency 99．9\％
－Typical Power Efficiency 98\％
－Wide Operating Voltage Range
－HT7660B
1.5 V to 10.0 V
－HT7660A
1.5 V to 12.0 V
－HT7660A 100\％Tested at 3V
－Easy to Use－Requires Only 2 External Non－ Critical Passive Components
－No External Diode Over Full Temp．and Voltage Range
－Pb－Free Plus Anneal Available（RoHS Compliant）

Applications

－On Board Negative Supply for Dynamic RAMs
－Localized μ Processor（8080 Type）Negative Supplies
－Inexpensive Negative Supplies
－Data Acquisition Systems

Operating Conditions

Temperature Range

```
HT7660BC, HT7660AC
HT7660AI \(.0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\)
``` device at these or any other conditions above those indicated in the operational sections of this specification is not implied．

NOTE：
1．\(\theta \mathrm{JA}\) is measured with the component mounted on an evaluation PC board in free air．
Electrical Specifications
HT7660B and HT7660A，\(V_{+}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{COSC}=0\) ，Test Circuit Figure 11
Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{HT7660B} & \multicolumn{3}{|r|}{HT7660A} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline Supply Current & I＋ & \(\mathrm{RL}=\infty\) & ． & 170 & 500 & － & 80 & 165 & \(\mu \mathrm{A}\) \\
\hline Supply Voltage Range－Lo & \(\mathrm{V}_{\mathrm{L}}+\) & \(\mathrm{MIN} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{MAX}, \mathrm{RL}=10 \mathrm{k} \Omega\) ，LV to GND & 1.5 & － & 3.5 & 1.5 & － & 3.5 & V \\
\hline Supply Voltage Range－ Hi & \(\mathrm{VH}^{+}\) & \(\mathrm{MIN} \leq T \mathrm{~A} \leq \mathrm{MAX}, \mathrm{RL}=10 \mathrm{k} \Omega\) ，LV to Open & 3.0 & － & 10.0 & 3 & － & 12 & V \\
\hline \multirow[t]{6}{*}{Output Source Resistance} & \multirow[t]{6}{*}{OUT} & IOUT \(=20 \mathrm{~mA}, \mathrm{~T} A=25^{\circ} \mathrm{C}\) & － & 55 & 100 & － & 60 & 100 & \(\Omega\) \\
\hline & & \(1 \mathrm{OUT}=20 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq 70^{\circ} \mathrm{C}\) & ． & － & 120 & － & － & 120 & \(\Omega\) \\
\hline & & IOUT \(=20 \mathrm{~mA},-55^{\circ} \mathrm{C} \leq T \mathrm{~T} \leq 125^{\circ} \mathrm{C}\) & － & － & 150 & － & － & － & \(\Omega\) \\
\hline & & IOUT \(=20 \mathrm{~mA},-40^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq 85^{\circ} \mathrm{C}\) & ． & － & － & － & － & 120 & \(\Omega\) \\
\hline & & \[
\begin{aligned}
& \mathrm{V}^{+}=2 \mathrm{~V}, \text { IOUT }=3 \mathrm{~mA}, \mathrm{LV} \text { to } \mathrm{GND} \\
& \mathrm{O}^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{~A} \leq 70^{\circ} \mathrm{C} \\
& \hline
\end{aligned}
\] & － & － & 300 & － & － & 300 & \(\Omega\) \\
\hline & & \[
\begin{aligned}
& \hline \mathrm{V}_{+}=2 \mathrm{~V}, \mathrm{IOUT}=3 \mathrm{~mA}, \mathrm{LV} \text { to GND, } \\
& -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C} \\
& \hline
\end{aligned}
\] & \(\cdot\) & － & 400 & － & － & \(\cdot\) & \(\Omega\) \\
\hline Oscillator Frequency & OSC & & ． & 10 & － & － & 10 & ． & kHz \\
\hline Power Efficiency & EF & \(\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega\) & 95 & 98 & － & 96 & 98 & ． & \％ \\
\hline Voltage Conversion Efficiency & OUT EF & \(\mathrm{R}_{\mathrm{L}}=\infty\) & 97 & 99.9 & － & 99 & 99.9 & ． & \％ \\
\hline \multirow[t]{2}{*}{Oscillator Impedance} & \multirow[t]{2}{*}{OSC} & \(\mathrm{V}+=2 \mathrm{~V}\) & ． & 1.0 & － & － & 1 & ． & \(\mathrm{M} \Omega\) \\
\hline & & \(\mathrm{V}=5 \mathrm{~V}\) & － & 100 & － & － & － & － & \(\mathrm{k} \Omega\) \\
\hline \multicolumn{10}{|l|}{HT7660A， \(\mathrm{V}_{+}=\mathbf{3 V}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) ，OSC＝Free running，Test Circuit Figure 11，Unless Otherwise Specified} \\
\hline \multirow[t]{3}{*}{Supply Current（Note 3）} & \multirow[t]{3}{*}{\(1+\)} & \(\mathrm{V}+=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty, 25^{\circ} \mathrm{C}\) & ． & － & － & － & 26 & 100 & \(\mu \mathrm{A}\) \\
\hline & & \(0^{\circ} \mathrm{C}<\mathrm{T}\) A \(<70^{\circ} \mathrm{C}\) & － & － & － & － & － & 125 & \(\mu \mathrm{A}\) \\
\hline & & \(-40^{\circ} \mathrm{C}<\mathrm{T} A<85^{\circ} \mathrm{C}\) & － & － & － & － & － & 125 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{3}{*}{Output Source Resistance} & \multirow[t]{3}{*}{OUT} & \(\mathrm{V}+=3 \mathrm{~V}, \mathrm{IOUT}=10 \mathrm{~mA}\) & － & － & － & － & 97 & 150 & \(\Omega\) \\
\hline & & \(0^{\circ} \mathrm{C}<\mathrm{T} A<70^{\circ} \mathrm{C}\) & － & － & － & － & － & 200 & \(\Omega\) \\
\hline & & \(-40^{\circ} \mathrm{C}<\mathrm{T} A<85^{\circ} \mathrm{C}\) & ． & － & － & － & － & 200 & \(\Omega\) \\
\hline \multirow[t]{3}{*}{Oscillator Frequency（Note 3）} & \multirow[t]{3}{*}{OSC} & \(\mathrm{V}+=3 \mathrm{~V}\)（same as 5 V conditions） & － & － & － & 5.0 & 8 & ． & kHz \\
\hline & & \(0^{\circ} \mathrm{C}<\mathrm{T}\) A \(<70^{\circ} \mathrm{C}\) & ． & － & － & 3.0 & － & ． & kHz \\
\hline & & \(-40^{\circ} \mathrm{C}<\mathrm{T}\)－\(<85^{\circ} \mathrm{C}\) & ． & － & － & 3.0 & － & ． & kHz \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Electrical Specifications & \multicolumn{9}{|l|}{HT7660B and HT7660A， \(\mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}, \mathrm{COSC}=0\) ，Test Circuit Figure 11 Unless Otherwise Specified（Continued）} \\
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{HT7660B} & \multicolumn{3}{|r|}{HT7660A} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \multirow[t]{2}{*}{Voltage Conversion Efficiency} & \multirow[t]{2}{*}{VOUTEFF} & \(\mathrm{V}+=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty\) & ． & － & － & 99 & － & ． & \％ \\
\hline & & MIN \({ }^{\text {＜}}\) A \({ }_{\text {MAX }}\) & ． & － & － & 99 & － & － & \％ \\
\hline \multirow[t]{2}{*}{Power Efficiency} & \multirow[t]{2}{*}{EFF} & \(\mathrm{V}+=3 \mathrm{~V}, \mathrm{RL}_{\mathrm{L}}=5 \mathrm{k} \Omega\) & ． & － & － & 96 & － & ． & \％ \\
\hline & & \(\mathrm{T}_{\text {MIN }}<1{ }_{\text {A }}\) MAX & ． & － & － & 95 & － & ． & \％ \\
\hline
\end{tabular}

NOTES：
2．Connecting any input terminal to voltages greater than \(\mathrm{V}_{+}\)or less than GND may cause destructive latchup．It is recommended that no inputs from sources operating from external supplies be applied prior to＂power up＂of the HT7660B，HT7660A．
3．Derate linearly above \(50^{\circ} \mathrm{C}\) by \(5.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) ．
4．In the test circuit，there is no external capacitor applied to pin 7 ．However，when the device is plugged into a test socket，there is usually a very small but finite stray capacitance present，of the order of 5 pF ．
5．The Intersil HT7660A can operate without an external diode over the full temperature and voltage range．This device will function in existing designs which incorporate an external diode with no degradation in overall circuit performance．

\section*{Functional Block Diagram}

\section*{Typical Performance Curves}
（Test Circuit of Figure 11）

FIGURE 1．OPERATING VOLTAGE AS A FUNCTION OF TEMPERATURE

FIGURE 2．OUTPUT SOURCE RESISTANCE AS A FUNCTION OF SUPPLY VOLTAGE

Typical Performance Curves（Test Circuit of Figure 11）（Continued）

FIGURE 3．OUTPUT SOURCE RESIST ANCE AS A FUNCTION OF TEMPERATURE

FIGURE 5．FREQUENCY OF OSCILLATION AS A FUNCTION OF EXTERNAL OSC．CAPACITANCE

FIGURE 7．OUTPUT VOLTAGE AS A FUNCTION OF OUTPUT CURRENT

（Hz）
FIGURE 4．POWER CONVERSION EFFICIENCY AS A FUNCTION OF OSC．FREQUENCY

FIGURE 6．UNLOADED OSCILLATOR FREQUENCY AS A FUNCTION OF TEMPERATURE

FIGURE 8．SUPPLY CURRENT AND POWER CONVERSION EFFICIENCY AS A FUNCTION OF LOAD CURRENT

\section*{Typical Performance Curves（Test Circuit of Figure 11）（Continued）}

FIGURE 9．OUTPUT VOLTAGE AS A FUNCTION OF OUTPUT CURRENT

FIGURE 10．SUPPLY CURRENT AND POWER CONVERSION EFFICIENCY AS A FUNCTION OF LOAD CURRENT

NOTE：
6．These curves include in the supply current that current fed directly into the load \(R_{L}\) from the \(V_{+}\)（See Figure 11）．Thus，approximately half the supply current goes directly to the positive side of the load，and the other half，through the HT7660B／HT7660A，to the negative side of the load．Ideally，VOUT \(\simeq 2 \mathrm{~V}_{\mathrm{IN}}, \mathrm{IS} \simeq 2 \mathrm{I}_{\mathrm{L}}\) ，so \(\mathrm{V}_{\mathrm{IN}} \times \mathrm{IS} \simeq \mathrm{V}_{\mathrm{OUT}} \times \mathrm{IL}\) ．

NOTE：For large values of COSC（＞1000pF）the values of \(C_{1}\) and \(C 2\) should be increased to \(100 \mu F\) ．
FIGURE 11．HT7660B，HT7660A TEST CIRCUIT

\section*{Detailed Description}

The HT7660B and HT7660A contain all the necessary circuitry to complete a negative voltage converter，with the exception of 2 external capacitors which may be inexpensive \(10 \mu \mathrm{~F}\) polarized electrolytic types．The mode of operation of the device may be best understood by considering Figure 12， which shows an idealized negative voltage converter．
Capacitor \(\mathrm{C}_{1}\) is charged to a voltage， \(\mathrm{V}+\) ，for the half cycle when switches \(\mathrm{S}_{1}\) and S 3 are closed．（Note：Switches \(\mathrm{S}_{2}\) and S4 are open during this half cycle．）During the second half cycle of operation，switches \(\mathrm{S}_{2}\) and \(\mathrm{S}_{4}\) are closed，with \(\mathrm{S}_{1}\) and S 3 open，thereby shifting capacitor \(\mathrm{C}_{1}\) negatively by V＋volts．Charge is then transferred from \(C_{1}\) to \(C_{2}\) such that the voltage on \(\mathrm{C}_{2}\) is exactly \(\mathrm{V}_{+}\)，assuming ideal switches and no load on \(\mathrm{C}_{2}\) ．The HT7660B approaches this ideal situation more closely than existing non－mechanical circuits．

In the HT7660B and HT7660A，the 4 switches of Figure 12 are MOS power switches； \(\mathrm{S}_{1}\) is a P －Channel device and \(\mathrm{S}_{2}\) ， S3 and S4 are N－Channel devices．The main difficulty with this approach is that in integrating the switches，the substrates of S 3 and S 4 must always remain reverse biased with respect to their sources，but not so much as to degrade their＂ON＂resistances．In addition，at circuit start－up，and
under output short circuit conditions（ V OUT \(=\mathrm{V}+\) ），the output voltage must be sensed and the substrate bias adjusted accordingly．Failure to accomplish this would result in high power losses and probable device latchup．
This problem is eliminated in the HT7660B and HT7660A by a logic network which senses the output voltage（VOUT）together with the level translators，and switches the substrates of \(\mathrm{S}_{3}\) and S4 to the correct level to maintain necessary reverse bias．

The voltage regulator portion of the HT7660B and HT7660A is an integral part of the anti－latchup circuitry，however its inherent voltage drop can degrade operation at low voltages．Therefore，to improve low voltage operation the＂LV＂pin should be connected to GROUND，disabling the regulator．For supply voltages greater than 3.5 V the LV terminal must be left open to insure latchup proof operation，and prevent device damage．

FIGURE 12．IDEALIZED NEGATIVE VOLTAGE CONVERTER

\section*{Theoretical Power}

\section*{Efficiency Considerations}

In theory a voltage converter can approach 100\％efficiency if certain conditions are met．

1．The driver circuitry consumes minimal power．
2．The output switches have extremely low ON resistance and virtually no offset．
3．The impedances of the pump and reservoir capacitors are negligible at the pump frequency．
The HT7660B and HT7660A approach these conditions for negative voltage conversion if large values of \(C_{1}\) and \(C_{2}\) are used．

ENERGY IS LOST ONLY IN THE TRANSFER OF CHARGE BETWEEN CAPACITORS IF A CHANGE IN VOLTAGE
OCCURS．The energy lost is defined by：
\(E={ }^{1} / 2 C_{1}\left(V_{1}{ }^{2}-V_{2}{ }^{2}\right)\)
where \(\mathrm{V}_{1}\) and \(\mathrm{V}_{2}\) are the voltages on \(\mathrm{C}_{1}\) during the pump and transfer cycles．If the impedances of \(\mathrm{C}_{1}\) and \(\mathrm{C}_{2}\) are relatively high at the pump frequency（refer to Figure 12）compared to the value of \(R_{L}\) ，there will be a substantial difference in the voltages
\(\mathrm{V}_{1}\) and \(\mathrm{V}_{2}\) ．Therefore it is not only desirable to make \(\mathrm{C}_{2}\) as large as possible to eliminate output voltage ripple，but also to employ
a correspondingly large value for \(\mathrm{C}_{1}\) in order to achieve maximum efficiency of operation．

\section*{Do＇s And Don＇ts}

1．Do not exceed maximum supply voltages．
2．Do not connect LV terminal to GROUND for supply voltages greater than 3.5 V ．
3．Do not short circuit the output to \(\mathrm{V}+\) supply for supply voltages above 5.5 V for extended periods，however， transient conditions including start－up are okay．
4．When using polarized capacitors，the + terminal of \(\mathrm{C}_{1}\) must be connected to pin 2 of the HT7660B and HT7660A and the＋terminal of C2 must be connected to GROUND．
5．If the voltage supply driving the HT7660B and HT7660A has a large source impedance \((25 \Omega-30 \Omega)\) ，then a \(2.2 \mu \mathrm{~F}\) capacitor from pin 8 to ground may be required to limit rate of rise of input voltage to less than \(2 \mathrm{~V} / \mu \mathrm{s}\) ．
6．User should insure that the output（pin 5）does not go more positive than GND（pin 3）．Device latch up will occur under these conditions．A 1 N914 or similar diode placed
in parallel with \(\mathrm{C}_{2}\) will prevent the device from latching up under these conditions．（Anode pin 5，Cathode pin 3）．

FIGURE 13A．CONFIGURATION FIGURE 13B．THEVENIN EQUIVALENT FIGURE 13．SIMPLE NEGATIVE CONVERTER

In a typical application where \(\mathrm{fOSC}=10 \mathrm{kHz}\) and \(\mathrm{C}=\mathrm{C}_{1}=\) \(\mathrm{C} 2=10 \mu \mathrm{~F}\) ：
\[
\mathrm{RO} \cong 2(23)+\frac{1}{\left(5 \cdot 10^{3}\right)\left(10^{-5}\right)}+4(\text { ESRC} 1) ~^{(5}+\text { ESRC2 }^{2}
\]
\(R O \cong 46+20+5\)（ESRC）
Since the ESRs of the capacitors are reflected in the output impedance multiplied by a factor of 5 ，a high value could potentially
swamp out a low \(1 /\left(\mathrm{fPUMP} \cdot \mathrm{C}_{1}\right)\) term，rendering an increase in switching frequency or filter capacitance ineffective．Typical electrolytic capacitors may have ESRs as high as \(10 \Omega\) ．
\[
\mathrm{RO} \cong 2(23)+\frac{1}{\left(5 \cdot 10^{3}\right)\left(10-^{5}\right)}+4(\text { ESRC} 1) ~^{(5}+\text { ESRC2 }
\]
\(\mathrm{RO} / \cong 46+20+5\)（ESRC）
Since the ESRs of the capacitors are reflected in the output impedance multiplied by a factor of 5 ，a high value could potentially
swamp out a low \(1 /\left(\right.\) fPUMP \(\left.\bullet \mathrm{C}_{1}\right)\) term，rendering an increase in switching frequency or filter capacitance ineffective．Typical electrolytic capacitors may have ESRs as high as \(10 \Omega\) ．

\section*{Output Ripple}

ESR also affects the ripple voltage seen at the output．The total ripple is determined by 2 voltages，\(A\) and \(B\) ，as shown in Figure 14．Segment \(A\) is the voltage drop across the ESR of \(C_{2}\) at the instant it goes from being charged by \(\mathrm{C}_{1}\)（current flow into \(\mathrm{C}_{2}\) ）to being discharged through the load（current flowing out of \(\mathrm{C}_{2}\) ）．The magnitude of this current change is \(2 \bullet\) IOUT，hence the total drop is \(2 \cdot\) IOUT \(\cdot\) eSRC2V．Segment \(B\) is the voltage change across \(\mathrm{C}_{2}\) during time \(\mathrm{t}_{2}\) ，the half of the cycle when \(\mathrm{C}_{2}\) supplies current to the load．The drop at B is IOUT \(\bullet \mathrm{t} 2 / \mathrm{C}_{2} \mathrm{~V}\) ． The peak－to－peak ripple voltage is the sum of these voltage drops：
\[
\left.\underset{\text { VRIPPLE }}{\cong} \frac{1}{\left[2\left(\mathrm{f}_{\text {PUMP }}\right)\right.}(\mathrm{C} 2) \quad+2\left(\mathrm{ESRC}^{2}\right)\right] \text { IOUT }
\]

Again，a low ESR capacitor will reset in a higher performance output．

\section*{Paralleling Devices}

Any number of HT7660B and HT7660A voltage converters may be paralleled to reduce output resistance．The reservoir capacitor， \(\mathrm{C}_{2}\) ，serves all devices while each device requires its own pump capacitor， \(\mathrm{C}_{1}\) ．The resultant output resistance would be approximately：
\[
R_{\text {OUT }}=\frac{\text { ROUT (of HT7660B/HT7660A) }^{n \text { (number of devices) }}}{\text { nen }}
\]

\section*{Cascading Devices}

The HT7660B and HT7660A may be cascaded as shown to produced larger negative multiplication of the initial supply voltage．However，due to the finite efficiency of each device， the practical limit is 10 devices for light loads．The output voltage is defined by：
VOUT \(=-n\left(V_{I N}\right)\) ，
where n is an integer representing the number of devices cascaded．The resulting output resistance would be approximately the weighted sum of the individual HT7660B
and HT7660A ROUT values．

\section*{Changing the HT7660B／HT7660A Oscillator Frequency}

It may be desirable in some applications，due to noise or other considerations，to increase the oscillator frequency． This is achieved by overdriving the oscillator from an external clock，as shown in Figure 17．In order to prevent possible device latchup，a \(1 \mathrm{k} \Omega\) resistor must be used in series with the clock output．In a situation where the designer has generated the external clock frequency using TTL logic，the addition of a \(10 \mathrm{k} \Omega\) pullup resistor to \(\mathrm{V}+\) supply is required．Note that the pump frequency with external clocking，as with internal clocking，will be \(1 / 2\) of the clock frequency．Output transitions occur on the positive－going edge of the clock．

FIGURE 17．EXTERNAL CLOCKING

It is also possible to increase the conversion efficiency of the HT7660B and HT7660A at low load levels by lowering the oscillator frequency．This reduces the switching losses，and is shown in Figure 18．However，lowering the oscillator frequency will cause an undesirable increase in the impedance of the pump
\(\left(\mathrm{C}_{1}\right)\) and reservoir \(\left(\mathrm{C}_{2}\right)\) capacitors；this is overcome by
increasing the values of \(\mathrm{C}_{1}\) and \(\mathrm{C}_{2}\) by the same factor that the frequency has been reduced．For example，the addition of a 100 pF capacitor between pin 7 （OSC）and \(V+\) will lower the oscillator frequency to 1 kHz from its nominal frequency of 10 kHz （a multiple of 10），and thereby necessitate a corresponding increase in the value of \(\mathrm{C}_{1}\) and \(\mathrm{C}_{2}\)（from \(10 \mu \mathrm{~F}\) to \(100 \mu \mathrm{~F}\) ）．

FIGURE 18．LOWERING OSCILLATOR FREQUENCY

\section*{Positive Voltage Doubling}

The HT7660B and HT7660A may be employed to achieve positive voltage doubling using the circuit shown in Figure 19. In this application，the pump inverter switches of the HT7660B and HT7660A are used to charge \(\mathrm{C}_{1}\) to a voltage level of \(V_{+}-V_{F}\)（where \(V_{+}\)is the supply voltage and \(V_{F}\) is the forward voltage drop of diode D1）．On the transfer cycle， the voltage on \(\mathrm{C}_{1}\) plus the supply voltage \(\left(\mathrm{V}_{+}\right)\)is applied through diode \(\mathrm{D}_{2}\) to capacitor \(\mathrm{C}_{2}\) ．The voltage thus created on C 2 becomes（2V＋）－（2VF）or twice the supply voltage minus the combined forward voltage drops of diodes D1 and D2．
The source impedance of the output（VOUT）will depend on the output current，but for \(\mathrm{V}_{+}=5 \mathrm{~V}\) and an output current of 10 mA it will be approximately \(60 \Omega\) ．

FIGURE 19．POSITIVE VOLT DOUBLER

\section*{Combined Negative Voltage Conversion and Positive Supply Doubling}

Figure 20 combines the functions shown in Figures 13 and Figure 19 to provide negative voltage conversion and positive voltage doubling simultaneously．This approach would be，for example，suitable for generating +9 V and -5 V from an existing
+5 V supply．In this instance capacitors \(\mathrm{C}_{1}\) and \(\mathrm{C}_{3}\) perform the pump and reservoir functions respectively for the generation of the negative voltage，while capacitors \(\mathrm{C}_{2}\) and

C 4 are pump and reservoir respectively for the doubled positive voltage．There is a penalty in this configuration which combines both functions，however，in that the source impedances of the generated supplies will be somewhat higher due to the finite impedance of the common charge pump driver at pin 2 of the device．

FIGURE 20．COMBINED NEGATIVE VOLTAGE CONVERTER AND POSITIVE DOUBLER

\section*{Voltage Splitting}

The bidirectional characteristics can also be used to split a higher supply in half，as shown in Figure 21．The combined load will be evenly shared between the two sides．Because the switches share the load in parallel，the output impedance is much lower than in the standard circuits，and higher currents can be drawn from the device．By using this circuit， and then the circuit of Figure 16，+15 V can be converted（via +7.5 ，and -7.5 ）to a nominal -15 V ，although with rather high series output resistance（～250 ）．

FIGURE 21．SPLITTING A SUPPLY IN HALF

\section*{Regulated Negative Voltage Supply}

In some cases，the output impedance of the HT7660B and HT7660A can be a problem，particularly if the load current varies substantially．The circuit of Figure 22 can be used to overcome this by controlling the input voltage，via an ICL7611 low－power CMOS op amp，in such a way as to maintain a nearly constant output voltage．Direct feedback is inadvisable， since the HT7660Bs and HT7660As output does not respond instantaneously to change in input，but only after the switching delay．The circuit shown supplies enough delay to accommodate the HT7660B and HT7660A，while maintaining adequate feedback．An increase in pump and storage capacitors is desirable，and the values shown provides an output impedance of less than \(5 \Omega\) to a load of 10 mA ．

\section*{Other Applications}

Further information on the operation and use of the HT7660B and HT7660A may be found in AN051＂Principals and Applications of the HT7660B and HT7660A CMOS Voltage Converter＂．

FIGURE 22．REGULATING THE OUTPUT VOLTAGE

FIGURE 23．RS232 LEVELS FROM A SINGLE 5V SUPPLY
（DIP8）

\begin{tabular}{|l|l|l|}
\hline\(\oplus\) & \(0.25(0.010)\) \\
\hline
\end{tabular}

\section*{NOTES：}

1．Dimensions＂A＂，＂B＂do not include mold flash or protrusions． Maximum mold flash or protrusions \(0.25 \mathrm{~mm}(0.010)\) per side．
（SOP8）

\section*{NOTES：}

1．Dimensions A and B do not include mold flash or protrusion．
2．Maximum mold flash or protrusion \(0.15 \mathrm{~mm}(0.006)\) per side for A；for B－0．25 mm（0．010）per side．
\begin{tabular}{|c|c|c|}
\hline & \multicolumn{2}{|c|}{ Dimension，mm } \\
\hline Symbol & MIN & MAX \\
\hline \(\mathbf{A}\) & 8.51 & 10.16 \\
\hline \(\mathbf{B}\) & 6.1 & 7.11 \\
\hline \(\mathbf{C}\) & & 5.33 \\
\hline \(\mathbf{D}\) & 0.36 & 0.56 \\
\hline \(\mathbf{F}\) & 1.14 & 1.78 \\
\hline \(\mathbf{G}\) & \multicolumn{2}{|c|}{2.54} \\
\hline \(\mathbf{H}\) & \multicolumn{2}{|c|}{7.62} \\
\hline \(\mathbf{J}\) & \(0^{\circ}\) & \(10^{\circ}\) \\
\hline \(\mathbf{K}\) & 2.92 & 3.81 \\
\hline \(\mathbf{L}\) & 7.62 & 8.26 \\
\hline \(\mathbf{M}\) & 0.2 & 0.36 \\
\hline \(\mathbf{N}\) & 0.38 & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline & \multicolumn{2}{|c|}{ Dimension，mm } \\
\hline Symbol & MIN & MAX \\
\hline \(\mathbf{A}\) & 4.8 & 5 \\
\hline \(\mathbf{B}\) & 3.8 & 4 \\
\hline \(\mathbf{C}\) & 1.35 & 1.75 \\
\hline \(\mathbf{D}\) & 0.33 & 0.51 \\
\hline \(\mathbf{F}\) & 0.4 & 1.27 \\
\hline \(\mathbf{G}\) & \multicolumn{2}{|c|}{1.27} \\
\hline \(\mathbf{H}\) & \multicolumn{2}{|c|}{5.72} \\
\hline \(\mathbf{J}\) & \(0^{\circ}\) & \(8^{\circ}\) \\
\hline \(\mathbf{K}\) & 0.1 & 0.25 \\
\hline \(\mathbf{M}\) & 0.19 & 0.25 \\
\hline \(\mathbf{P}\) & 5.8 & 6.2 \\
\hline \(\mathbf{R}\) & 0.25 & 0.5 \\
\hline
\end{tabular}

\section*{X-ON Electronics}

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Translation - Voltage Levels category:
Click to view products by HTCSEMI manufacturer:
Other Similar products are found below :
NLSX4373DMR2G NLSX5012MUTAG NLSX0102FCT1G NLSX0102FCT2G PCA9306FMUTAG MC100EPT622MNG
NLSX3014MUTAG NLSV4T244EMUTAG NLSX5011MUTCG NLVSX4373MUTAG NB3U23CMNTAG NLVPCA9306AMUTCG
NLSX3013BFCT1G NLSX3012DMR2G NLA9306MU3TCG NVT2001GMZ P3A9606JKZ NLVSV1T244MUTBG NLSX5011AMUTAG
74AXP1T34GWH MS4553S HT7660ARZ RS0108YQ20 UM3204Q UM3204UE UM3204H UM3208UK UM3202Q RS8T245YTSS24
UM3308UK UM3212M8 UM3304QA AW39104FOR RS0101YH6 CLVC16T245MDGGREP CAVCB164245MDGGREP NTS0102DPQ100H FXLA104UM12X FXMA2102UMX PI4ULS5V201TAEX CD40109BPWR SY89321LMG-TR SY100ELT22ZG TXS0102DCTRE4 MC10H350FNG MC10H125FNR2G MC100EPT21MNR4G MC100EP91DWG MAX13030EETE+ NLSX3018MUTAG```

