Single Supply 3．0 V to 36V Operational Amplifiers

Quality bipolar fabrication with innovative design concepts are employed for the HT8071／72／74，，A series of monolithic operational amplifiers．This series of operational amplifiers offer 4.5 MHz of gain bandwidth product， $13 \mathrm{~V} / \mathrm{ms}$ slew rate and fast settling time without the use of JFET device technology．Although this series can be operated from split supplies，it is particularly suited for single supply operation， since the common mode input voltage range includes ground potential
（VEE）．With a Darlington input stage，this series exhibits high input resistance，low input offset voltage and high gain．The all NPN output stage，characterized by no deadband crossover distortion and large output voltage swing，provides high capacitance drive capability， excellent phase and gain margins，low open loop high frequency output impedance and symmetrical source／sink AC frequency response．

The HT8071／72／74，，，A series of devices are available in standard or prime performance（A Suffix）grades and are specified over the commercial，industrial／vehicular or military temperature ranges．The complete series of single，dual and quad operational amplifiers are available in plastic DIP，SOIC，QFN and TSSOP surface mount packages．

Features

\square Wide Bandwidth： 4.5 MHz
\square High Slew Rate： $13 \mathrm{~V} / \mathrm{ms}$
\square Fast Settling Time： 1.1 ms to 0.1%
\square Wide Single Supply Operation： 3.0 V to 36 V
\square Wide Input Common Mode Voltage Range：Includes Ground（VEE）
\square Low Input Offset Voltage： 3.0 mV Maximum（A Suffix）
\square Large Output Voltage Swing：-14.7 V to +14 V （with ± 15 V Supplies）
\square Large Capacitance Drive Capability： 0 pF to $10,000 \mathrm{pF}$
\square Low Total Harmonic Distortion：0．02\％
\square Excellent Phase Margin： 60°
\square Excellent Gain Margin： 12 dB
\square Output Short Circuit Protection
\square ESD Diodes／Clamps Provide Input Protection for Dual and Quad
\square These Devices are $\mathrm{Pb}-$ Free，Halogen Free／BFR Free and are RoHS Compliant

CASE 626／CASE 751

CASE 646／CASE 751A／CASE 948G

（Quad，Top View）

CASE 510AJ

（Top View）

Figure 1．Representative Schematic Diagram
（Each Amplifier）
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage（from VEE to V_{CC} ）	VS	＋36	V
Input Differential Voltage Range	IDR	（Note 1）	V
Input Voltage Range	${ }^{\text {IR }}$	（Note 1）	V
Output Short Circuit Duration（Note 2）	SC	Indefinite	Sec
Operating Junction Temperature	TJ	＋150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	stg	-60 to +150	${ }^{\circ} \mathrm{C}$
ESD Capability，Dual and Quad（Note 3） Human Body Model Machine Model	${ }^{\circ} \mathrm{U}_{\mathrm{HBM}}$ ESDMM	$\begin{gathered} 2000 \\ 200 \end{gathered}$	V

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V} C \mathrm{C}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{RL}_{\mathrm{L}}=\right.$ connected to ground，unless otherwise noted．See Note 4 for T_{A} $=T$ to T^{\prime}

Characteristics	Symbol	A Suffix			Non－Suffix			Unit
		Min	Typ	Max	Min	Typ	Max	
$\begin{aligned} & \text { Input Offset Voltage }\left(R S=100 \mathrm{~W}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\text {EE }}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{E E}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{C C}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } T_{\text {high }} \\ & \hline \end{aligned}$	10	-	$\begin{gathered} 0.5 \\ 0.5 \\ - \\ \hline \end{gathered}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & 5.0 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 7.0 \\ & \hline \end{aligned}$	mV
Average Temperature Coefficient of Input Offset Voltage $\underset{A}{\mathrm{R}}=\underset{\text { low }}{10 \mathrm{~W}, \mathrm{~V}} \mathrm{~V} \underset{\text { ligh }}{\mathrm{V}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V},$	DVIO／DT	－	10	－	－	10	－	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
	18		100	$\begin{aligned} & 500 \\ & 700 \\ & \hline \end{aligned}$		100	$\begin{aligned} & 500 \\ & 700 \\ & \hline \end{aligned}$	nA
	10		6.0	$\begin{gathered} 50 \\ 300 \end{gathered}$		6.0	$\begin{gathered} 75 \\ 300 \end{gathered}$	nA
Input Common Mode Voltage Range	ICR	$\begin{aligned} & V_{E E} \text { to }\left(V_{C C}-1.8\right) \\ & V_{E E} \text { to }\left(V_{C C}-2.2\right) \end{aligned}$			V_{EE} to（ $\mathrm{V}_{\mathrm{CC}}-1.8$ ） VEE to（VCC－2．2）			V
	vol	$\begin{array}{r} 50 \\ 25 \\ \hline \end{array}$	100	－	$\begin{aligned} & 25 \\ & 20 \\ & \hline \end{aligned}$	100		V／mV
	О O	$\begin{gathered} 3.7 \\ 13.6 \\ 13.4 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 14 \end{aligned}$		$\begin{gathered} 3.7 \\ 13.6 \\ 13.4 \end{gathered}$	$\begin{gathered} 4.0 \\ 14 \\ - \end{gathered}$		V
	OL		$\begin{gathered} \hline 0.1 \\ -14.7 \end{gathered}$	$\begin{gathered} \hline 0.3 \\ -14.3 \\ -13.5 \end{gathered}$	-	$\begin{gathered} \hline 0.1 \\ -14.7 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.3 \\ -14.3 \\ -13.5 \end{gathered}$	V
```Output Short Circuit Current (VID \(=1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\), \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) ) Source Sink```	sc	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	－	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	－	mA
Common Mode Rejection $\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{~kW}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{ICR}}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	CMR	80	97	－	70	97	－	dB
```Power Supply Rejection (RS = 100 W) VCC/VEE =+16.5 V/-16.5 V to +13.5 V/-13.5 V, TA = 25 %```	PSR	80	97	－	70	97	－	dB
$\begin{aligned} & \hline \text { Power Supply Current (Per Amplifier, No Load) } \\ & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=+2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EF}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \\ & \mathrm{~A}{ }_{\text {low }} \text { high } \\ & \text { low } \end{aligned}$	ID		$\begin{aligned} & 1.6 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \\ & 2.8 \end{aligned}$		$\begin{aligned} & 1.6 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \\ & 2.8 \end{aligned}$	mA

海天芯
HT8072A／HT8074A
AC ELECTRICAL CHARACTERISTICS（ $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=$ connected to ground． $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ，unless otherwise noted．）

Characteristics	Symbol	A Suffix			Non－Suffix			Unit
		Min	Typ	Max	Min	Typ	Max	
$\begin{aligned} & \text { Slew Rate }\left(\mathrm{V} \text { in }=-10 \mathrm{~V} \text { to }+10 \mathrm{~V}, \mathrm{RL}_{\mathrm{L}}=2.0 \mathrm{~kW}, \mathrm{CL}=500 \mathrm{pF}\right) \\ & \mathrm{AV}=+1.0 \\ & \mathrm{AV}=-1.0 \end{aligned}$	SR	8.0	10 13	－	8.0	10 13		V／ms
$\begin{gathered} \hline \text { Setting Time (10 V Step, AV = -1.0) } \\ \text { To } 0.1 \% \text { (+1/2 LSB of } 9-\text { Bits) } \\ \text { To } 0.01 \%(+1 / 2 \mathrm{LSB} \text { of } 12-\text { Bits }) \end{gathered}$	$\mathrm{t}_{\text {s }}$	－	$\begin{aligned} & 1.1 \\ & 2.2 \end{aligned}$	－	－	$\begin{aligned} & 1.1 \\ & 2.2 \end{aligned}$	－	ms
Gain Bandwidth Product（ $\mathrm{f}=100 \mathrm{kHz}$ ）	GBW	3.5	4.5	－	3.5	4.5	－	MHz
Power Bandwidth $\mathrm{AV}=+1.0, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{~kW}, \mathrm{~V}_{\mathrm{O}}=20 \mathrm{~V} \mathrm{pp}, \mathrm{THD}=5.0 \%$	BW	－	160	－	－	160	－	kHz
Phase margin $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{~kW} \\ & \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{~kW}, \mathrm{CL}_{\mathrm{L}}=300 \mathrm{pF} \\ & \hline \end{aligned}$	${ }^{\text {fm }}$							Deg
$\begin{aligned} & \text { Gain Margin } \\ & R_{\mathrm{L}}=2.0 \mathrm{~kW} \\ & \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{~kW}, \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF} \end{aligned}$	A_{m}	－	$\begin{array}{r} 12 \\ 4.0 \\ \hline \end{array}$			$\begin{aligned} & 12 \\ & 4.0 \end{aligned}$		dB
Equivalent Input Noise Voltage $\mathrm{RS}_{\mathrm{S}}=100 \mathrm{~W}, \mathrm{f}=1.0 \mathrm{kHz}$	n	－	32	－	－	32	－	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Equivalent Input Noise Current $\mathrm{f}=1.0 \mathrm{kHz}$	in	－	0.22	－	－	0.22	－	$\mathrm{pA} / \sqrt{ } \mathrm{Fz}$
Differential Input Resistance $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	in	－	150	－	－	150	－	MW
Differential Input Capacitance $V_{C M}=0 \mathrm{~V}$	in	－	2.5	－	－	2.5	－	pF
Total Harmonic Distortion $\mathrm{AV}=+10, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{~kW}, 2.0 \mathrm{~V}_{\mathrm{pp}} \leq \mathrm{V}_{\mathrm{O}} \leq 20 \mathrm{~V}_{\mathrm{pp}}, \mathrm{f}=10 \mathrm{kHz}$	THD	－	0.02	－	－	0.02	－	\％
Channel Separation（ $\mathrm{f}=10 \mathrm{kHz}$ ）	－	－	120	－	－	120	－	dB
Open Loop Output Impedance（ $\mathrm{f}=1.0 \mathrm{MHz}$ ）	｜ZO｜	－	30	－	－	30	－	W

Single Supply

Split Supplies

Figure 2．Power Supply Configurations

Offset nulling range is approximately $\pm 80 \mathrm{mV}$ with a 10 k potentiometer（HT8071 only）．

Figure 3．Offset Null Circuit

Figure 4．Maximum Power Dissipation versus Temperature for Package Types

Figure 5．Input Offset Voltage versus Temperature for Representative Units

Figure 6．Input Common Mode Voltage Range versus Temperature

Figure 8．Normalized Input Bias Current versus Input Common Mode Voltage

Figure 9．Split Supply Output Voltage Swing versus Supply Voltage

Figure 10．Split Supply Output Saturation versus Load Current

Figure 12．Single Supply Output Saturation versus Load Resistance to VCC

Figure 14．Output Impedance versus Frequency

Figure 11．Single Supply Output Saturation versus Load Resistance to Ground

Figure 13．Output Short Circuit Current versus Temperature

Figure 15．Output Voltage Swing versus Frequency

Figure 16．Total Harmonic Distortion versus Frequency

Figure 18．Open Loop Voltage Gain versus Temperature

Figure 20．Open Loop Voltage Gain and Phase versus Frequency

Figure 17．Total Harmonic Distortion versus Output Voltage Swing

Figure 19．Open Loop Voltage Gain and Phase versus Frequency

Figure 21．Normalized Gain Bandwidth Product versus Temperature

Figure 22．Percent Overshoot versus Load Capacitance

Figure 24．Gain Margin versus Load Capacitance

Figure 26．Gain Margin versus Temperature

Figure 23．Phase Margin versus Load Capacitance

Figure 25．Phase Margin versus Temperature

Figure 27．Phase Margin and Gain Margin versus Differential Source Resistance

Figure 28．Normalized Slew Rate versus Temperature

Figure 30．Small Signal Transient Response

Figure 32．Common Mode Rejection versus Frequency

Figure 29．Output Settling Time

Figure 31．Large Signal Transient Response

Figure 33．Power Supply Rejection versus Frequency

Figure 34．Supply Current versus Supply Voltage

Figure 36．Channel Separation versus Frequency

Figure 35．Power Supply Rejection versus Temperature

Figure 37．Input Noise versus Frequency

APPLICATIONS INFORMATION CIRCUIT DESCRIPTION／PERFORMANCE FEATURES

Although the bandwidth，slew rate，and settling time of the HT8071 amplifier series are similar to op amp products utilizing JFET input devices，these amplifiers offer other additional distinct advantages as a result of the PNP transistor differential input stage and an all NPN transistor output stage．
Since the input common mode voltage range of this input stage includes the VEE potential，single supply operation is feasible to as low as 3.0 V with the common mode input voltage at ground potential．
The input stage also allows differential input voltages up to $\pm 36 \mathrm{~V}$ ，provided the maximum input voltage range is not exceeded．Specifically，the input voltages must range between
V_{EE} and V_{CC} supply voltages as shown by the maximum rating table．In practice，although not recommended，the input voltages can exceed the V_{CC} voltage by approximately 3.0 V and decrease below the V_{EE} voltage by 0.3 V without causing product damage，although output phase reversal may occur．It is also possible to source
up to approximately 5.0 mA of current from V_{EE} through either inputs clamping diode without damage or latching， although phase reversal may again occur．

If one or both inputs exceed the upper common mode voltage limit，the amplifier output is readily predictable and may be in a low or high state depending on the existing input bias conditions．

Since the input capacitance associated with the small geometry input device is substantially lower（ 2.5 pF ）than the typical JFET input gate capacitance（ 5.0 pF ），better frequency response for a given input source resistance can be achieved using the HT8071 series of amplifiers．This performance feature becomes evident，for example，in fast settling $\mathrm{D}-$ to－A current to voltage conversion applications where the feedback resistance can form an input pole with the input capacitance of the op amp．This input pole creates a 2 nd order system with the single pole op amp and is therefore detrimental to its settling time．In this context， lower input capacitance is desirable especially for higher
values of feedback resistances（lower current DACs）．This input pole can be compensated for by creating a feedback zero with a capacitance across the feedback resistance，if necessary，to reduce overshoot．For 2.0 kW of feedback resistance，the HT8071 series can settle to within $1 / 2 \mathrm{LSB}$ of 8 －bits in 1.0 ms ，and within $1 / 2 \mathrm{LSB}$ of 12 －bits in 2.2 ms for a 10 V step．In a inverting unity gain fast settling configuration，the symmetrical slew rate is $\pm 13 \mathrm{~V} / \mathrm{ms}$ ．In the classic noninverting unity gain configuration，the output positive slew rate is $+10 \mathrm{~V} / \mathrm{ms}$ ，and the corresponding negative slew rate will exceed the positive slew rate as a function of the fall time of the input waveform．

Since the bipolar input device matching characteristics are superior to that of JFETs，a low untrimmed maximum offset voltage of 3.0 mV prime and 5.0 mV downgrade can be economically offered with high frequency performance characteristics．This combination is ideal for low cost precision，high speed quad op amp applications．

The all NPN output stage，shown in its basic form on the equivalent circuit schematic，offers unique advantages over the more conventional NPN／PNP transistor Class AB output stage．A 10 kW load resistance can swing within 1.0 V of the positive rail $\left(\mathrm{V}_{\mathrm{CC}}\right)$ ，and within 0.3 V of the negative rail
（VEE），providing a $28.7 \mathrm{~V}_{\mathrm{pp}}$ swing from $\pm 15 \mathrm{~V}$ supplies． This large output swing becomes most noticeable at lower supply voltages．

The positive swing is limited by the saturation voltage of the current source transistor Q^{7} ，and V_{BE} of the NPN pull up transistor Q17，and the voltage drop associated with the short circuit resistance， R_{7} ．The negative swing is limited by the saturation voltage of the pull－down transistor Q_{16} ，the voltage drop $\mathrm{I}_{\mathrm{L}} \mathrm{R}_{6}$ ，and the voltage drop associated with resistance R_{7} ，where I_{L} is the sink load current．For small valued sink currents，the above voltage drops are negligible， allowing the negative swing voltage to approach within millivolts of $V_{E E}$ ．For large valued sink currents（ $>5.0 \mathrm{~mA}$ ）， diode D3 clamps the voltage across R_{6} ，thus limiting the negative swing to the saturation voltage of Q_{16} ，plus the forward diode drop of $\mathrm{D} 3\left(\approx \mathrm{~V}_{\mathrm{EE}}+1.0 \mathrm{~V}\right)$ ．Thus for a given supply voltage，unprecedented peak－to－peak output voltage swing is possible as indicated by the output swing specifications．

If the load resistance is referenced to V_{CC} instead of ground for single supply applications，the maximum possible output swing can be achieved for a given supply voltage．For light load currents，the load resistance will pull the output to
V_{CC} during the positive swing and the output will pull the load resistance near ground during the negative swing．The load resistance value should be much less than that of the feedback resistance to maximize pull up capability．

Because the PNP output emitter－follower transistor has been eliminated，the HT8071 series offers a 20 mA minimum
current sink capability，typically to an output voltage of（VEE $+1.8 \mathrm{~V})$ ．In single supply applications the output can directly source or sink base current from a common emitter NPN transistor for fast high current switching applications．
In addition，the all NPN transistor output stage is inherently fast，contributing to the bipolar amplifier＇s high gain bandwidth product and fast settling capability．The associated high frequency low output impedance（ 30 W typ
（a） 1.0 MHz ）allows capacitive drive capability from 0 pF to $10,000 \mathrm{pF}$ without oscillation in the unity closed loop gain configuration．The 60° phase margin and 12 dB gain margin as well as the general gain and phase characteristics are virtually independent of the source／sink output swing conditions．This allows easier system phase compensation， since output swing will not be a phase consideration．The high frequency characteristics of the HT8071 series also allow excellent high frequency active filter capability， especially for low voltage single supply applications．
Although the single supply specifications is defined at
5.0 V ，these amplifiers are functional to $3.0 \mathrm{~V} @ 25^{\circ} \mathrm{C}$ although slight changes in parametrics such as bandwidth， slew rate，and DC gain may occur．

If power to this integrated circuit is applied in reverse polarity or if the IC is installed backwards in a socket，large unlimited current surges will occur through the device that may result in device destruction．
Special static precautions are not necessary for these bipolar amplifiers since there are no MOS transistors on the die．
As with most high frequency amplifiers，proper lead dress， component placement，and PC board layout should be exercised for optimum frequency performance．For example， long unshielded input or output leads may result in unwanted input－output coupling．In order to preserve the relatively low input capacitance associated with these amplifiers，resistors connected to the inputs should be immediately adjacent to the input pin to minimize additional stray input capacitance．This not only minimizes the input pole for optimum frequency response，but also minimizes extraneous＂pick up＂at this node．Supply decoupling with adequate capacitance immediately adjacent to the supply pin is also important， particularly over temperature，since many types of decoupling capacitors exhibit great impedance changes over temperature．

The output of any one amplifier is current limited and thus protected from a direct short to ground．However，under such conditions，it is important not to allow the device to exceed the maximum junction temperature rating．Typically for ± 15 V supplies，any one output can be shorted continuously to ground without exceeding the maximum temperature rating．
（Typical Single Supply Applications VCC＝5．0 V）

Figure 38．AC Coupled Noninverting Amplifier

Figure 40．DC Coupled Inverting Amplifier Maximum Output Swing

Figure 42．Active High－Q Notch Filter

Figure 39．AC Coupled Inverting Amplifier

Figure 41．Unity Gain Buffer TTL Driver

Given $f_{0}=$ Center Frequency
$A_{O}=$ Gain at Center Frequency
Choose Value $\mathrm{f}_{\mathrm{O}}, \mathrm{Q}, \mathrm{A}_{\mathrm{O}}, \mathrm{C}$

$\frac{Q_{0} f_{0}}{G B W}<0.1$
where f_{O} and GBW are expressed in Hz ．
$G B W=4.5 \mathrm{MHz}$ Typ．
Figure 43．Active Bandpass Filter

1.0 ms （ 8 －Bits， $1 / 2 \mathrm{LSB}$ ）

Figure 44．Low Voltage Fast D／A Converter

Figure 46．LED Driver

Figure 45．High Speed Low Voltage Comparator

（B）NPN
（A）PNP

Figure 47．Transistor Driver

Figure 49．Photovoltaic Cell Amplifier
Figure 48．AC／DC Ground Current Monitor

Figure 50．Low Input Voltage Comparator with Hysteresis

$\frac{\mathrm{R} 2}{\mathrm{R} 1}=\frac{\mathrm{R} 4}{\mathrm{R} 3}$（Critical to CMRR）
$V_{0}=1\left(+\frac{R 4}{R 3}\right)\left(V 2-V 1 \frac{R 4}{R 3}\right)$
For（ $\mathrm{V} 2 \geq \mathrm{V} 1$ ）， $\mathrm{V}>0$
Figure 52．High Input Impedance Differential Amplifier

Figure 54．Low Voltage Peak Detector

Figure 51．High Compliance Voltage to Sink Current Converter

Figure 53．Bridge Current Amplifier

Figure 55．High Frequency Pulse Width Modulation

GENERAL ADDITIONAL APPLICATIONS INFORMATION $\mathrm{V}_{\mathrm{S}}= \pm 15.0 \mathrm{~V}$

Figure 56．Second Order Low－Pass Active Filter

Figure 58．Fast Settling Inverter

Figure 60．Basic Noninverting Amplifier

Figure 57．Second Order High－Pass Active Filter

Figure 59．Basic Inverting Amplifier

Figure 61．Unity Gain Buffer（ $\mathbf{A} \mathbf{V}=+\mathbf{1 . 0}$ ）

Figure 62．High Impedance Differential Amplifier

Figure 63．Dual Voltage Doubler

N SUFFIX PLASTIC DIP （MS－001BA）

\section*{| $\phi \mid 0.25(0.010)$ | M | T |
| :--- | :--- | :--- |}

NOTES：

1．Dimensions＂A＂，＂B＂do not include mold flash or protrusions． Maximum mold flash or protrusions $0.25 \mathrm{~mm}(0.010)$ per side．

	Dimension，mm	
Symbol	MIN	MAX
\mathbf{A}	8.51	10.16
\mathbf{B}	6.1	7.11
\mathbf{C}		5.33
\mathbf{D}	0.36	0.56
\mathbf{F}	1.14	1.78
\mathbf{G}	2.54	
\mathbf{H}	7.62	
\mathbf{J}	0°	10°
\mathbf{K}	2.92	3.81
\mathbf{L}	7.62	8.26
\mathbf{M}	0.2	0.36
\mathbf{N}	0.38	

D SUFFIX SOIC

（MS－012AA）

O｜0．25（0．010）（10）T，（1）

NOTES：

1．Dimensions A and B do not include mold flash or protrusion．
2．Maximum mold flash or protrusion $0.15 \mathrm{~mm}(0.006)$ per side for A；for B－0．25 mm（0．010）per side．

SOP14

WITH PLATING
SECTION B－B

DIP14

SYMBOL	MILLIMETER		
	MIN	NOM	MAX
A	3.60	3.80	4.00
A1	0.51	-	-
A2	3.20	3.30	3.40
A3	1.47	1.52	1.57
b	0.44	-	0.52
b1	0.43	0.46	0.49
B1	1.52 REF		
c	0.25	-	0.29
c1	0.24	0.25	0.26
D	19.00	19.10	19.20
E1	6.25	6.35	6.45
e	2.54 BSC		
eA	7.62 REF		
eB	7.62	-	9.30
eC	0	-	0.84
L	3.00	-	-

SSOP14

b

SYMBOL	MILLIMETER		
	MIN	NOM	MAX
A	-	-	1.75
A1	0.10	-	0.225
A2	1.30	1.40	1.50
A3	0.55	0.60	0.65
b	0.23	-	0.31
b1	0.22	0.25	0.28
c	0.20	-	0.24
c1	0.19	0.20	0.21
D	4.80	4.90	5.00
E	5.80	6.00	6.20
E1	3.80	3.90	4.00
e	$0.635 B B C$		
h	0.25	-	0.50
L	0.50	0.65	0.80
L1	$1.05 R E F$		
e	0	-	8

TSSOP14

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Operational Amplifiers - Op Amps category:
Click to view products by HTCSEMI manufacturer:

Other Similar products are found below :
430227FB AZV831KTR-G1 UPC451G2-A UPC824G2-A LT1678IS8 042225DB 058184EB UPC822G2-A UPC258G2-A NCS5651MNTXG NCV33202DMR2G NJM324E NTE925 5962-9080901MCA* AP4310AUMTR-AG1 HA1630D02MMEL-E HA1630S01LPEL-E SCY33178DR2G NJU77806F3-TE1 NCV5652MUTWG NCV20034DR2G LM2902EDR2G NTE778S NTE871 NTE924 NTE937 MCP6V16UT-E/OT MCP6V17T-E/MS MCP6V19T-E/ST SCY6358ADR2G LTC2065IUD\#PBF NCS20282FCTTAG LM4565FVT-GE2 EL5420CRZ-T7A TSV791IYLT TSV772IQ2T TLV2772QPWR NJM2100M-TE1 NJM4556AM-TE1 AS324MTR-E1 AS358MMTR-G1 MCP6232T-EMNY MCP662-E/MF TLC081AIP TLC082AIP TLE2074ACDW TLV07IDR TLV2170IDGKT TLV2455IDR TLV2461IDR

