CMOS－Low－Power，Slew－Rate－Limited RS－485／RS－422 Transceivers

GENERAL DESCRIPTION

The HT8485 is low－power transceivers for RS－485 and RS－422 communication．IC contains one driver and one receiver．The driver slew rates of the HT8485 is not limited，allowing them to transmit up to 2.5 Mbps ．These transceivers draw between $120 \mu \mathrm{~A}$ and $500 \mu \mathrm{~A}$ of supply current when unloaded or fully loaded with disabled drivers．All parts operate from a single 5V supply．Drivers are short－circuit current limited and are protected against excessive power dissipation by thermal shutdown circuitry that places the driver outputs into a high－impedance state．The receiver input has a fail－safe feature that guarantees a logic－high output if the input is open circuit．The HT8485 is designed for half－duplex applications．

FEATURES

－Extended ESD Protection for RS－485／RS－422 I／OPins $\pm 15 \mathrm{kV}$ Using Human Body Model
－Low Quiescent Current： $300 \mu \mathrm{~A}$
－-7 V to +12 V Common－Mode Input Voltage Range
－Three－StateOutputs
－30ns Propagation Delays，5ns Skew
－Full－Duplex and Half－Duplex Versions Available
－Operate from a Single 5V Supply
－Allows up to 32 Transceivers on the Bus
－Data rate： $2,5 \mathrm{Mbps}$
－Current－Limiting and Thermal Shutdown for Driver Overload Protection

Pinning

ABSOLUTE MAXIMUM RATINGS

Supply Voltage（VCC）12V
Control Input Voltage -0.5 V to $(\mathrm{V} \mathrm{Cc}+0.5 \mathrm{~V})$
Driver Input Voltage（DI）-0.5 V to $(\mathrm{V} \mathrm{Cc}+0.5 \mathrm{~V})$
Driver Output Voltage（A，B）-8 V to +12.5 V
Receiver Input Voltage（A，B）-8 V to +12.5 V
Receiver Output Voltage（RO）-0.5 V to $\left(\mathrm{V}_{\mathrm{cc}}+0.5 \mathrm{~V}\right)$

Continuous Power Dissipation
8－Pin Plastic DIP（derate $9.09 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ ） 727 mW
8 －Pin SO（derate $5.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ ） 471 mW
Operating Temperature Ranges $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
Lead Temperature（soldering， 10 sec ）$+300^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

（ $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {Min }}$ to $\mathrm{T}_{\text {MAX }}$ ，unless otherwise noted．）（Notes 1，2）

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Differential Driver Output（no load）	VOD1					5	V
Differential Driver Output （with load）	VOD2	$\mathrm{R}=50 \Omega$（RS－422）		2			V
		$R=27 \Omega$（RS－485），Figure 4		1.5		5	
Change in Magnitude of Driver Differential Output Voltage for Complementary Output States	$\triangle \mathrm{VOD}$	$R=27 \Omega$ or 50Ω ，Figure 4				0.2	V
Driver Common－Mode Output Voltage	VOC	$\mathrm{R}=27 \Omega$ or 50Ω ，Figure 4				3	V
Change in Magnitude of Driver Common－Mode Output Voltage for Complementary Output States	$\Delta \mathrm{VOC}$	$\mathrm{R}=27 \Omega$ or 50Ω ，Figure 4				0.2	V
Input High Voltage	VIH	DE，DI，RE		2.0			V
Input Low Voltage	VIL	DE，DI，RE				0.8	V
Input Current	IIN1	DE，DI，RE				± 2	$\mu \mathrm{A}$
Input Current （A，B）	IIN2	$\begin{aligned} & \mathrm{DE}=0 \mathrm{~V} ; \\ & \mathrm{VCC}=0 \mathrm{~V} \text { or } 5.25 \mathrm{~V}, \end{aligned}$	$\mathrm{VIN}=12 \mathrm{~V}$			1.0	mA
			$\mathrm{VIN}=-7 \mathrm{~V}$			－0．8	
Receiver Differential Threshold Voltage	VTH	$-7 \mathrm{~V} \leq \mathrm{V}_{\text {cm }} \leq 12 \mathrm{~V}$		－0．2		0.2	V
Receiver Input Hysteresis	$\Delta \mathrm{VTH}$	$\mathrm{VCM}=0 \mathrm{~V}$			70		mV
Receiver Output High Voltage	VOH	$I \mathrm{C}=-4 \mathrm{~mA}, \mathrm{VID}=200 \mathrm{mV}$		3.5			V
Receiver Output Low Voltage	VOL	$\mathrm{IO}=4 \mathrm{~mA}, \mathrm{VID}=-200 \mathrm{mV}$				0.4	V
Three－State（high impedance） Output Current at Receiver	IOZR	$0.4 \mathrm{~V} \leq \mathrm{VO} \leq 2.4 \mathrm{~V}$				± 1	$\mu \mathrm{A}$
Receiver Input Resistance	RIN	$-7 \mathrm{~V} \leq \mathrm{VCM} \leq 12 \mathrm{~V}$					k Ω

DC ELECTRICAL CHARACTERISTICS（continued）

（ $\mathrm{Vcc}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {min to }}$ Tmax，unless otherwise noted．）（Notes 1，2）

PARAMETER	SYMBOL	CONDITIONS	MIN	$\begin{gathered} \hline \text { TY } \\ \text { P } \end{gathered}$	MAX	$\begin{gathered} \hline \text { UNIT } \\ \mathrm{S} \end{gathered}$
No－Load Supply Current （Note 3）	ICC	$\mathrm{DE}=\mathrm{V}_{\mathrm{cc}}$		500	900	
		RE $=0 \mathrm{~V}$ or VCC		300	500	$\mu \mathrm{A}$
		DE $=0 \mathrm{~V}$				
Driver Short－Circuit Current，						
	IOSD1	$-7 \mathrm{~V} \leq \mathrm{VO} \leq 12 \mathrm{~V}$（Note 4）	35		250	mA
$\mathrm{VO}=$ High						
Driver Short－Circuit Current，						
	IOSD2	$-7 \mathrm{~V} \leq \mathrm{VO} \leq 12 \mathrm{~V}$（Note 4）	35		250	mA
VO＝Low						
Receiver Short－Circuit Current	IOSR	$\mathrm{OV} \leq \mathrm{VO} \leq \mathrm{VCC}$	7		95	mA

SWITCHING CHARACTERISTICS

（ $\mathrm{Vcc}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\mathrm{max}}$ ，unless otherwise noted．）（Notes 1，2）

PARAMETER	$\underset{\mathrm{L}}{\mathrm{SYMBO}}$	CONDITIONS	MIN	$\begin{aligned} & \text { TY } \\ & \mathbf{P} \end{aligned}$	MAX	UNITS
Driver Input to Output	tPLH	RDIFF $=54 \Omega$	10	30	60	ns
	tPHL	CL1＝CL2 $=100 \mathrm{pF}$	10	30	60	
Driver Output Skew to Output	tSKEW	$\begin{aligned} & \text { RDIFF }=54 \Omega, \text { CL1 }=\text { CL2 }= \\ & 100 \mathrm{pF} \end{aligned}$		5	10	ns
Driver Enable to Output High	tZH	CL＝100pF，S2 closed		40	70	ns
Driver Enable to Output Low	tZL	CL＝100pF，S1 closed		40	70	ns
Driver Disable Time from Low	tLZ	CL＝15pF，S1 closed		40	70	ns
Driver Disable Time from High	thZ	CL＝15pF，S2 closed		40	70	ns
｜tPLH－tPHL｜Differential	tSKD	RDIFF $=54 \Omega$		13		ns
Receiver Skew		CL1＝CL2＝100pF				
Receiver Enable to Output Low	tZL	CRL $=15 \mathrm{pF}$ ，S1 closed		20	50	ns
Receiver Enable to Output High	tZH	CRL $=15 \mathrm{pF}$ ，S2 closed		20	50	ns
Receiver Disable Time from Low	tLZ	CRL $=15 \mathrm{pF}$ ，S1 closed		20	50	ns
Receiver Disable Time from High	thZ	CRL $=15 \mathrm{pF}$ ，S2 closed		20	50	ns
Maximum Data Rate	fMAX		2.5			Mbps

Notes：
1．All currents into device pins are positive；all currents out of device pins are negative．All voltages are referenced to device ground unless otherwise specified．

2．All typical specifications are given for $\mathrm{VCC}=5 \mathrm{~V}$ and $\mathrm{TA}=+25^{\circ} \mathrm{C}$
3．Supply current specification is valid for loaded transmitters when $\mathrm{DE}=0 \mathrm{~V}$
4．Applies to peak current．See Typical Operating Characteristics．

Operation timing diagrams

Transmission					Receipt			
Inputs			Outputs X		Inputs			Outputs
RE	DE	DI	Z	Y	RE	DE	A－B	RO
X	1	1	0	1	0	0	＋0．2V	1
X	1	0	1	0	0	0	－0．2V	0
0	0	X	Z	Z	0	0	open	1
1	0	X	Z	Z	1	0	X	Z

X－don＇t care
Z－high resistance

（DIP8）

$\oplus[0.25(0.010)(11) \mathrm{T}$

NOTES：

1．Dimensions＂A＂，＂B＂do not include mold flash or protrusions．
Maximum mold flash or protrusions $0.25 \mathrm{~mm}(0.010)$ per side．

	Dimension，mm	
Symbol	MIN	MAX
\mathbf{A}	8.51	10.16
\mathbf{B}	6.1	7.11
\mathbf{C}		5.33
\mathbf{D}	0.36	0.56
\mathbf{F}	1.14	1.78
\mathbf{G}	2.54	
\mathbf{H}	7.62	
\mathbf{J}	0°	10°
\mathbf{K}	2.92	3.81
\mathbf{L}	7.62	8.26
\mathbf{M}	0.2	0.36
\mathbf{N}	0.38	

（SOP8）

NOTES：

1．Dimensions A and B do not include mold flash or protrusion．
2．Maximum mold flash or protrusion $0.15 \mathrm{~mm}(0.006)$ per side for A ；for $\mathrm{B}-0.25 \mathrm{~mm}(0.010)$ per side．

	Dimension，mm	
Symbol	MIN	MAX
\mathbf{A}	4.8	5
\mathbf{B}	3.8	4
\mathbf{C}	1.35	1.75
\mathbf{D}	0.33	0.51
\mathbf{F}	0.4	1.27
\mathbf{G}	1.27	
\mathbf{H}	5.72	
\mathbf{J}	0°	8°
\mathbf{K}	0.1	0.25
\mathbf{M}	0.19	0.25
\mathbf{P}	5.8	6.2
\mathbf{R}	0.25	0.5

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RS-422/RS-485 Interface IC category:
Click to view products by HTCSEMI manufacturer:

Other Similar products are found below :
SP3494CN-L/TR ISL4486IBZ-T ISL4491EIB ISL4491EIBZ-T ISL81483IB ISL83086EIB ISL83088EIB ISL83488IB ISL8483EIB
ISL8487EIB ISL8489EIB ISL8491IP ADM489AN CA-IF4820HM CS48505M CS485S CS817x22HS MAX485ESA-MS MAX3085 ADM3485EARZ SP3485EEN TP3485ES8 MAX3485ESA ST3485EBDR ADM485ARZ CA-IF4820HD CA-IF1042S-Q1 CA-IF1021D-Q1 CS48520D SN65HVD78EIMM/TR HGX3085ECMM/TR SP3085EIMM/TR HGX3085EIMM/TR SN65HVD72EIMM/TR HGX485EIN RS1905XK SIT1044QTK THVD1420DR MAX3490EESA+T UM3483EESA HD588L HD568N HD688ADR CA-IS3080WX CAIS3086WX CS817x20HS CA-IF1044S-Q1 CA-IF4820FS CA-IF4850HS GM3490E

