

1.8V, 42μA, RRIO, Zero Drift Op-amps

The HT8603/7/9 low-power chopper stabilized operational amplifiers provide input offset voltage correction for very low offset and offset drift over time and temperature. The devices operate with a single supply voltage as low as 1.8V, while drawing 42µA per amplifier of quiescent current with a gain bandwidth product of 350kHz. They are unity gain stable, have no 1/f noise, have good Power Supply Rejection Ratio (PSRR) and Common Mode Rejection Ratio (CMRR), and feature rail-to-rail input and output swing.

The devices were designed using an advanced CMOS process. The HT8603 (single version) is available in SC70-5, SOT23-5 and SO-8 packages. The HT8607 (dual version) is offered in MSOP-8 and SO-8 package. The HT8609 (quad version) is available in TSSOP-14 and SOIC-14 package. All versions are specified for operation from -40°C to 125°C.

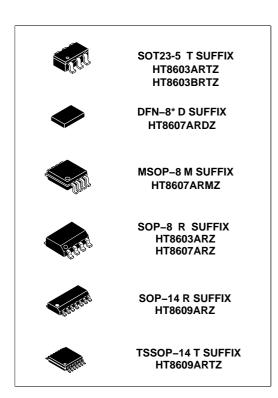
Features

■ LOW OFFSET VOLTAGE: 10 µV (Max)

■ ZERO DRIFT: 0.008 µV/°C
 ■ 0.1Hz to 10Hz Noise: 1.1 µV_{PP}

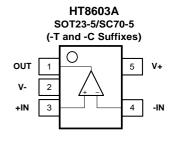
■ Low Supply Current: 42 µA per Amplifier

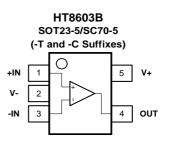
■ Bandwidth: 350 kHz ■ Slew Rate: 0.16 V/µs

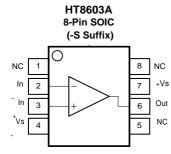

■ High Gain, 130 dB High CMRR and PSRR

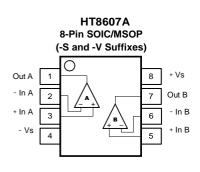
■ Rail-to-rail Input and Output Swing
 ■ -40°C to 125°C Operation Range

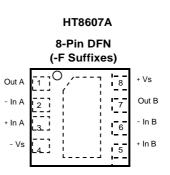
■ Small Packages: SC70 and SOT23 (HT8603)

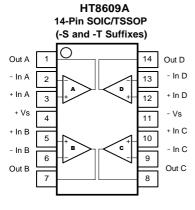

Applications


- Transducer Amplifier
- Bidirectional Current Sense
- DC Offset Correction
- Temperature Measurement
- Remote Located Sensors
- Battery-Powered Instruments
- Electronic Weigh Scales






Pin Configuration (Top View)



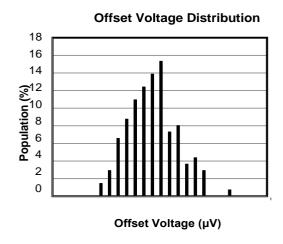
Absolute	Maximum	Ratings	Note	1
Supply Voltag	je:		6	٧
Input Voltage		V ⁻ -0.2 to	V++0.	2
Input Current:	+IN, -IN Note 2	:	±20m	4
Output Short-	Circuit Duration	Note 3 Ind	definit	е
Current at Sup	ply Pins	±	50mA	

Note 2: The inputs are protected by ESD protection diodes to each power supply. If the input extends more than 500mV beyond the power supply, the input current should be limited to less than 10mA.

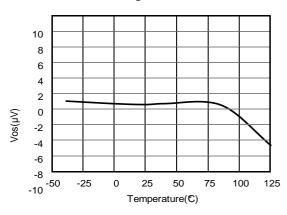
Note 3: A heat sink may be required to keep the junction temperature below the absolute maximum. This depends on the power supply voltage and how many amplifiers are shorted. Thermal resistance varies with the amount of PC board metal connected to the package. The specified values are for short traces connected to the leads.

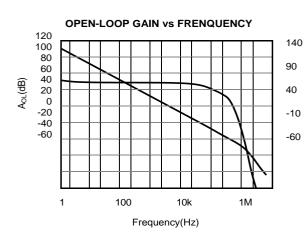
ESD, Electrostatic Discharge Protection

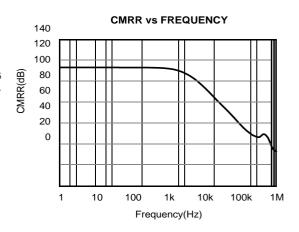
Symbol	Parameter	Condition	Minimum Level	Unit
HBM	Human Body Model ESD	ANSI/ESDA/JEDEC JS-001	7	kV
CDM	Charged Device Model ESD	ANSI/ESDA/JEDEC JS-002	2	kV

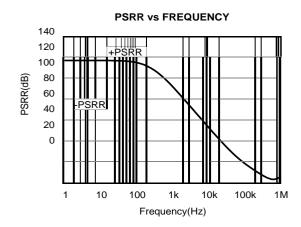

Electrical Characteristics

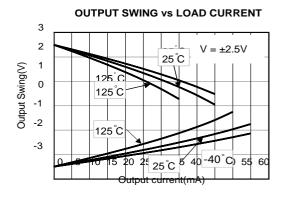
At T_A = 27°C, V_S = 5V, R_L = 10k $\Omega,\,V_{CM}$ = $V_{DD}/2,\,unless$ otherwise noted.

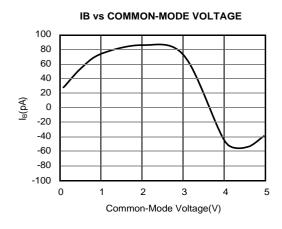

SYMBO L	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Vs	Supply Voltage Range		1.8		5.5	V
1 Odersent summit		HT8603		45	65	μΑ
lα	Quiescent current per amplifier	HT8607/HT8609		42	60	μA
		V _{CM} = 2.5V	-10	1	10	μV
Vos	Input Offset Voltage	V _{CM} = 0.05 to 4.95V	-20		20	μV
		V _S = 1.8V, V _{CM} = 0.9V	-20		20	μV
dVos/dT	vs temperature			0.008	0.05	μV/°C
PSRR	vs power supply	Vs = 3V to 5V	100	120		dB
.,	input voltage noise, f=0.01Hz to 1Hz			0.4		μV_{pp}
Vn	input voltage noise, f=0.1Hz to 10Hz			1.1		μV_{pp}
e _n	Input voltage noise density, f=1kHz			55		nV/√Hz
Cin	Input capacitor, Differential			3		pF
CIN	Input capacitor, Common-Mode			2		pF
1	Input Bias Current			±50		pA
lΒ	Over temperature			±800		pA
los	Input offset current			±100		pA
V _{CM}	Common-mode voltage range		(V-)-0.1		(V ₊)+0.1	V
CMRR	Common-mode rejection ratio	V _{CM} =0.5 to 4.5V	100	120		dB
Vo	Output Voltage Swing from rail	R _L =10kΩ		10	25	mV
Isc	Short-circuit current			±60		mA
GBWP	Unity Gain Bandwidth	C _L =100pF		350		kHz
SR	Slew rate	G=+1, CL=100pF		0.16		V/µs
tor	Overload recovery time	G=-10		60		μs
ts	Settling time to 0.01%	C _L =100Pf, G=+1, 5V Step		40		μs
Avol	Open-Loop Voltage Gain	$(V-)+100mV < V_0 < (V+)-100mV,$ $R_L = 100k\Omega$	100	120		dB
		SC70-5 (SOT353)		250		
		SOT23-5		200		0000
Δ	Thermal Resistance Junction to	MSOP-8		210		
θ JA	Ambient	SOIC-8		158		°C/W
		SOIC-14		83		
		TSSOP-14		100		

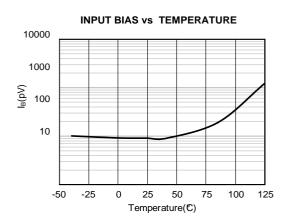


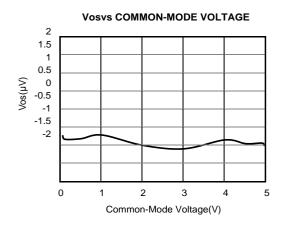

Typical Performance Characteristics

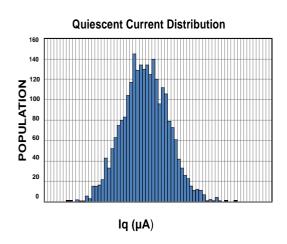


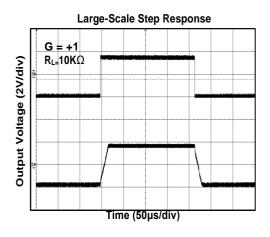

Offset Voltage vs TEMPERATURE

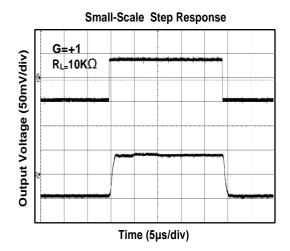


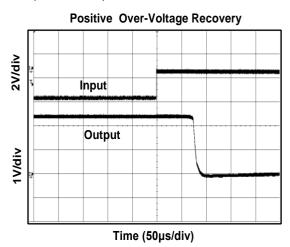


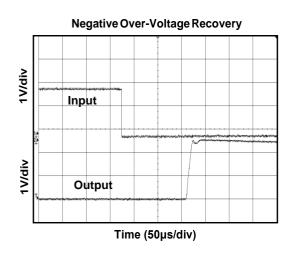


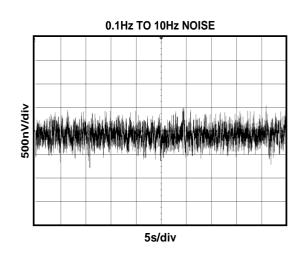

Typical Performance Characteristics

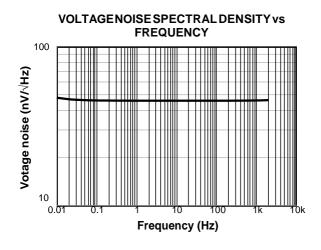


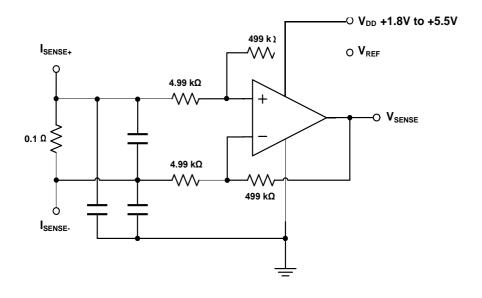


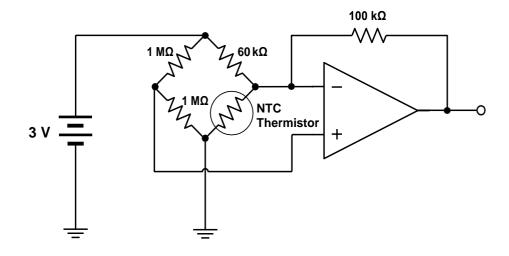







Typical Performance Characteristics(continue)





Bi-Directional Current Sense Amplifier

Thermistor Measurement

Pin Functions

-IN: Inverting Input of the Amplifier.

+IN: Non-Inverting Input of Amplifier.

OUT: Amplifier Output. The voltage range extends to within mV of each supply rail.

V+ or +V_s: Positive Power Supply. Typically the voltage is from 1.8V to 5.5V. Split supplies are possible as long as the voltage between V+ and V- is between 1.8V and 5.5V. A bypass capacitor of $0.1\mu F$ as close to the part as

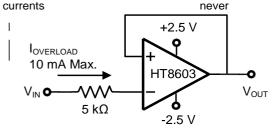
possible should be used between power supply pins or between supply pins and ground.

V- or -V_s: Negative Power Supply. It is normally tied to ground. It can also be tied to a voltage other than ground as long as the voltage between V⁺ and V⁻ is from 1.8V to 5.5V. If it is not connected to ground, bypass it with a capacitor of $0.1\mu F$ as close to the part as possible.

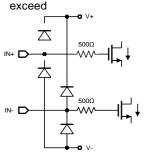
Operation

The HT860x series op amps are zero drift, rail-to-rail operation amplifiers that can be run from a single-supply voltage. They use an auto-calibration technique with a time-continuous 350 kHz op amp in the signal path while consuming only 42 µA of supply current per channel. This amplifier is zero-corrected with an 120 kHz clock. Upon power-up, the amplifier requires approximately 100 µs to achieve specified Vos accuracy. This design has no aliasing or flicker noise.

Applications Information


Rail-To-Rail Input And Output

The HT860x series op amps feature rail-to-rail input and output with a supply voltage from 1.8V to 5.5 V. This allows the amplifier inputs to have a wide common mode range (50mV beyond supply rails) while maintaining high CMRR (130dB) and maximizes the signal to noise ratio of the amplifier by having the V_{OH} and V_{OL} levels be at the V+ and V-rails,


Input Protection

The HT860x series op amps have internal ESD protection diodes that are connect between the inputs and supply rail. When either input exceeds one of the supply rails by more than 300mV, the ESD diodes become forward biased and large amounts of current begin to flow through them. Without current limiting, this excessive fault current causes permanent damage to the device. Thus an external series resistor must be used to ensure the input currents

never exceed 10mA.

Current-limiting resistor required if input voltage exceeds supply rails by >0.5V.

INPUT ESD DIODE CURRENT LIMITING-UNITY GAIN

Low Input Referred Noise

Flicker noise, as known as 1/f noise, is inherent in semiconductor devices and increases as frequency decreases. So at lower frequencies, flicker noise dominates, causing higher degrees of error for sub-Hertz frequencies or dc precision application.

The HT860x series amplifiers are chopper stabilized amplifiers, the flicker noise is reduced greatly because of this technique. This reduction in 1/f noise allows the HT860x to have much lower noise at dc and low frequency compared to standard low noise amplifier.

Residual Voltage Ripple

The chopping technique can be used in amplifier design due to the internal notch filter. Although the chopping related voltage ripple is suppressed, higher noise spectrum exists at the chopping frequency and its harmonics due to residual ripple.

So if the frequency of input signal is nearby the chopping frequency, the signal maybe interfered by the residue ripple. To further suppress the noise at the chopping frequency, it is recommended that a post filter be placed at the output of the amplifier.

Broad Band and External Resistor Noise Considerations

The total broadband noise output from any amplifier is primarily a function of three types of noise: input voltage noise from the amplifier, input current noise from the amplifier, and thermal (Johnson) noise from the external resistors used around the amplifier. These noise sources are not correlated with each other and their combined noise can be summed in a root sum squared manner. The full equation is given as:

Where:

en= the input voltage noise density of the amplifier.

 i_n = the input current noise of the amplifier.

Rs= source resistance connected to the noninverting terminal.

k= Boltzmann's constant (1.38x10⁻²³J/K). *T*= ambient temperature in Kelvin (K).

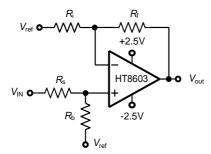
The total equivalent rms noise over a specific bandwidth is expressed as:

$$e_{n.rms}$$
 e_n total \sqrt{BW}

The input voltage noise density (en) of the HT860x is $55 \text{ nV}/\sqrt{\text{Hz}}$, and the input current noise can be neglected. When the source resistance is $190 \text{ k}\Omega$, the voltage noise contribution from the source resistor and the amplifier are equal. With source resistance greater than $190 \text{ k}\Omega$, the overall noise of the system is dominated by the Johnson noise of the resistor itself.

High Source Impedance Application

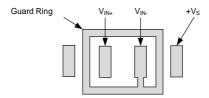
HT860x series op amps use switches at the chopper amplifier input, the input signal is chopped at 125 kHz to reduce input offset voltage down to $10\mu V$. The dynamic behavior of these switches induces a charge injection current to the input terminals of the amplifier. The charge injection current has a DC path to ground through the resistances seen at the input terminals of the amplifier. Higher input impedance causes an apparent shift in the input bias current of the amplifier.


Because the chopper amplifier has charge injection currents at each terminal, the input offset current will be larger than standard amplifiers. The los of HT860x are 150pA under the typical condition. So the input impedance should be

balanced across each input. The input impedance of the amplifier should be matched between the IN+ and IN- terminals to minimize total input offset current. Input offset currents show up as an additional output offset voltage, as shown in the following equation:

$$V_{os,total}$$
 V_{os} R_f I_{os}

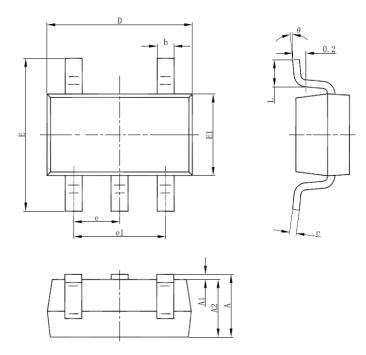
For a gain configure using $1M\Omega$ feedback resistor, a 150pA total input offset current will have an additional output offset voltage of 0.15mV. By keeping the input impedance low and balanced across the amplifier inputs, the input offset current effect will be suppressed efficiently.


Circuit Implication for reducing Input offset current effect

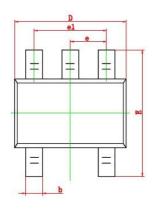
PCB Surface Leakage

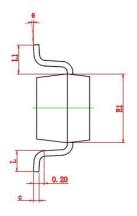
In applications where low input bias current is critical, Printed Circuit Board (PCB) surface leakage effects need to be considered. Surface leakage is caused by humidity, dust or other contamination on the board. It is recommended to use multi-layer PCB layout and route the OPA's -IN and +IN signal under the PCB surface.

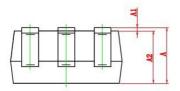
The effective way to reduce surface leakage is to use a guard ring around sensitive pins (or traces). The guard ring is biased at the same voltage as the sensitive pin. An example of this type of layout is shown in Figure 2 for Inverting Gain application.


- 1. For Non-Inverting Gain and Unity-Gain Buffer:
 - a) Connect the non-inverting pin (V_{IN}+) to the input with a wire that does not touch the PCB surface.
 - b) Connect the guard ring to the inverting input pin (V_{IN}-). This biases the guard ring to the Common Mode input voltage.
- 2. For Inverting Gain and Trans-impedance Gain Amplifiers (convert current to voltage, such as photo detectors):
 - a) Connect the guard ring to the non-inverting input pin (V_{IN+}). This biases the guard ring to the same reference voltage as the op-amp (e.g., $V_{DD}/2$ or ground).
 - b) Connect the inverting pin (V_{IN}-) to the input with a wire that does not touch the PCB surface.

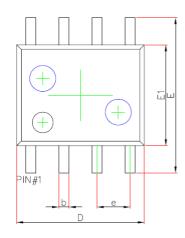
The Layout of Guard Ring

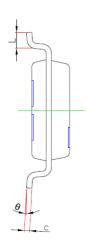

SOT23-5

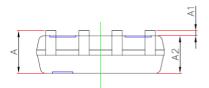



Ch l	Dimensions Ir	n Millimeters	Dimensions	In Inches
Symbol	Min.	Max.	Min.	Max.
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E1	1.500	1.700	0.059	0.067
Е	2.650	2.950	0.104	0.116
е	0.950	(BSC)	0.037	(BSC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

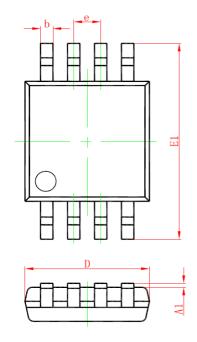
SC-70-5 (SOT353)

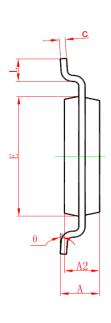





Symbol	Dimensions	In Millimeters	Dimension	s In Inches
Symbol	Min.	Max.	Min.	Max.
Α	0.900	1.100	0.035	0.043
A1	0.000	0.100	0.000	0.004
A2	0.900	1.000	0.035	0.039
b	0.150	0.350	0.006	0.014
С	0.110	0.175	0.004	0.007
D	2.000	2.200	0.079	0.087
E	2.150	2.450	0.085	0.096
E1	1.150	1.350	0.045	0.053
е	0.650 TYP.		0.026	TYP.
e1	1.200	1.400	0.047	0.055
L	0.260	0.460	0.010	0.018
L1	0.525	REF.	0.021 REF.	
θ	0°	8°	0°	8°

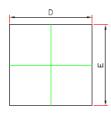
SOP-8 (SOIC-8)



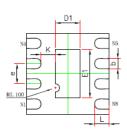


S) maked	Dimensions In	n Millimeters	Dimension	s In Inches
Symbol	Min.	Max.	Min.	Max.
Α	1.350	1.750	0.053	0.069
A1	0.100	0.250	0.004	0.010
A2	1.350	1.550	0.053	0.061
b	0.330	0.510	0.013	0.020
С	0.170	0.250	0.007	0.010
D	4.700	5.100	0.185	0.201
E	5.800	6.200	0.228	0.244
E1	3.800	4.000	0.150	0.157
е	1.270(I	1.270(BSC)		(BSC)
L	0.400	0.800	0.016	0.031
θ	0°	8°	0°	8°

MSOP-8

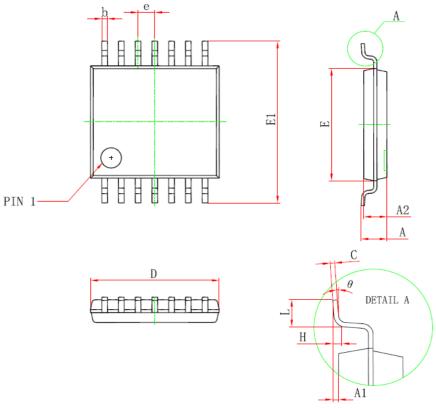



Comb I	Dimensions Ir	n Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
Α	0.820	1. 100	0. 032	0.043
A1	0. 020	0. 150	0. 001	0.006
A2	0. 750	0. 950	0. 030	0.037
b	0. 250	0. 380	0. 010	0.015
С	0.090	0. 230	0. 004	0.009
D	2. 900	3. 100	0. 114	0. 122
е	0.650	(BSC)	0.026	(BSC)
Е	2. 900	3. 100	0. 114	0. 122
E1	4. 750	5. 050	0. 187	0. 199
L	0.400	0.800	0. 016	0. 031
θ	0°	6°	0°	6°



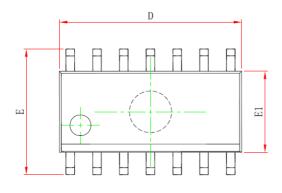
DFN-8 2*2

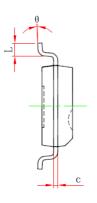
TOP VIEW

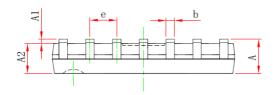


BOTTOM VIEW

Symbol	Dimensions I	n Millimeters	s Dimensions In Incl	
Symbol	Min.	Max.	Min.	Max.
Α	0.700	0.800	0.028	0.031
A1	0.000	0.050	0.000	0.002
A3	0.2031	REF.	0.008	REF.
D	1.900	2.100	0.075	0.083
E	1.900	2.100	0.075	0.083
D1	0.500	0.700	0.020	0.028
E1	1.100	1.300	0.043	0.051
k	0.350	REF.	0.014	REF.
b	0.200	0.300	0.008	0.012
е	0.500BSC.		0.020	BSC.
Ĺ	0.274	0.426	0.011	0.017


TSSOP-14




Same had	Dimensions In	nsions In Millimeters Dimensions In Inches		s In Inches
Symbol	Min	Max	Min	Max
D	4.900	5. 100	0.193	0. 201
E	4.300	4. 500	0.169	0.177
ь	0.190	0.300	0.007	0.012
c	0.090	0.200	0.004	0.008
E1	6.250	6. 550	0.246	0. 258
A		1. 200		0.047
A2	0.800	1.000	0.031	0.039
A1	0.050	0.150	0.002	0.006
e	0.65 (BSC)		0.026(BSC)	
L	0.500	0.700	0.020	0.028
Н	0.25(TYP)		0.01(TYP)
θ	1 °	7 °	1°	7°

SOP-14 (SOIC-14)

Symbol	Dimensions In Millimeters		Dimensions In	Inches
	Min	Max	Min	Max
Α		1.750		0.069
A1	0.100	0.250	0.004	0.010
A2	1.250		0.049	
b	0.310	0.510	0.012	0.020
С	0.100	0.250	0.004	0.010
D	8.450	8.850	0.333	0.348
E	5.800	6.200	0.228	0.244
E1	3.800	4.000	0.150	0.157
е	1.270(BSC)		0.050	(BSC)
L	0.400	1.270	0.016	0.050
θ	0°	8°	0°	8°

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Precision Amplifiers category:

Click to view products by HTCSEMI manufacturer:

Other Similar products are found below:

561681F NCS20166SN2T1G NCS21802MUTBG OPA209AIDR MCP6V52-E/MS COS4333TRC COS4333TRA COS4333TRA COS4333TRD COS4333TRB COS8551TRB COS2333MRC COS27SR COS8554TRA COS2333MRB COS2333MRA COS4227UATR HGV8541MM/TR RS8559XP HT8603ARTZ GS8538-SR OPA2335M/TR GS8548-SR HT2771BRTZ GS8552-FR MS8551S HGV8552AIMM/TR HGV8552AIM/TR TLC27L7CP TLV2473CDR LMP2234AMA/NOPB LMP7707MA/NOPB LMP2231AMAE/NOPB LMP2234AMTE/NOPB LMP8672MA/NOPB LMC6022IM/NOPB LMC6024IM/NOPB LMC6081IMX/NOPB LMP2011MA/NOPB LMP2231AMFE/NOPB LMP2232BMA/NOPB LMP2234AMAE/NOPB LMP7715MFE/NOPB LMP7717MAE/NOPB LMV2011MA/NOPB LT1013DDR TL034ACDR TLC2201AMDG4 TLE2024BMDWG4