

Dual Low-Voltage H-Bridge IC

Feature

- Dual H-Bridge Motor Driver
 - Capable of Driving Two DC Motors or One Stepper Motor
 - Low-MOSFET ON-Resistance: HS+LS 305 mΩ
- 1.5 A Maximum Drive Current Per H-Bridge
- Configure Bridges Parallel for 3 A Drive Current
- Separate Motor and Logic-Supply Pins
 - OV to 11V Motor-Operating Supply-Voltage
 - 2V to 7V Logic Supply-Voltage
- Flexible PWM or PHASE/ENABLE Interface
- Low-Power Sleep Mode With 95nA Maximum Supply Current
- DFN 2mm x 3mm -12L Package

Applications

- Battery-Powered:
 - Cameras
 - DSLR Lenses
 - Consumer Products
 - Toys
 - Robotics
 - Medical Devices

General Description

The HT8835 provides integrated driver solution for cameras, consumer products, toys, and other low-voltage or battery-powered motion control applications. The device has two Hbridge drivers, and drives two DC motors or one stepper motor, as well as other devices like solenoids. The output driver block for each consists of N-channel power MOSFETs configured as an H-bridge to drive the motor winding. An internal charge pump generates gate drive voltages. The HT8835 supplies up to 1.5A of output current per H-bridge and operates on a motor power supply voltage from OV to 11V, and a device power supply voltage of 2V to 7V.

PHASE/ENABLE and IN/IN interfaces are compatible with industry-standard devices.

Internal shutdown functions are provided for overcurrent protection, short circuit protection, under voltage lockout, and over temperature.

The HT8835 is packaged in a 12-pin DFN package.

Absolute Maximum Ratings

(If out of these ratings, the filter may be fail or damaged)

Table 1

SYMBOL	PARAMETER	MIN	MAX	UNITS
V _M Motor power supply voltage		-0.3	12	V
V _{CC}	Power supply voltage	-0.3	7	V
T _A Operating ambient Temperature Range		-40	125	°C
T _{STG}	Storage Temperature	-65	150	°C

Recommended Operating Conditions

Table 2

SYMBOL	PARAMETER	MIN	MAX	UNITS
V _{CC}	V _{CC} Device power supply voltage		7	V
V _M	Motor power supply voltage	0	11	V
V _{IN}	Logic level input voltage	0	V_{CC}	V
I _{OUT}	H-bridge output current	0	1.5	А
f _{PWM}	Externally applied PWM frequency	0	250	kHz
T _A	Operating ambient Temperature Range	-40	85	°C

Thermal Information

Table 3

SYMBOL	PARAMETER	VALUE	UNITS
R_{JA}	Junction-to-ambient thermal resistance	65.3	°C/W
R_{JC}	Junction-to-thermal resistance	45.8	°C/W

Electrical Characteristics

Specifications are at T_A =+25°C, V_M =5V, V_{CC} =3V (unless otherwise noted)

CVNADOL	DADABATTED	TECT CONDITIONS		SPEC		UNIT	
SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	S	
т	VAA an arating sumply surrent	No PWM, no load		194		μΑ	
I _{VM}	VM operating supply current	50 kHz PWM, no load		350			
	VM sleep mode supply current	V _M =2V, V _{CC} =0V, all inputs 0V		5		0	
I _{VMQ}		V _M =5V, V _{CC} =0V, all inputs 0V		10	95	nA	
I _{VCC}	VCC operating supply current			372		μΑ	
.,	VCC undervoltage lockout	VCC rising		1.5		.,	
V _{UVLO}	voltage	VCC falling		1.7		V	
V _{IL}	Input low voltage				0.3 x V _{CC}	V	
V _{IH}	Input high voltage		0.5 x V _{CC}			V	
I _{IL}	Input low current	V _{IN} =0			5	μΑ	
I _{IH}	Input high current	V _{IN} =3.3V			50	μΑ	
R _{PD}	Pulldown resistance			100		ΚΩ	
		V _{CC} =3V, V _M =3V, I _O =800mA,		337	400		
	LICAL C FFT an anxiety and	T _J =25°C					
R _{DS(ON)}	HS+LS FET on resistance	V _{CC} =5V, V _M =5V, I _O =800mA,		300	360	mΩ	
		T _J =25°C					
I _{OFF}	OFF-state leakage current				200	nA	
I _{OCP}	Overcurrent protection trip level		1.6		3.5	Α	
t _{DEG}	Overcurrent de-glitch time			1		μs	
tocr	Overcurrent protection retry			1		ms	
	time						
t _{DEAD}	Output dead time			100		ns	
t _{TSD}	Thermal shutdown temperature		150	160	180	°C	

Timing Requirements

 T_A =+25°C, V_M =5V, V_{CC} =3V, R_L =20 Ω

NO.			MIN	MAX	UNIT
1	t ₁	Delay time, xPHASE high to xOUT1 low		300	ns
2	t ₂	Delay time, xPHASE high to xOUT2 high		200	ns
3	t ₃	Delay time, xPHASE low to xOUT1 high		200	ns
4	t ₄	Delay time, xPHASE low to xOUT2 low		300	ns
5	t ₅	Delay time, xENBL low to xOUTx high		200	ns
6	t ₆	Delay time, xENBL low to xOUTx low		300	ns
7	t ₇	Output enable time		300	ns
8	t ₈	Output disable time		300	ns
9	t ₉	Delay time, xINx high to xOUTx high		160	ns
10	t ₁₀	Delay time, xINx low to xOUTx low		160	ns
11	t _R	Output rise time	30	188	ns
12	t _F	Output fall time	30	188	ns

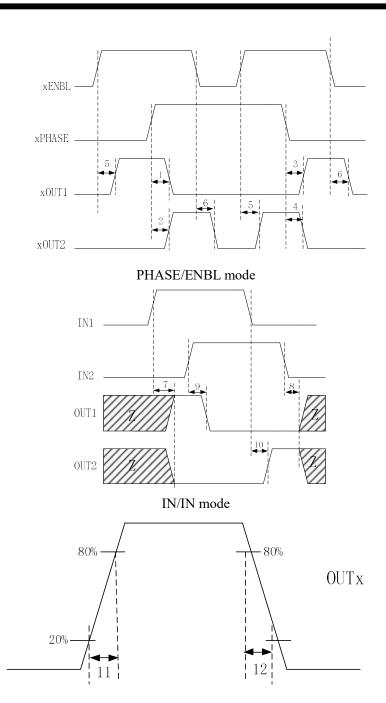


Fig. 1 Timing Requirements

PAD Definition

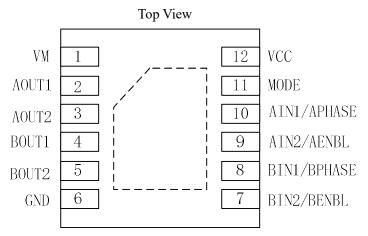


Fig 2. Pad definition of HT8835

Table 7. Pad definition

	Table 7. Pad definition							
No.	Name	1/0	Description	EXTERNAL COMPONENTS OR CONNECTIONS				
1	VM	POWER	Motor supply	Bypass to GND with $0.1\mu\text{F}$ (minimum) ceramic capacitor				
2	AOUT1	0	Bridge A output 1	Connect to metar winding A				
3	AOUT2	0	Bridge A output 2	Connect to motor winding A				
4	BOUT1	0	Bridge B output 1	Connect to metanomicalize D				
5	BOUT2	0	Bridge B output 2	Connect to motor winding B				
6	GND	GROUND	Device ground					
				IN/IN mode: Logic high sets BOUT2 high				
7	BIN2/BENBL	I	Bridge B input 2/ENABLE input	PH/EN mode: Logic high enables H-bridge B				
				Internal pulldown resistor				
				IN/IN mode: Logic high sets BOUT1 high				
8	BIN1/BPHASE	1	Bridge B input 1/PHASE input	PH/EN mode: Sets direction of H-bridge B				
				Internal pulldown resistor				
				IN/IN mode: Logic high sets AOUT2 high				
9	AIN2/AENBL	I	Bridge A input 2/ENABLE input	PH/EN mode: Logic high enables H-bridge A				
				Internal pulldown resistor				
				IN/IN mode: Logic high sets AOUT1 high				
10	AIN1/APHASE	1	Bridge A input 1/PHASE input	PH/EN mode: Sets direction of H-bridge A				
				Internal pulldown resistor				
				Logic low selects IN/IN mode Logic high selects PH/EN mode Internal pulldown resistor				
11	MODE	I	Input mode select					
12	VCC	POWER	Device supply	Bypass to GND with 0.1μF(minimum)				
12	VCC	1 OVVLIN	Device supply	ceramic capacitor				

Feature Description

The HT8835 is an integrated motor-driver solution used for brushed motor control. The device integrates two H-bridges, and drives two DC motor or one stepper motor. The output driver block for each H-bridge consists of N-channel power MOSFETs. An internal charge pump generates the gate drive voltages. Protection features include overcurrent protection, short circuit protection, undervoltage lockout, and overtemperature protection.

The bridges connect in parallel for additional current capability.

The HT8835 allows separation of the motor voltage and logic voltage if desired. If VM and VCC are less than 7 V, the two voltages can be connected.

The mode pin allow selection of either a PHASE/ENABLE or IN/IN interface.

Protection Circuits

The HT8835 is fully protected against undervoltage, overcurrent, and overtemperature events.

1) Overcurrent Protection (OCP)

An analog current limit circuit on each FET limits the current through the FET by removing the gate drive. If this analog current limit persists for longer than the OCP time, all FETs in the H-bridge disable. After approximately 1 ms, the bridge re-enable automatically.

Overcurrent conditions on both high-side and low-side devices; a short to ground, supply, or across the motor winding result in an overcurrent shutdown.

2) Thermal Shutdown (TSD)

If the die temperature exceeds safe limits, all FETs in the H-bridge disable. Operation automatically resumes once the die temperature falls to a safe level.

3) Undervoltage Lockout (UVLO)

If at any time the voltage on the VCC pins falls below the undervoltage lockout threshold voltage, all circuitry in the device disable, and internal logic resets. Operation resumes when VCC rises above the UVLO threshold.

INTERNAL CONDITION **ERROR REPORT** H-BRIDGE **FAULT** RECOVERY **CIRCUITS** VCC undervoltage VCC < VUVLO Disabled Disabled VCC > VUVLO None (UVLO) Overcurrent (OCP) IOUT > IOCP tOCR None Disabled Operating Thermal Shutdown TJ > TTSD None Disabled Operating TJ < TTSD - THYS (TSD)

Table 1. Device Protection

Device Functional Modes

The HT8835 is active when the VCC is set to a logic high. When in sleep mode, the H-bridge FETs are disabled (HIGH-Z).

OPERATING MODE	CONDITION	H-BRIDGE	INTERNAL CIRCUITS
Operating	nSLEEP high	Operating	Operating
Sleep mode	nSLEEP low	Disabled	Disabled
Fault encountered	Any fault condition met	Disabled	See Table 1

1) Bridge Control

Two control modes are available in the HT8835: IN/IN mode, and PHASE/ENABLE mode. IN/IN mode is selected if the MODE pin is driven low or left unconnected; PHASE/ENABLE mode is selected if the MODE pin is driven to logic high. Table 3 and Table 4 show the logic for these modes.

Table 3. IN/IN Mode

MODE	xIN1	xIN2	xOUT1	xOUT2	FUNCTION (DC MOTOR)
0	0	0	Z	Z	Coast
0	0	1	L	Н	Reverse
0	1	0	Н	L	Forward
0	1	1	L	L	Brake

Table 4. Phase/Enable Mode

MODE	xENABLE	xPHASE	xOUT1	xOUT2	FUNCTION (DC MOTOR)	
1	0	X	L	L	Brake	
1	1	1	L	Н	Reverse	
1	1	0	Н	L	Forward	

2) Sleep Mode

If the VCC pin reaches 0 V, the HT8835 enters a low-power sleep mode. In this state all unnecessary internal circuitry powers down. For minimum supply current, all inputs should be low (0 V) during sleep mode.

Application and Implementation

Application Information

The HT8835 is used in one or two motor control applications. Configure the HT8835 in parallel to provide double the current to one motor. The following design procedure can be used to configure the HT8835 in a brushed motor application.

Typical Application

The two H-bridges in the HT8835 drivers 1x Stepper motor or 2x DC motor. Figure 2 shows the connections.

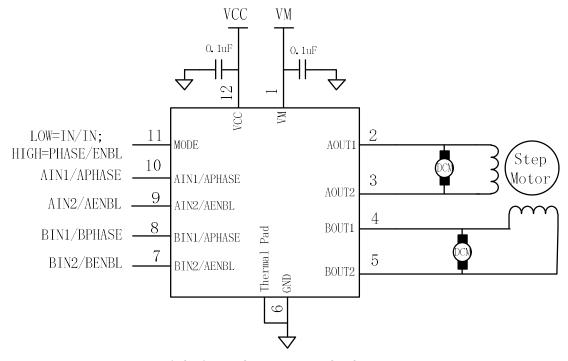
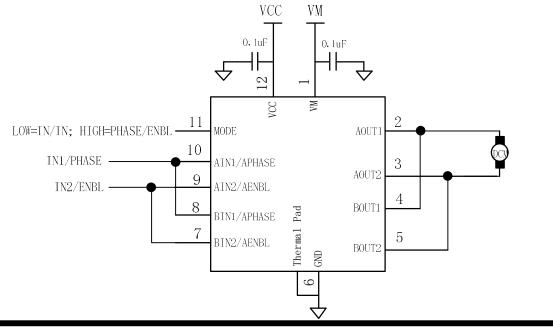
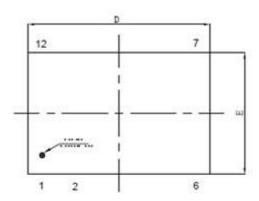
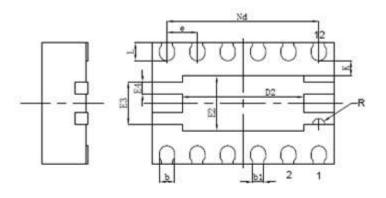


Fig.2 Drivers 1x Stepper motor or 2x DC motor

The two H-bridges in the HT8835 connect in parallel for double the current of a single H-bridge. Figure 6 shows the connections.

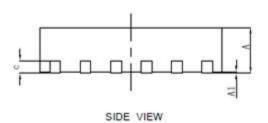



Fig.3 Parallel Mode Connections



Package

DFN 2*3-12L


Consideration	Millimeters			
Symbol	MIN	NOM	MAX	
Α	0.70	0.75	0.80	
A1	0	0.02	0.05	
b	0.20	0.25	0.30	
b1		0.18REF		
С	0.203REF			
D	2.90	3.00	3.10	
D2	1.90	2.00	2.10	
E	1.90	2.00	2.10	
E2	0.80	0.90	1.00	
E3	0.60	0.70	0.80	
E4	0.10	0.20	0.30	
е		0.50BSC		
Nd	2.50BSC			
L	0.25	0.30	0.35	
R	0.05	0.10	0.15	
K	0.25REF			

TOP VIEW

BOTTOM VIEW

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Motor/Motion/Ignition Controllers & Drivers category:

Click to view products by HTCSEMI manufacturer:

Other Similar products are found below:

LV8133JA-ZH LV8169MUTBG LV8774Q-AH MC33931EKR2 FSB50250UTD FSB50550TB2 FSBF15CH60BTH MSVCPM2-63-12

MSVGW45-14-2 MSVGW54-14-3 NTE7043 CAT3211MUTAG LA6245P-CL-TLM-E LA6245P-TLM-E LA6565VR-TLM-E LB11650-E

LB1694N-E LB1837M-TLM-E LC898111AXB-MH LC898300XA-MH SS30-TE-L-E STK531-345A-E STK581U3A0D-E

STK58AUNP0D-E STK621-140C STK621-728S-E STK625-728-E STK672-400B-E AMIS30621AUA LV8281VR-TLM-H IRAM236
1067A LA6584JA-AH LB11847L-E NCV70501DW002R2G AH293-PL-B TND315S-TL-2H FNA23060 FSB50250AB FNA41060

MSVBTC50E MSVCPM3-54-12 MSVCPM3-63-12 MSVCPM4-63-12 FSB50550AB NCV70501DW002G LC898301XA-MH LV8413GP
TE-L-E MSVGW45-14-3 MSVGW45-14-4 MSVGW54-14-4