## Very low offset single bipolar operational amplifier

## Features

■ Extremely low offset： $75 \mu \mathrm{~V} /$ max．
■ Low input bias current： 1.8 nA
－LOW $\mathrm{V}_{\text {io }}$ drift： $0.25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
■ Ultra stable with time： $2 \mu \mathrm{~V} /$ month max．
■ Wide supply voltage range：$\pm 3 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$
－Temperature range： $0^{\circ} \mathrm{C}$ to $-105^{\circ} \mathrm{C}$

## Description



The OP07B is a very high precision op－amp with an offset voltage maximum of $75 \mu \mathrm{~V}$ ．
Offering also low input current（1．8nA）and high gain $(400 \mathrm{~V} / \mathrm{mV})$ ，the OP07B is particularly suitable for instrumentation applications．

HTCSETII
海天芯

## 1 Schematic diagram

Figure 1．Schematic diagram


Figure 2．Input offset voltage nulling circuit


HTCSETII
海天芯

## 2 Absolute maximum ratings

Table 1．Absolute maximum ratings

| Symbol | Parameter | Value | Unit |
| :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | Supply voltage | $\pm 22$ | V |
| $V_{\text {id }}$ | Differential input voltage | $\pm 30$ | V |
| $V_{i}$ | Input voltage | $\pm 22$ | V |
| $\mathrm{T}_{\text {oper }}$ | Operating temperature | －40 to 105 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\text {stg }}$ | Storage temperature | －65 to 150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{R}_{\text {thja }}$ | Thermal resistance junction to ambient ${ }^{(1)(2)}$ DIP8 | 85 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $\mathrm{R}_{\text {thic }}$ | Thermal resistance junction to case ${ }^{(1)(2)}$ DIP8 | 41 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| ESD | HBM：human body model ${ }^{(3)}$ | 1.5 | kV |
|  | MM：machine model ${ }^{(4)}$ | 200 | V |
|  | CDM：charged device model ${ }^{(5)}$ | 1.5 | kV |

1．Short－circuits can cause excessive heating and destructive dissipation．
2． $\mathrm{R}_{\mathrm{th}}$ are typical values．
3．Human body model： 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor between two pins of the device，done for all couples of pin combinations with other pins floating．
4．Machine model：a 200 pF cap is charged to the specified voltage，then discharged directly between two pins of the device with no external series resistor（internal resistor $<5 \Omega$ ）．Done for all couples of pin combinations with other pins floating．
5．Charged device model：all pins plus package are charged together to the specified voltage and then discharged directly to the ground．

## 3 Electrical characteristics

Table 2． $\mathrm{V}_{\mathrm{Cc}^{+}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{Cc}}{ }^{-}=$Ground， $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$（unless otherwise specified）

| Symbol | Parameter | Min． | Typ． | Max． | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{\text {io }}$ | Input offset voltage $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{amb}} \leq+105^{\circ} \mathrm{C}$ |  |  | $\begin{aligned} & 25 \\ & 75 \end{aligned}$ | $\mu \mathrm{V}$ |
|  | Long term input offset－voltage stability ${ }^{(1)}$ |  | 0.4 | 2 | $\mu \mathrm{V} / \mathrm{Mo}$ |
| DV io | Input offset voltage drift |  | 0.5 | 1.8 | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| $\mathrm{I}_{\mathrm{i}}$ | $\begin{aligned} & \text { Input offset current }\left(\mathrm{V}_{\text {ic }}=0 \mathrm{~V}\right) \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\text {amb }} \leq+105^{\circ} \mathrm{C} \end{aligned}$ |  | 0.8 | $\begin{aligned} & 3 \\ & 5 \end{aligned}$ | nA |
| $\mathrm{Dl}_{\text {io }}$ | Input offset current drift |  | 15 | 50 | $\mathrm{pA} /{ }^{\circ} \mathrm{C}$ |
| $\mathrm{Dl}_{\text {ib }}$ | Input bias current drift |  | 15 | 50 | $\mathrm{pA} /{ }^{\circ} \mathrm{C}$ |
| $\mathrm{R}_{0}$ | Open loop output resistance |  | 60 |  | $\Omega$ |
| $\mathrm{R}_{\text {id }}$ | Differential input resistance |  | 33 |  | MW |
| $\mathrm{R}_{\text {ic }}$ | Common mode input resistance |  | 120 |  | GW |
| $\mathrm{V}_{\mathrm{icm}}$ | Input common mode voltage range $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\text {amb }} \leq+105^{\circ} \mathrm{C}$ | $\begin{aligned} & \pm 13 \\ & \pm 13 \end{aligned}$ | $\pm 13.5$ |  | V |
| CMR | $\begin{aligned} & \text { Common-mode rejection ratio }\left(\mathrm{V}_{\mathrm{ic}}=\mathrm{V}_{\mathrm{icm}-\mathrm{min}}\right) \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\text {amb }} \leq+105^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} 100 \\ 97 \end{gathered}$ | 120 |  | dB |
| SVR | Supply voltage rejection ratio（ $\mathrm{V}_{\mathrm{CC}}= \pm 3$ to $\pm 18 \mathrm{~V}$ ） $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{amb}} \leq+105^{\circ} \mathrm{C}$ | $\begin{aligned} & 90 \\ & 86 \end{aligned}$ | 104 |  | dB |
| $\mathrm{A}_{\mathrm{vd}}$ | Large signal voltage gain $\begin{aligned} & V_{C C}= \pm 15, R_{L}=2 k \Omega, V_{O}= \pm 10 \mathrm{~V} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\text {amb }} \leq+105^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}= \pm 3, R_{\mathrm{L}}=500 \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 0.5 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & 120 \\ & 100 \\ & 100 \end{aligned}$ | $\begin{aligned} & 400 \\ & 400 \end{aligned}$ |  | V／mV |
| $V_{\text {opp }}$ | Output voltage swing $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\text {amb }} \leq+105^{\circ} \mathrm{C} \quad \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$ | $\begin{gathered} \pm 12 \\ \pm 11.5 \\ \pm 11 \end{gathered}$ | $\begin{gathered} \pm 13 \\ \pm 12.8 \\ \pm 12 \end{gathered}$ |  | V |
| SR | Slew rate（ $R_{L}=2 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}$ ） |  | 0.17 |  | V／$\mu \mathrm{s}$ |
| GBP | Gain bandwidth product（ $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz}$ ） |  | 0.5 |  | MHz |
| $\mathrm{I}_{\mathrm{CC}}$ | $\begin{array}{\|c} \hline \text { Supply current - no load } \\ 0^{\circ} \mathrm{C} \leq T_{\text {amb }} \leq+105^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}= \pm 3 \mathrm{~V} \\ \hline \end{array}$ |  | $\begin{aligned} & \hline 2.7 \\ & 0.67 \end{aligned}$ | $\begin{gathered} \hline 5 \\ 6 \\ 1.3 \end{gathered}$ | mA |
| $e_{n}$ | Equivalent input noise voltage $\begin{aligned} & f=10 \mathrm{~Hz} \\ & f=100 \mathrm{~Hz} \\ & f=1 \mathrm{kHz} \end{aligned}$ |  | $\begin{gathered} 11 \\ 10.5 \\ 10 \end{gathered}$ | $\begin{gathered} 20 \\ 13.5 \\ 11.5 \end{gathered}$ | $\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$ |
| $\mathrm{i}_{\mathrm{n}}$ | Equivalent input noise current $\begin{aligned} & f=10 \mathrm{~Hz} \\ & f=100 \mathrm{~Hz} \\ & f=1 \mathrm{kHz} \end{aligned}$ |  | $\begin{aligned} & 0.3 \\ & 0.2 \\ & 0.1 \end{aligned}$ | $\begin{aligned} & 0.9 \\ & 0.3 \\ & 0.2 \end{aligned}$ | $\frac{\mathrm{pA}}{\sqrt{\mathrm{Hz}}}$ |

[^0]Package Outlines：DIP－8


\left.| SYMBOL | INCHES |  | MLLLIMETERS |  | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | MIN | MAX | MIN |  |  |$\right]-$－

Small Outline SOP－8


| SYMBOL | INCHES |  | MILLIMETERS |  | NOTES |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | MIN | MAX | MIN | MAX |  |  |
| A | 0.188 | 0.197 | 4.80 | 5.00 | - |  |
| B | 0.149 | 0.158 | 3.80 | 4.00 | - |  |
| C | 0.228 | 0.244 | 5.80 | 6.20 | - |  |
| D | 0.050 |  | BSC | 1.27 |  | BSC |
| E | 0.013 | 0.020 | 0.33 | 0.51 | - |  |
| F | 0.004 | 0.010 | 0.10 | 0.25 | - |  |
| H | 0.053 | 0.069 | 1.35 | 1.75 | - |  |
| J | 0.011 | 0.019 | 0.28 | 0.48 |  |  |
| K | 0.007 | 0.010 | 0.19 | 0.25 | - |  |
| M | 0.016 | 0.050 | 0.40 | 1.27 |  |  |
| L | 0.150 | REF | 3.81 |  | REF | - |
| e1 | $45^{0}$ |  | $45^{0}$ |  | - |  |
| $\alpha$ | $0^{0}$ | $8^{0}$ | $8^{0}$ |  |  | - |

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Operational Amplifiers - Op Amps category:
Click to view products by HTCSEMI manufacturer:

Other Similar products are found below :
SC2902DTBR2G 430227FB AZV831KTR-G1 UPC451G2-A UPC824G2-A LT1678IS8 042225DB 058184EB UPC822G2-A UPC258G2-
A NCS5651MNTXG NCV33202DMR2G NJM324E NTE925 5962-9080901MCA* AP4310AUMTR-AG1 HA1630D02MMEL-E HA1630S01LPEL-E SCY33178DR2G NJU77806F3-TE1 NCV5652MUTWG NCV20034DR2G LM2902EDR2G NTE778S NTE871 NTE924 NTE937 MCP6V16UT-E/OT MCP6V17T-E/MS MCP6V19T-E/ST SCY6358ADR2G LTC2065IUD\#PBF NCS20282FCTTAG LM4565FVT-GE2 EL5420CRZ-T7A TSV791IYLT TSV772IQ2T TLV2772QPWR NJM2100M-TE1 NJM4556AM-TE1 AS324MTR-E1 AS358MMTR-G1 MCP6232T-EMNY MCP662-E/MF TLC081AIP TLC082AIP TLE2074ACDW TLV07IDR TLV2170IDGKT TLV2455IDR


[^0]:    1．Long term input offset voltage stability refers to the average trend line of Vio vs time over extended periods after the first 30 days of operation．

