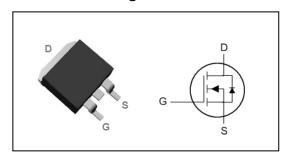


N-Ch 200V Fast Switching MOSFETs

Description

The HSH200N02 is the highest performance trench N-ch MOSFETs with extreme high cell density, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications.


The HSH200N02 meet the RoHS and Green Product requirement, 100% EAS guaranteed with full function reliability approved.

- Power Switching application
- Green Device Available
- Excellent Cdv/dt effect decline
- Advanced high cell density Trench technology

Product Summary

VDS	200	V
R _{DS} (ON),typ	27	mΩ
lo	70	Α

TO263 Pin Configuration

Absolute Maximum Ratings

Symbol Parameter		Rating	Units	
V _{DS}	Drain-Source Voltage	Drain-Source Voltage 200		
V _G S	Gate-Source Voltage	±20	V	
I _D @T _C =25°C	Continuous Drain Current, V _{GS} @ 10V ¹	70	А	
I _D @T _C =100°C	c=100°C Continuous Drain Current, V _{GS} @ 10V ¹ 46		А	
I _{DM}	Pulsed Drain Current ² 252		А	
EAS	EAS Single Pulse Avalanche Energy ³ 580		mJ	
P _D @T _C =25°C	P _D @T _C =25°C Total Power Dissipation ³ 200		W	
T _{STG}	Storage Temperature Range -55 to 150		°C	
T _J Operating Junction Temperature Range		-55 to 150	°C	

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
RθJA	Thermal Resistance Junction-ambient ¹		60	°C/W
Rejc	R _{BJC} Thermal Resistance Junction-Case ¹		0.55	°C/W

N-Ch 200V Fast Switching MOSFETs

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	200			V
R _{DS(ON)}	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =30A		27	33	mΩ
V _{GS(th)}	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =250uA	2		4	V
lane	Drain-Source Leakage Current	V_{DS} =160V , V_{GS} =0V , T_{J} =25 $^{\circ}$ C	-		1	uA
I _{DSS}	Diam-Source Leakage Current	V _{DS} =160V , V _{GS} =0V , T _J =55°C			5	
I _{GSS}	Gate-Source Leakage Current	$V_{GS}=\pm 20V$, $V_{DS}=0V$	ł		±100	nA
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		3		Ω
Qg	Total Gate Charge (10V)			110		
Q_{gs}	Gate-Source Charge	V _{DS} =100V , V _{GS} =10V , I _D =30A	ł	32		nC
Q_{gd}	Gate-Drain Charge			38		
T _{d(on)}	Turn-On Delay Time		1	30		
Tr	Rise Time	V_{DD} =100V , V_{GS} =10V , R_{G} =2.5 Ω		18		20
T _{d(off)}	Turn-Off Delay Time	I _D =30A		22		ns
T _f	Fall Time			33		
Ciss	Input Capacitance			5082		
Coss	Output Capacitance	V _{DS} =25V , V _{GS} =0V , f=1MHz	-	343		pF
C _{rss}	Reverse Transfer Capacitance			129		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current ^{1,5}	V- V- OV Force Current			70	Α
I _{SM}	Pulsed Source Current ^{2,5}	V _G =V _D =0V , Force Current			252	Α
V _{SD}	Diode Forward Voltage ²	V _{GS} =0V , I _S =30A , T _J =25°C			1.2	V
t _{rr}	Reverse Recovery Time	IF=30A , dI/dt=100A/μs ,		47		nS
Qrr	Reverse Recovery Charge	TJ=25°C		81		nC

Note:

^{1.} The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.

^{2.}The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%

^{3.}The EAS data shows Max. rating . The test condition is V_{DD} =25V, V_{GS} =10V,L=0.3mH

^{4.}The power dissipation is limited by 150°C junction temperature

^{5.} The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

N-Ch 200V Fast Switching MOSFETs

Typical Characteristics

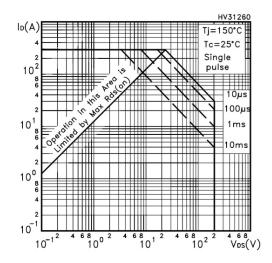


Fig.1 Safe operating area for TO-220

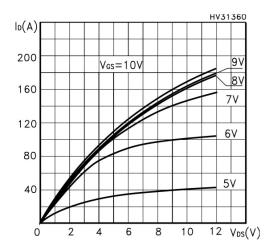


Fig.3 Output characterisics

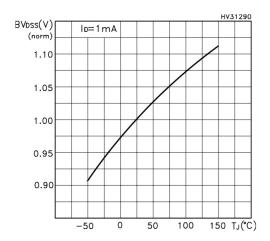


Fig.5 Normalized BVDSS vs temperature

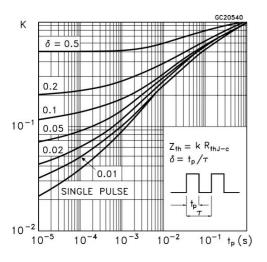


Fig.2 Thermal impedance for TO-220

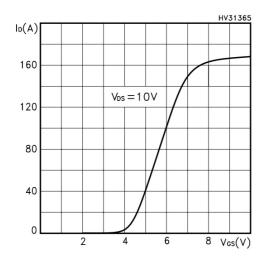


Fig.4 Transfer characteristics

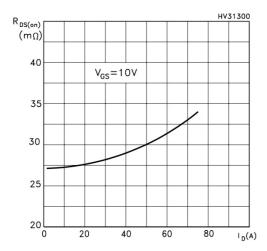


Fig.6 Static drain-source on resistance

N-Ch 200V Fast Switching MOSFETs

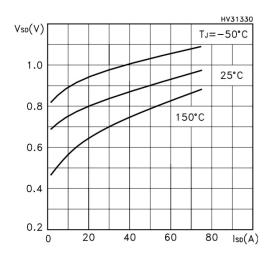


Fig.7 Source-drain diode forword characteristics

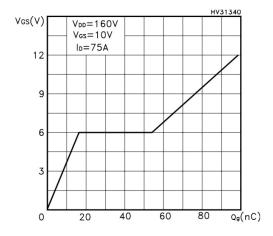


Fig.9 Gate charge vs gate-source voltage

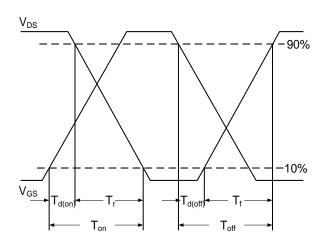


Fig.11 Switching Time Waveform

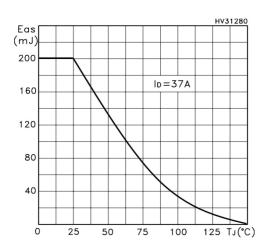


Fig.8 Avalanche energy vs starting Tj

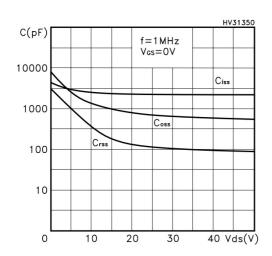


Fig.10 Capacitance variations

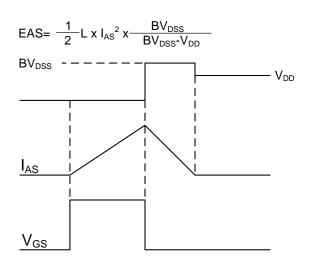
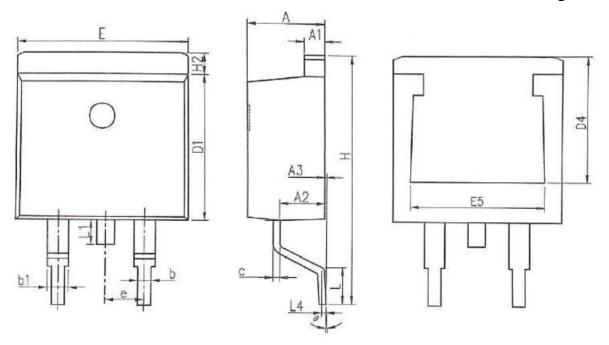



Fig.12 Unclamped Inductive Switching

N-Ch 200V Fast Switching MOSFETs

CVADOLO	MILLIM	IETERS	INCHES		
SYMBOLS	MIN	MAX	MIN	MAX	
Α	4.370	4.770	0.172	0.188	
A1	1.220	1.420	0.048	0.056	
A2	2.200	2.890	0.087	0.114	
A3	0.000	0.250	0.000	0.010	
b	0.700	0.960	0.028	0.038	
b1	1.170	1.470	0.046	0.058	
С	0.300	0.530	0.012	0.021	
D1	8.500	9.300	0.335	0.366	
D4	6.600	-	0.260	-	
Е	9.860	10.36	0.388	0.408	
E5	7.060	-	0.278	-	
е	2.540 BSC		0.100 BSC		
Н	14.70	15.70	0.579	0.618	
H2	1.070	1.470	0.042	0.058	
L	2.000	2.600	0.079	0.102	
L1	1.400	1.750	0.055	0.069	
L4	0.250 BSC		0.010 BSC		
Θ	0°	9°	0°	9°	

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by HUASHUO manufacturer:

Other Similar products are found below:

614233C 648584F NTNS3A92PZT5G IRFD120 IRFF430 JANTX2N5237 2N7000 2SK2464-TL-E FCA20N60_F109 FDZ595PZ AOD464 2SK2267(Q) 2SK2545(Q,T) 405094E 423220D MIC4420CM-TR VN1206L 614234A 715780A SSM6J414TU,LF(T 751625C IPP60R600P6XKSA1 RJK60S5DPK-M0#T0 PSMN4R2-30MLD TK31J60W5,S1VQ(O 2SK2614(TE16L1,Q) DMN1017UCP3-7 EFC2J004NUZTDG FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE2384 NTE2969 NTE6400A DMN61D9UWQ-13 US6M2GTR DMN31D5UDJ-7 SSM6P54TU,LF DMP22D4UFO-7B IPS60R3K4CEAKMA1 DMN1006UCA6-7 DMN16M9UCA6-7 STF5N65M6 STU5N65M6 C3M0021120D DMN13M9UCA6-7 BSS340NWH6327XTSA1 MCM3400A-TP DMTH10H4M6SPS-13 IRF40SC240ARMA1