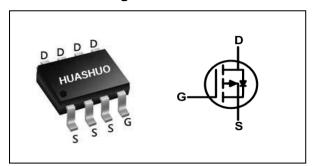


P-Ch 30V Fast Switching MOSFETs

Description

The HSM24P03 is the high cell density trenched P-ch MOSFETs, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications.


The HSM24P03 meet the RoHS and Green Product requirement, 100% EAS guaranteed with full function reliability approved.

- Super Low Gate Charge
- 100% EAS Guaranteed
- Green Device Available
- Excellent CdV/dt effect decline
- Advanced high cell density Trench technology

Product Summary

V _{DS}	-30	V
R _{DS(ON),typ}	3.8	mΩ
lo	-24	Α

SOP8 Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units	
V _{DS}	Drain-Source Voltage	-30		
V _{GS}	Gate-Source Voltage	±20	V	
I _D @T _C =25°C	Continuous Drain Current, V _{GS} @ -10V ¹	V _{GS} @ -10V ¹ -24		
I _D @T _C =100°C	Continuous Drain Current, V _{GS} @ -10V ¹	-	Α	
I _{DM}	Pulsed Drain Current ²	-96	Α	
P _D @T _A =25°C	Total Power Dissipation⁴	2.1	W	
T _{STG}	Storage Temperature Range	-55 to 150	°C	
TJ	Operating Junction Temperature Range	-55 to 150	°C	

Thermal Data

Symbol	I Parameter		Max.	Unit
Reja	Thermal Resistance Junction-ambient ¹(t≤10S)		-	°C/W
Көја	Thermal Resistance Junction-ambient ¹ (Steady State)		60	°C/W
Rejc	Thermal Resistance Junction-case ¹		24	°C/W

P-Ch 30V Fast Switching MOSFETs

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =-250uA	-30			>	
P	Static Drain-Source On-Resistance ²	V _{GS} =-10V , I _D =-17A	3.8 4.8		4.8	mΩ	
R _{DS(ON)}		V _{GS} =-4.5V , I _D =-10A		5.8	7.8	mΩ	
$V_{GS(th)}$	Gate Threshold Voltage	$V_{GS}=V_{DS}$, $I_D=-250uA$	-1.2	-1.6	-2.2	V	
I _{DSS}	Drain-Source Leakage Current	V_{DS} =-24V , V_{GS} =0V , T_{J} =25 $^{\circ}$ C			-1	uA	
IDSS	Diain-Source Leakage Current	V _{DS} =-24V , V _{GS} =0V , T _J =55°C			-10		
Igss	Gate-Source Leakage Current	$V_{GS}=\pm 20V$, $V_{DS}=0V$			±100	nA	
Q_g	Total Gate Charge (-10V)			110			
Q_gs	Gate-Source Charge	V _{DS} =-15V , V _{GS} =-10V , I _D =-10A		15		nC	
Q_gd	Gate-Drain Charge			18			
$T_{d(on)}$	Turn-On Delay Time			28			
Tr	Rise Time	V_{DD} =-15 V , V_{GS} =-10 V , R_{G} =6 Ω ,		17		20	
$T_{d(off)}$	Turn-Off Delay Time	I _D =-1A		180		ns	
T_f	Fall Time			73			
Ciss	Input Capacitance			6240			
Coss	Output Capacitance	V _{DS} =-25V , V _{GS} =0V , f=1MHz		780		pF	
C_{rss}	Reverse Transfer Capacitance			410			

Diode Characteristics

Symbol	Parameter	rameter Conditions		Тур.	Max.	Unit
Is	Continuous Source Current ^{1,5}	V _G =V _D =0V , Force Current			-24	Α
V _{SD}	Diode Forward Voltage ²	V _{GS} =0V , I _S =-1A , T _J =25°C			-1	V

Note:

- 1. The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.
- 2.The data tested by pulsed , pulse width $\,\leq\,$ 300us , duty cycle $\,\leq\,$ 2%
- 3.The power dissipation is limited by 150°C junction temperature
- 4. The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

Typical Characteristics

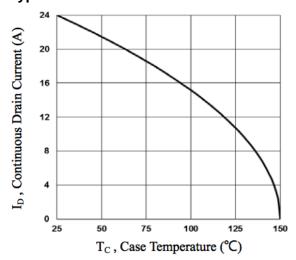


Fig.1 Continuous Drain Current vs. T_c

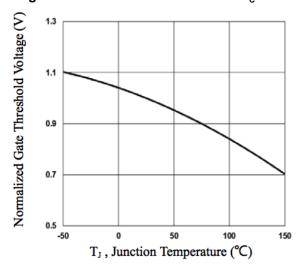


Fig.3 Normalized Vth vs. Tj

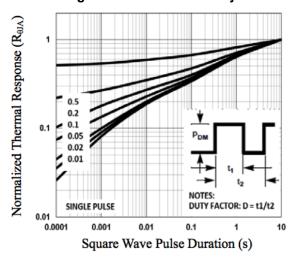


Fig.5 Normalized Transient Impedance

P-Ch 30V Fast Switching MOSFETs

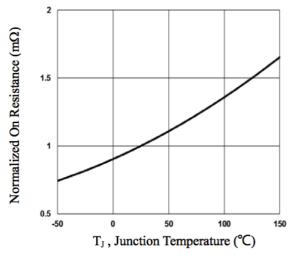


Fig.2 Normalized RDSON vs. T_J

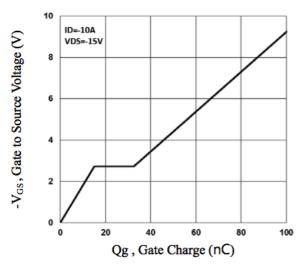


Fig.4 Gate Charge Waveform

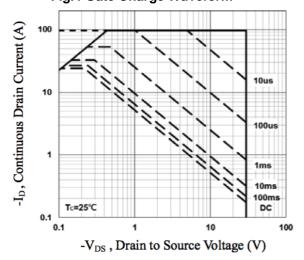


Fig.6 Maximum Safe Operation Area

HSM24P03

P-Ch 30V Fast Switching MOSFETs

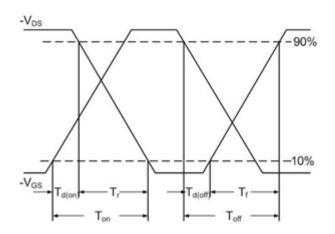


Fig.7 Switching Time Waveform

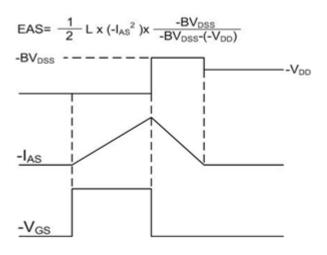
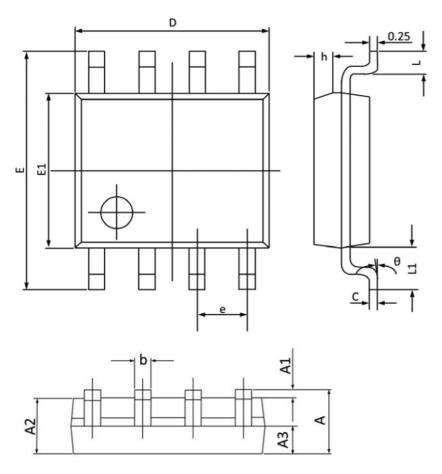



Fig.8 Unclamped Inductive Switching Waveform

P-Ch 30V Fast Switching MOSFETs

SOP8 PACKAGE INFORMATION

Cromb al	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min	Max	Min	Max	
A	1.350	1.750	0.053	0.068	
A1	0.100	0.250	0.004	0.009	
A2	1.300	1.500	0.052	0.059	
A3	0.600	0.700	0.024	0.027	
b	0.390	0.480	0.016	0.018	
c	0.210	0.260	0.009	0.010	
D	4.700	5.100	0.186	0.200	
E	5.800	6.200	0.229	0.244	
E 1	3.700	4.100	0.146	0.161	
e	1.270(BSC)		0.050(BSC)		
h	0.250	0.500	0.010	0.019	
L	0.500	0.800	0.019	0.031	
L1	1.050	1.050(BSC)		0.041(BSC)	
θ	0°	8°	0°	8°	

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by HUASHUO manufacturer:

Other Similar products are found below:

614233C 648584F NTNS3A92PZT5G IRFD120 IRFF430 JANTX2N5237 2N7000 2SK2464-TL-E FCA20N60_F109 FDZ595PZ AOD464 2SK2267(Q) 2SK2545(Q,T) 405094E 423220D MIC4420CM-TR VN1206L 614234A 715780A SSM6J414TU,LF(T 751625C IPP60R600P6XKSA1 RJK60S5DPK-M0#T0 BSC884N03MS G BSF024N03LT3 G PSMN4R2-30MLD TK31J60W5,S1VQ(O 2SK2614(TE16L1,Q) DMN1017UCP3-7 EFC2J004NUZTDG FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE2384 NTE2969 NTE6400A DMN2080UCB4-7 DMN61D9UWQ-13 US6M2GTR DMN31D5UDJ-7 SSM6P54TU,LF DMP22D4UFO-7B IPS60R3K4CEAKMA1 DMN1006UCA6-7 DMN16M9UCA6-7 STF5N65M6 STU5N65M6 C3M0021120D DMN13M9UCA6-7 BSS340NWH6327XTSA1