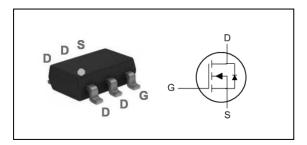


Description

The HSW2N15 is the high cell density trenched N-ch MOSFETs, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications.


The HSW2N15 meet the RoHS and Green Product requirement with full function reliability approved.

Product Summary

V _{DS}	150	٧
R _{DS(ON),typ}	380	mΩ
lo	1.4	Α

- Green Device Available
- Super Low Gate Charge
- Excellent Cdv/dt effect decline
- Advanced high cell density Trench technology

SOT23-6L Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V _{DS}	Drain-Source Voltage	150	V
V _G s	Gate-Source Voltage	±20	V
I _D @T _C =25°C	Continuous Drain Current, V _{GS} @ 10V ¹	1.4	А
I _D @T _C =100°C	Continuous Drain Current, V _{GS} @ 10V ¹	0.88	А
I _{DM}	Pulsed Drain Current ²	5.6	А
P _D @T _A =25°C	Total Power Dissipation ³	1.56	W
T _{STG}	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	°C

Thermal Data

Symbol Parameter		Тур.	Max.	Unit
Reja	Thermal Resistance Junction-ambient(steady state) ¹		80	°C/W
	Thermal Resistance Junction-ambient(t<10s) ¹		43	°C/W

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
BV _{DSS}	Drain-Source Breakdown Voltage V _{GS} =0V , I _D =250uA		150		-	V	
△BV _{DSS} /△T _J	BVDSS Temperature Coefficient	Reference to 25°C , I _D =1mA		0.122		V/°C	
D	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =1A		380	480	mΩ	
R _{DS(ON)}		V_{GS} =6 V , I_D =0.5 A		410	520	mΩ	
V _{GS(th)}	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =250uA	2	3	4	V	
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	VGS=VDS, ID =250UA		-4.84		mV/°C	
1	Drain Source Lookage Current	V _{DS} =150V , V _{GS} =0V , T _J =25°C			1		
I _{DSS}	Drain-Source Leakage Current	V _{DS} =150V , V _{GS} =0V , T _J =55°C			10	uA	
I _{GSS}	Gate-Source Leakage Current	V _{GS} =±20V , V _{DS} =0V			±100	nA	
Qg	Total Gate Charge (10V)			8.3			
Q_{gs}	Gate-Source Charge	V _{DS} =75V , V _{GS} =10V , I _D =1A		2		nC	
Q_{gd}	Gate-Drain Charge			2.3			
T _{d(on)}	Turn-On Delay Time			8.3			
Tr	Rise Time	V_{DD} =75 V , V_{GS} =10 V , R_{G} =10 Ω		5.8			
T _{d(off)}	Turn-Off Delay Time	I _D =1A		15		480 mΩ 520 mΩ 4 V mV/°C 1 uA 10 nA nC nS pF	
Tf	Fall Time			8			
C _{iss}	Input Capacitance			350			
Coss	Output Capacitance	V _{DS} =25V , V _{GS} =0V , f=1MHz		33		pF	
Crss	Reverse Transfer Capacitance			25			

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current ^{1,4}	V _G =V _D =0V , Force Current			1.4	Α
V _{SD}	Diode Forward Voltage ²	V _{GS} =0V , I _S =1A , T _J =25°C			1	V
trr	Reverse recovery time			43		ns
Qrr	Reverse recovery Charge	Is=1A,di/dt=100A/us		38		nC

Note

^{1.} The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.

^{2.}The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%

^{3.}The power dissipation is limited by 150°C junction temperature

^{4.} The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

Typical Characteristics

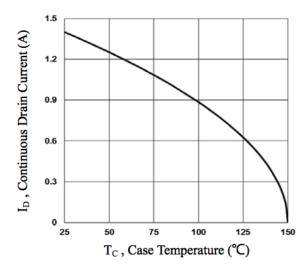


Fig.1 Continuous Drain Current vs. Tc

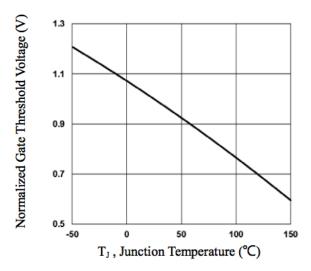


Fig.3 Normalized V_{th} vs. T_J

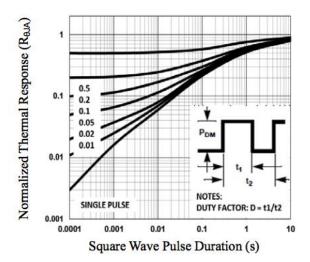


Fig.5 Normalized Transient Impedance

N-Ch 150V Fast Switching MOSFETs

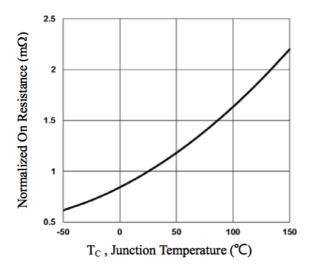


Fig.2 Continuous Drain Current vs. Tc

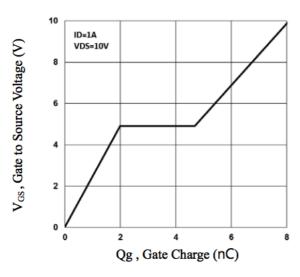


Fig.4 Gate-Charge Waveform

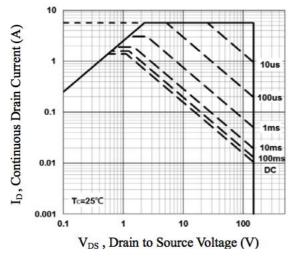
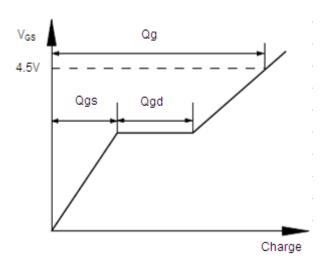
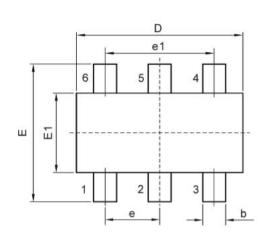
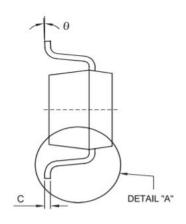
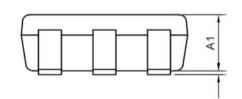


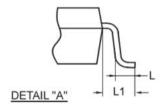
Fig.6 Maximum Safe Operation Area



Fig.7 Switching Time Waveform


Fig.8 Gate Charge Waveform



SOT23-6L Package Outline Dimensions

CVMDOLC	MILLIMETERS		INCHES	
SYMBOLS	MIN	MAX	MIN	MAX
D	2.692	3.099	0.106	0.122
E	2.591	3.000	0.102	0.118
E1	1.397	1.803	0.055	0.071
е	0.950 REF.		0.037 REF.	
e1	1.900 REF.		0.075 REF.	
b	0.300	0.500	0.012	0.020
С	0.080	0.200	0.003	0.008
Α	0.000	0.100	0.000	0.004
A1	0.700	1.200	0.028	0.048
L	0.300	0.600	0.012	0.024
L1	0.600 REF.		0.023 REF.	
θ	0°	9°	0°	9°

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by HUASHUO manufacturer:

Other Similar products are found below:

614233C 648584F NTNS3A92PZT5G IRFD120 IRFF430 JANTX2N5237 2N7000 2SK2464-TL-E FCA20N60_F109 FDZ595PZ AOD464 2SK2267(Q) 2SK2545(Q,T) 405094E 423220D MIC4420CM-TR VN1206L 614234A 715780A SSM6J414TU,LF(T 751625C IPP60R600P6XKSA1 RJK60S5DPK-M0#T0 BSC884N03MS G BSF024N03LT3 G PSMN4R2-30MLD TK31J60W5,S1VQ(O 2SK2614(TE16L1,Q) DMN1017UCP3-7 EFC2J004NUZTDG FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE2384 NTE2969 NTE6400A DMN2080UCB4-7 DMN61D9UWQ-13 US6M2GTR DMN31D5UDJ-7 SSM6P54TU,LF DMP22D4UFO-7B IPS60R3K4CEAKMA1 DMN1006UCA6-7 DMN16M9UCA6-7 STF5N65M6 STU5N65M6 C3M0021120D DMN13M9UCA6-7 BSS340NWH6327XTSA1