

Date Sheet

The "Huaxin" brand was founded in 2003 and has a history of 18 years. The company is mainly engaged in Hall elements, has a group of senior professional device design, integrated circuit design and test engineers, and has a first-class development and test platform. We have developed a number of high-end products with independent intellectual property rights, such as RF LDMOS series and RF VDMOS series, which represent China's integrated circuit level.

HX6382 Omnipolar Hall witch

HX6382 Specifications Ultra High Sensitivity Micropower Hall Switch

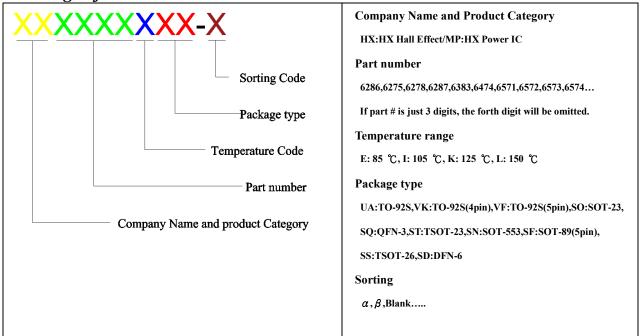
HX6382 Hall-effect sensor is a temperature stable, stress-resistant, Low Tolerance of Sensitivity micro-power switch. Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress.

HX6382 is special made for low operation voltage, 1.65V, to active the chip which is includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, CMOS output driver. Advanced CMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries. This device requires the presence of omni-polar magnetic fields for operation.

The package type is in a Halogen Free version has been verified by third party Lab.

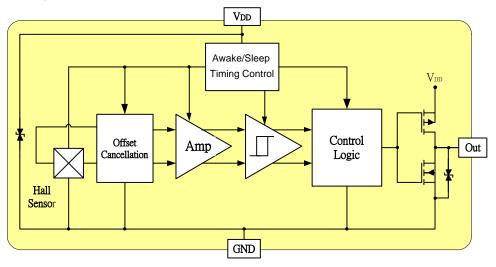
Features and Benefits

- CMOS Hall IC Technology
- Strong RF noise protection
- 1.65 to 3.5V for battery-powered applications
- Omni polar, output switches with absolute value of North or South pole from magnet
- Operation down to 1.65V, Micro power consumption
- High Sensitivity for reed switch replacement applications
- Multi Small Size option
- Low sensitivity drift in crossing of Temp. range
- Ultra Low power consumption at 5uA (Avg)
- High ESD Protection, HBM $> \pm 4$ KV(min)
- Totem-pole output


Applications

- Solid state switch
- Handheld Wireless Handset Awake Switch
- Lid close sensor for battery powered devices
- Magnet proximity sensor for reed switch replacement in low duty cycle applications
- Water Meter
- Floating Meter
- PDVD
- NB

HX6382 SpecificationsUltra High Sensitivity Micropower Hall Switch


Ordering Information

Part No.	Temperature Suffix	Package Type
HX6382EST	$E (-40^{\circ}C \text{ to} + 85^{\circ}C)$	ST (TSOT-23)
HX6382EUA	E $(-40$ °C to $+85$ °C)	UA (TO-92S)

Custom sensitivity selection is available by HX sorting technology

Functional Diagram

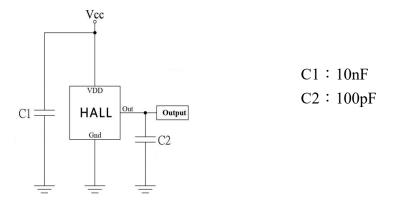
Note: Static sensitive device; please observe ESD precautions. Reverse V_{DD} protection is not included. For reverse voltage protection, a 100Ω resistor in series with V_{DD} is recommended.

 $HBM > \pm 4KV$ which is verified by third party lab.

HX6382 SpecificationsUltra High Sensitivity Micropower Hall Switch

Absolute Maximum Ratings At(Ta=25 °C)

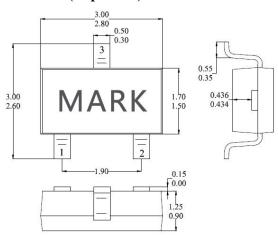
Characterist	ics	Values	Unit	
Supply voltage(VDD)		4.5	V	
Output Voltage (Vout)		4.5	V	
Reverse Voltage (V_{DD}) (V_{OUT})		-0.3	V	
Magnetic flux density		Unlimited	Gauss	
Output current (<i>Iour</i>)		1	mA	
Operating temperature range(<i>Ta</i>)		-40 to +85	°C	
Storage temperature range (Ts)		-65 to +150	°C	
Maximum Junction Temp(<i>Tj</i>)		150	°C	
The same 1 Descriptions	(θ_{JA}) ST / UA	310 / 206	°C/W	
Thermal Resistance	(θ_{IC}) ST / UA	223 / 148	°C/W	
Package Power Dissipation (P_D) ST / UA		400 /606	mW	


Note: Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.

Electrical Specifications

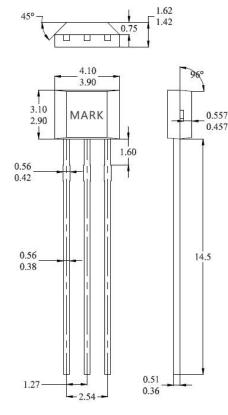
DC Operating Parameters : Ta=25°C, $V_{DD}=3.0V$

Parameters Parameters		Test Conditions	Min	Тур	Max	Units
Supply Voltage (VDD)		Operating	1.65		3.5	V
Supply Current (IDD)		Awake State		1.4	3	mA
		Sleep State		3.6	7	μΑ
		Average		5	10	μΑ
Output Leakage Current		Output off			1	uA
Output High Voltage(VOH)		Iout=0.5mA(Source)	V _{DD} -0.2			V
Output Low Voltage(Vol)		Iout=0.5mA(Sink)			0.2	V
Awake mode time(<i>Taw</i>)		Operating		40	80	uS
Sleep mode time(T_{SL})		Operating		40	80	mS
Duty Cycle (D,C)				0.1		%
Electro-Static Discharge		HBM	4			KV
Operate Point	(Bopn)	N pole to branded side, B > BOP, Vout On	10		30	Gauss
	(B _{OPS})	S pole to branded side, B > BOP, Vout On	-30		-10	Gauss
Release Point	(B_{RPN})	N pole to branded side, B < BRP, Vout Off	5		25	Gauss
	(B_{RPS})	S pole to branded side, B < BRP, Vout Off	-25		-5	Gauss
Hysteresis,(BHYS)		BOPx - BRPx		10		Gauss


Typical Application circuit

Sensor Location, package dimension and marking

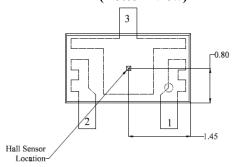
ST Package(TSOT-23)


(Top View)

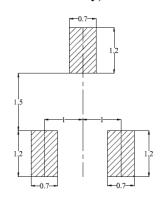
NOTES:

- 1. PINOUT (See Top View at left:)
 - Pin 1 VDD
 - Pin 2 Output
 - Pin 3 GND
- 2. Controlling dimension: mm;
- 3. Lead thickness after solder plating will be 0.254mm maximum

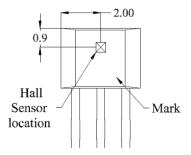
UA Package


NOTES:

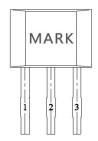
- 1. Controlling dimension: mm
- 2. Leads must be free of flash and plating voids
- 3. Do not bend leads within 1 mm of lead to package interface.
- 4. PINOUT:


Pin 1 VDD Pin 2 GND Pin 3 Output

Hall Plate Chip Location


(Bottom view)

(For reference only)Land Pattern



Hall Chip location

Output Pin Assignment

(Top view)

Warm reminder

- 1. Hall is a sensitive device. Please take electrostatic protection measures during use and storage.
- 2. During the installation process, the Hall should try to avoid applying mechanical stress to the Hall body. If the pins need to be bent, please operate at a distance of 3 mm from the root of the lead.
- 3. Recommended soldering temperature: soldering with electric soldering iron, the recommended temperature is 350°C, the longest is 5 seconds. Wave soldering: The recommended maximum temperature is 260°C, the longest is 3

Infrared reflow soldering: recommended maximum 245°C, maximum 10 seconds

4. It is not recommended to exceed the parameters in the data sheet. Although the Hall will work normally under the limit parameters, it may cause damage to the Hall or the actual product under extreme conditions for a long time. In order to ensure the normal operation of the Hall and the product For safety and stability, please use it within the scope of the data sheet.

For the latest version of this document, go to our website at **www.wxhxkj.com**

Huaxin has the final right to interpret the above product data

082119 Page 5 of 5 Rev. 1.01

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Board Mount Hall Effect/Magnetic Sensors category:

Click to view products by HUAXIN manufacturer:

Other Similar products are found below:

HGPRDT005A AH277AZ4-AG1 AV-10379 AV-10448 SS41C AH1894-Z-7 TLE4917 50017859-003 TY-13101 TLE4976L SS85CA
BU52002GUL-E2 BU52003GUL-E2 AH277AZ4-BG1 TLE49614MXTSA1 AH211Z4-AG1 AH3360-FT4-7 TLE4941-1 SS460S100SAMPLE 50065820-03 AH374-P-A AH3372-P-B AH1806-P-A TLE49595UFXHALA1 SS460P-T2 AH1913-W-7 AH3373-P-B
TLE9852QXXUMA1 TLE5046ICAKLRHALA1 TLE49421CHAMA2 AH1903-FA-EVM AH8502-FDC-EVM AH3774-P-EVM
TLE4998S3XALA1 TLE5011FUMA1 TLE5027CE6747HAMA1 TLE5109A16E1210XUMA1 TLI4966GHTSA1 TLI4906KHTSA1
MA710GQ-P S-57K1NBL2A-M3T2U S-57P1NBL9S-M3T4U S-576ZNL2B-L3T2U S-576ZNL2B-A6T8U S-57P1NBL0S-M3T4U S-57A1NSL1A-M3T2U S-57K1RBL1A-M3T2U S-57P1NBH9S-M3T4U S-57P1NBH0S-M3T4U S-57A1NSH1A-M3T2U