

GENERAL DESCRIPTION

The HP4554 is a cost-effective, fully integrated high input voltage single-cell Li-ion battery charger. The charger uses a CC/CV charge profile required by Li-ion battery. The charger accepts an input voltage up to 24V but is disabled when the input voltage exceeds the OVP threshold, typically 6.8V, to prevent excessive power dissipation. The 24V rating eliminates the over-voltage protection circuit required in a low input voltage charger.

The charge current and the Full-of-charge (FOC) current are programmable with external resistors. When the battery voltage is lower than 2.55V, the charger preconditions the battery with typically 20% of the programmed charge current. When the charge current reduces to the programmable FOC current level during the CV charge phase, an FOC indication is provided by the \overline{CHG} pin, which is an open-drain output. An internal thermal foldback function protects the charger from any thermal failure. Two indication pins (\overline{PPR} and \overline{CHG}) allow simple interface to a microprocessor or LEDs. When no adapter attached, the charger draws less than 1µA leakage current from the battery.

The HP4554 is available in Green DFN-2×2-8L packages and is rated between -40 $^\circ\!C$ to +85 $^\circ\!C$ temperature range.

FEATURES

- Complete Charger for Single-Cell-Li-ion or Polymer Batteries
- Integrated Pass Element and Current Sensor
- No External Blocking Diode Required
- Low Component Count and Cost
- Programmable Charger Current
- Programmable Full-of-Charger Current
- Charger Current Thermal Foldback for Thermal Protection
- 2.55V Trickle Charge Threshold
- 6.8V Input Over-Voltage Protection
- 24V Maximum Voltage for the Power Input
- Power Presence and Charge Indications
- Less than 1µA Leakage Current from the Battery When No Input Power Attached
- Less than 200uA Supply Current when Charging is terminated
- Available in Green DFN-2x2-8L Packages

APPLICATIONS

- Mobile Phones
- Blue-Tooth Devices
- PDAs
- MP3 Players
- Stand-Alone Chargers
- Other Handheld Devices

PIN ASSIGNMENT

HP4554(TOP VIEW)

PPR 21 G 1 1 1 IREF CHG 31 I O I 16 IMIN EN 41 - - J 15 GND

DFN-2x2-8L

ORDER INFORMATION

PART NO	PACAKGE	TEMPERATURE	TAPE & REEL
HP4554D8-42	DFN-2x2-8L	-40 ~ +85 °C	4000/REEL
HP4554D8-43	DFN-2x2-8L	-40 ~ +85 °C	4000/REEL
HP4554D8-435	DFN-2x2-8L	-40 ~ +85 ℃	4000/REEL
HP4554D8-44	DFN-2x2-8L	-40 ~ +85 ℃	4000/REEL

PART NUMBER RULES

HP45541-2

Code	Description
1	Package: D8: DFN-2x2-8L
2	Charge voltage: 42/43/435/44: Battery charge voltage are 4.2V/4.3V/4.35V/4.4V

MARKING DESCRIPTION:

DFN-2x2-8L
xxxx
JYWA
•

"XXXX": Part number, here is "4554".

"JYWA": "J" stands for Internal Control Code, "Y" stands for Internal Control Code, "W" stands for the week of manufacturing, "A" stands for charge voltage.

TYPICAL APPLICATION CIRCUIT

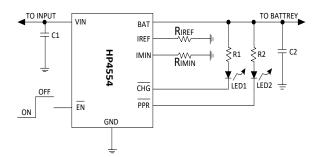


Figure 1. Typical application circuit interfacing to indication LEDs

Component Description for Figure 1

PART	DESCRIPTION	
C1, C2	1µF X5R ceramic cap	
RIREF	24KΩ,1% for 500mA charge current	
RIMIN	270KΩ,1% for 40mA FOC current	
R1, R2	1ΚΩ, 5%	

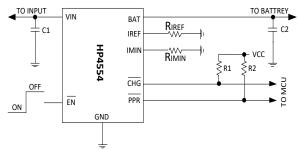


Figure 2. Typical application circuit with the indication signals interfacing to an MCU

Component Description for Figure 2

PART	DESCRIPTION	
C1, C2	1µF X5R ceramic cap	
RIREF	24KΩ,1% for 500mA charge current	
RIMIN	270KΩ,1% for 40mA FOC current	
R1, R2	100ΚΩ, 5%	

PIN DESCRIPTION

PIN NO	SYMBOL	FUNCTION		
1	VIN	Power Input. A 1μ F or larger value X5R ceramic capacitor is recommended to be placed as close as possible to the input pin for decoupling purpose. Additional capacitance may be required to provide a stable input voltage.		
2	PPR	Open-drain Power Presence Indication. The open-drain MOSFET turns on when the input voltage above the POR threshold but below the OVP threshold, and turns off otherwise. This pin is capab of sinking 15mA (MIN) current to drive an LED. The maximum voltage rating for this pin is 5.5V. Th pin is independent on the \overline{EN} pin input.		
3	<u>CHG</u>	Open-drain Charge Indication. This pin outputs a logic low when a charge cycle starts and turns to high impedance when the full-of-charge (FOC) condition is qualified. This pin is able to sink 15mA (MIN) current to drive an LED. When the charger is disabled, the <i>CHG</i> pin outputs high impedance.		
4	Enable Input. This is a logic input pin to disable or enable the charger. Drive high to disable the			
5	GND	System Ground.		
6	6 IMIN Full-of-Charge (FOC) Current Programming Pin. Connect a resistor between this pin and the GI to set the FOC current. The FOC current I _{MIN} can be programmed by the following equation: $I_{MIN} = \frac{9700}{R_{IMIN}} + 4 (mA)$ where R _{IMIN} is in kΩ. The programmable range covers from 5mA to 120mA. FOC current will be influenced by battery internal impedance and results in a small drift. When programmed to le than 5mA, the stability is not guaranteed.			
7	Charge-Current Programming and Monitoring Pin. Connect a resistor between this pin and th pin to set the charge current limit determined by the following equation: $I_{\text{Det}} = \frac{12000}{(mA)}$			
8	BAT	Charger Output Pin. Connect this pin to the battery. A 1μ F or larger X5R ceramic capacitor		

ABSOLUTE MAXIMUM RATINGS (Note)

SYMBOL		ITEMS		UNIT
V _{IN}	Input Voltage		-0.3~27	V
	Voltage of other PINs	Voltage of other PINs		V
R _{θJA}	Thermal Resistance	DFN-2x2-8L	118	°C/W
T٦	Junction Temperature	Junction Temperature		°C
T _{STG}	Storage Temperature	Storage Temperature		°C
T _{SOLDER}	Package Lead Soldering Te	Package Lead Soldering Temperature (10s)		°C
ESD MM	Machine Mode	Machine Mode		V
ESD HBM	Human Body Mode	Human Body Mode		KV

Note: Exceed these limits to damage to the device. Exposure to absolute maximum rating conditions may affect device reliability.

RECOMMANDED OPERATING RANGE

SYMBOL	ITEMS	VALUE	UNIT
V _{MAX}	Maximum Supply Voltage	≪24	V
V _{IN}	Operating Supply Voltage	4.55 to 6.10	V
I _{REF}	Programmed Charge Current	20 to 700	mA
T _{OPT} Operating Temperature		-40 to +85	°C

TYPICAL CHARGE PROFILE

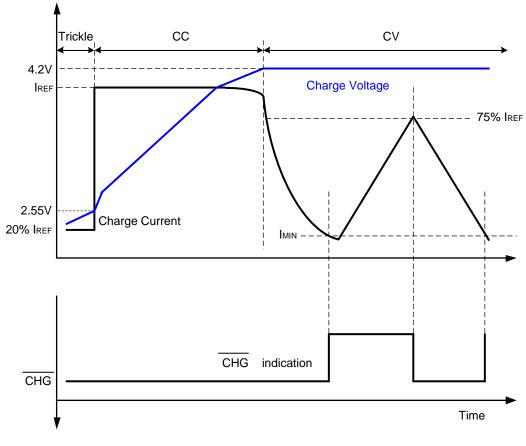


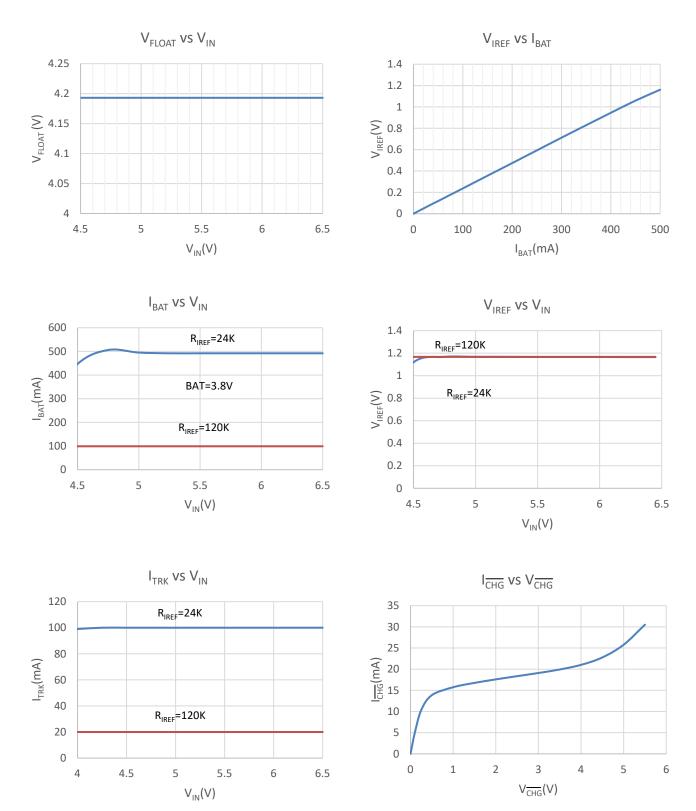
Figure 3. Typical Charge Profile

ELECTRICAL CHARACTERISTICS

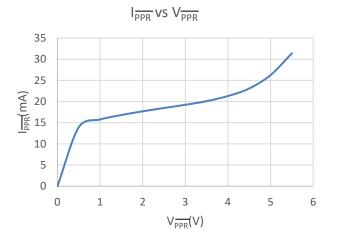
 V_{IN} =5V, R_{IMIN} =243K Ω , T_A =25°C, unless otherwise noted.

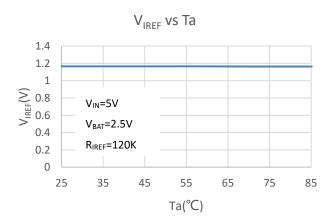
SYMBOL	ITEMS	CONDITIONS	MIN	ТҮР	MAX	UNIT
Power-ON Re	eset					
V _{POR}	Rising POR Threshold	$V_{BAT}=3.0V$, $R_{IREF}=120K\Omega$, use \overline{PPR} to	3.4	3.9	4.2	V
V _{POR}	Falling POR Threshold	indicate the comparator output.	3.1	3.6	3.9	V
VIN-VBAT Offs	set Voltage				1	<u></u>
V _{os}	Rising Edge	V_{BAT} =4.5V, R_{IREF} =120K Ω , use \overline{PPR} to		100	150	mV
V _{os}	Falling Edge	indicate the comparator output. ⁽¹⁾	10	80		mV
Over-Voltage	e Protection					
VOVP	OVP Threshold	V_{BAT} =4.5V, R_{IREF} =120K Ω , use \overline{PPR} to	6.5	6.80	7.1	V
VOVPHYS	OVP Threshold Hysteresis	indicate the comparator output.	170	250	300	mV
Standby Curr	rent				I	<u>I</u>
IVINSTD	standby Mode VIN Pin Current	V_{IN} =5V, V_{BAT} =4.5V, \overline{EN} = L, R_{IREF} =120K Ω		135	200	μA
I _{BATSTD}	Standby Mode BAT Pin Current	V_{IN} =5V, V_{BAT} =4.5V, \overline{EN} = L, R_{IREF} =120K Ω		1.7	2	μA
Shutdown Cu	urrent					1 -
I _{VINDIS}	Shutdown Mode VIN Pin Current	V_{IN} =5V, R_{IREF} =120K Ω , Charger disabled		130	200	μA
I _{VINASD}	Shutdown Mode VIN Pin Current	V _{BAT} =4.5V, V _{IN} =4.3V		92		μA
IBATASD	Shutdown Mode BAT Pin Current	V _{BAT} =4.5V, V _{IN} =4.3V		1.8		μA
I _{VINUVLO}	UVLO Mode Supply Current	V _{IN} =V _{BAT} =3.6V		88		μA
IBATUVLO	UVLO Mode BAT Pin Current	V _{IN} =V _{BAT} =3.6V		1		μA
Sleep Curren	t				1	<u></u>
IBATSLEEP	BAT Pin Current	Input is floating or 0V			1	μA
Voltage Regu	ulation				I	<u>I</u>
			4.158	4.2	4.242	
		R _{IREF} =120KΩ, 4.55V <v<sub>IN<6.10V, charge</v<sub>	4.257	4.3	4.343	
V _{OUT}	Output Voltage	current=20mA	4.306	4.35	4.394	V
			4.356	4.4	4.444	
		V _{BAT} =3.8V, charge current=500mA,				
R _{DS(ON)}	PMOS On Resistance	R _{IREF} =10KΩ		1.2		Ω
Charge Curre	ent ⁽²⁾			•		
VIREF	IREF Pin Output Voltage	V _{BAT} =3.8V, R _{IREF} =120KΩ		1.213		V
I _{REF}	Constant Charge Current	R _{IREF} =120KΩ, V _{BAT} =2.8V to 3.8V	90	100	110	mA
I _{TRK}	Trickle Charge Current	R _{IREF} =120KΩ, V _{BAT} =2.4V	13	22	31	mA
I _{MIN}	Full-of-Charge Current	R _{IMIN} =243KΩ	22	44	66	mA
I _{CHR}	FOC Rising Threshold	R _{IREF} =24.3KΩ	337	375	413	mA
Precondition	ing Charge Threshold					<u> </u>
V _{MIN}	Preconditioning Charge Threshold Voltage	R _{IREF} =24.3KΩ	2.45	2.55	2.65	v
V _{MINHYS}	Preconditioning Voltage Hysteresis	R _{IREF} =24.3KΩ	70	100	130	mV

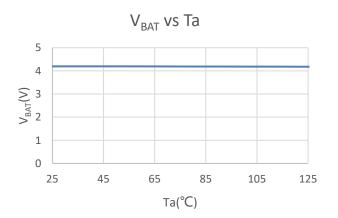
			-	-		
Internal Tem	perature Monitoring					
T _{FOLD}	Charge Current Foldback Threshold			115		°C
Logic input a	nd outputs					
$V_{\overline{EN}_{H}}$	\overline{EN} Pin Logic Input High		1.5			V
V_{EN_L}	\overline{EN} Pin Logic Input Low				0.8	V
REN	<i>EN</i> Pin Internal Pull Down Resistance		150	200	250	ΚΩ
I CHG_sink	\overline{CHG} Sink Current when LOW	Pin Voltage = 1V	10	18		mA
I CHG_leakage	<i>CHG</i> Leakage Current when High Impedance	V _{CHG} = 5.5V			20	μΑ
PPR_sink	\overline{PPR} Sink Current when LOW	Pin Voltage = 1V	10	18		mA
 PPR_leakage	<i>PPR</i> Leakage Current when High Impedance	V _{PPR} = 5.5V			20	μΑ

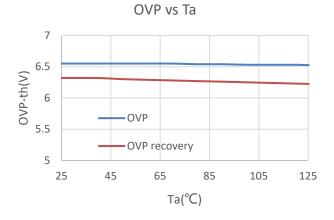

Note:

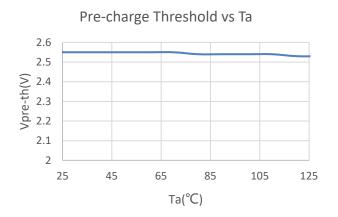
1. The 4.5V V_{BAT} is selected so that the \overline{PPR} output can be used as the indication for the offset comparator output indication. If the V_{BAT} is lower than the POR threshold, no output pin can be used for indication.

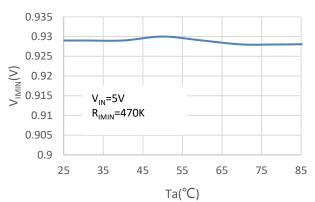

2. The charge current can be affected by the thermal foldback function if the IC under the test setup cannot dissipate the heat.

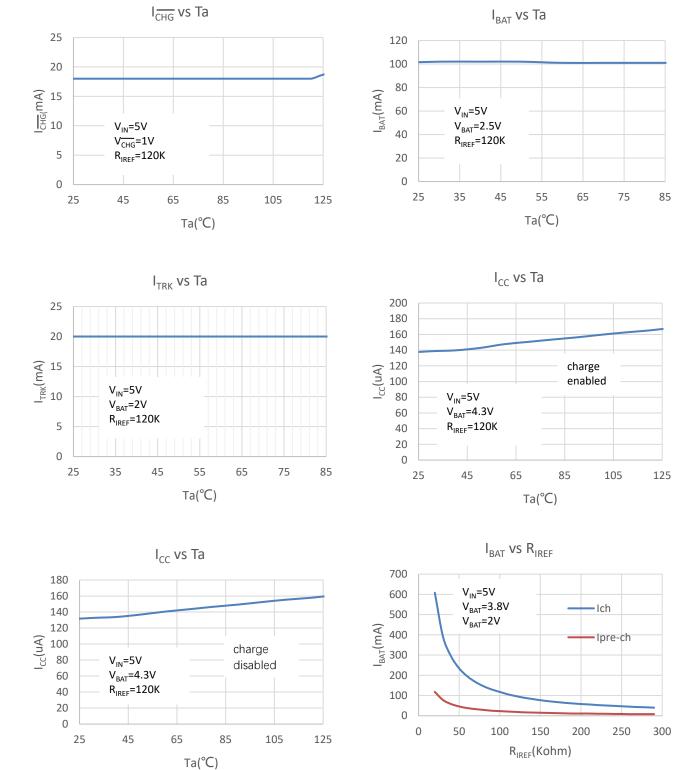



TYPICAL PERFORMANCE CHARACTERISTICS

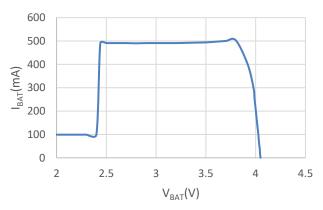


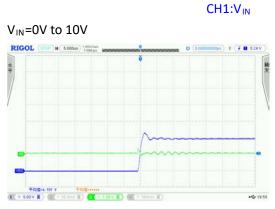






V_{IMIN} vs Ta





Charge Curve

OVP Test

 V_{IN} =0V to 20V

 V_{IN} =5V to 15V

 $V_{\text{IN}} {=} 0 V$ to 15 V

OPERATION

The HP4554 charges a Li-ion battery using a CC/CV profile. The constant current IREF is set with the external resistor RIREF (see Figure 1) and the constant voltage is fixed at 4.2V (or 4.3V, or 4.35V, or 4.4V). If the battery voltage is below a typical 2.55V trickle charge threshold, the HP4554 charges the battery with a trickle current of 20% of IREF until the battery voltage rises above the trickle charge threshold. Fast charge CC mode is maintained at the rate determined by programming IREF until the cell voltage rises to 4.2V (or 4.3V, or 4.35V, or 4.4V). When the battery voltage reaches 4.2V (or 4.3V, or 4.35V, or 4.4V), the charger enters a CV mode and regulates the battery voltage at 4.2V (or 4.3V, or 4.35V, or 4.4V) to fully charge the battery without the risk of over charge. Upon reaching an full-of-charge (FOC) current, the charger indicates the charge completion with the \overline{CHG} pin, but the charger continues to output the 4.2V (or 4.3V, or 4.35V, or 4.4V) voltage. Figure 3 shows the typical charge waveforms after the power is on.

The FOC current level I_{MIN} is programmable with the external resistor R_{IMIN} (see Figure 1). The \overline{CHG} pin turns to low when the trickle charge starts and rises to high impedance at the FOC. After the FOC is reached, the charge current has to rise to typically 75% I_{REF} for the \overline{CHG} pin to turn on again, as shown in Figure 3. The current surge after FOC can be caused by a load connected to the battery.

A thermal foldback function reduces the charge current anytime when the die temperature reaches typically 115 $^{\circ}$ C . This function guarantees safe operation when the printed circuit board (PCB) is not capable of dissipating the heat generated by the linear charger. The HP4554 accepts an input voltage up to 24V but disables charging when the input voltage exceeds the OVP threshold, typically 6.8V for HP4554, to protect against unqualified or faulty AC adapters.

presence of the AC adapter. Whenever the input voltage is higher than the POR threshold, the \overline{PPR} pin turns on the internal open-drain MOSFET to indicate a logic low signal, independent on the \overline{EN} pin input. When the internal open-drain FET is turned off, the \overline{PPR} pin leaks less than 20µA current. When turned on, the \overline{PPR} pin is able to sink at least 15mA current under all operating conditions. The \overline{PPR} pin can be used to drive an LED (see Figure 1) or to interface with a micro- processor.

Power Good Range

The power good range is defined by the following three conditions:

1. V_{IN} > V_{POR} 2. V_{IN} - V_{BAT} > V_{OS} 3. V_{IN} < V_{OVP}

where the V_{OS} is the offset voltage for the input and output voltage comparator, discussed shortly, and the V_{OVP} is the over-voltage protection threshold given in the Electrical Characteristics table. All V_{POR}, V_{OS}, and V_{OVP} have hysteresis, as given in the Electrical Characteristics table. The charger will not charge the battery if the input voltage is not in the power good range.

Input and Output Comparator

The charger will not be enabled unless the input voltage is higher than the battery voltage by an offset voltage V_{OS} . The purpose of this comparator is to ensure that the charger is turned off when the input power is removed from the charger. Without this comparator, it is possible that the charger will fail to power down when the input is removed and the current can leak through the PFET pass element to continue biasing the POR and the Pre-Regulator blocks.

PPR Indication

The \overline{PPR} pin is an open-drain output to indicate the

High Input Voltage Charger with OVP protection

Dropout Voltage

The constant current may not be maintained due to the $R_{DS(ON)}$ limit at a low input voltage. The worst case $R_{DS(ON)}$ is at the maximum allowable operating temperature.

CHG Indication

The \overline{CHG} is an open-drain output capable of sinking at least 15mA current when the charger starts to charge, and turns off when the FOC current is reached. The \overline{CHG} signal is interfaced either with a microprocessor GPIO or an LED for indication.

EN Input

 \overline{EN} is an active-low logic input to enable the charger. Drive the \overline{EN} pin to low or leave it floating to enable the charger. This pin has a 200k Ω internal pull-down resistor so when left floating, the input is equivalent to logic low. Drive this pin to high to disable the charger. The threshold for high is given in the Electrical Characteristics table.

IREF Pin

The IREF pin has the two functions as described in the Pin Description section. When setting the fast charge current, the charge current is guaranteed to have 10% accuracy with the charge current set at 100mA. When monitoring the charge current, the accuracy of the IREF pin voltage vs. the actual charge current has the same accuracy as the gain from the IREF pin current to the actual charge current.

Operation without the Battery

The HP4554 relies on a battery for stability and works under LDO mode if the battery is not connected. With a battery, the charger will be stable with an output ceramic decoupling capacitor in the range of 1 μ F to 220 μ F. In LDO mode, its stability depends on load current, C_{OUT}, etc. The maximum load current is limited by the dropout voltage 4.2V, the programmed IREF and the thermal foldback.

Thermal Foldback

The thermal foldback function starts to reduce the charge current when the internal temperature reaches a typical value of 115° C.

APPLICATION INFORMATION

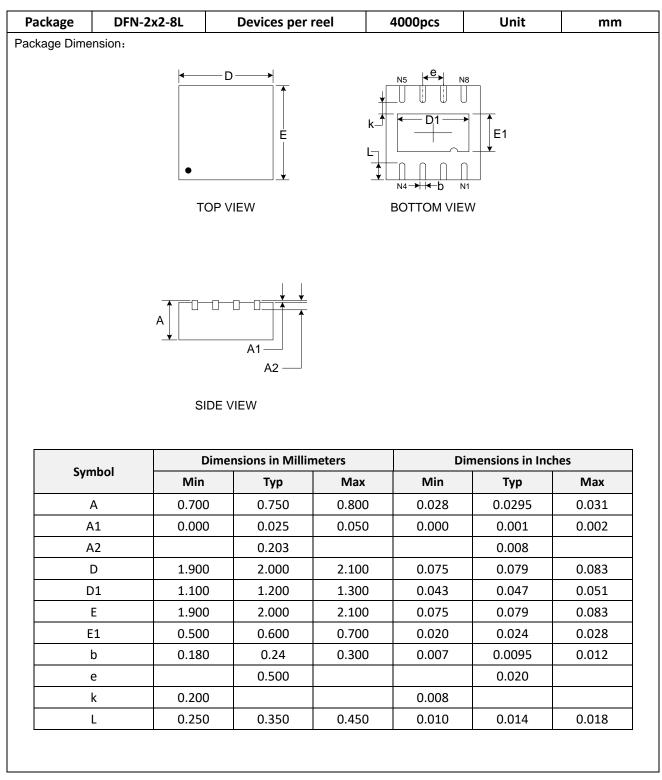
Input Capacitor Selection

The input capacitor is required to suppress the power supply transient response during transitions. Mainly this capacitor is selected to avoid oscillation during the start up when the input supply is passing the POR threshold and the VIN-BAT comparator offset voltage. When the battery voltage is above the POR threshold, the V_{IN} - V_{BAT} offset voltage dominates the hysteresis value. Typically, a 1 μ F X5R ceramic capacitor should be sufficient to suppress the power supply noise.

Output Capacitor Selection

The criterion for selecting the output capacitor is to maintain the stability of the charger as well as to bypass any transient load current. The minimum capacitance is a 1μ F X5R ceramic capacitor. The actual capacitance connected to the output is dependent on the actual application requirement.

Layout Guidance


The HP4554 uses thermally-enhanced DFN packages that have an exposed thermal pad at the bottom side of the packages. The layout should connect as much as possible to copper on the exposed pad. Typically, the component layer is more effective in dissipating heat. The thermal impedance can be further reduced by using other layers of copper connecting to the exposed pad through a thermal via array. Each thermal via is recommended to have 0.3mm diameter and 1mm distance away from other thermal vias.

Input Power Sources

The input power source is typically a well-regulated wall cube with 1-meter length wire or a USB port. The HP4554 can withstand up to 24V on the input without damaging the IC. If the input voltage is higher than typically 6.8V, the charger stops charging.

PACKAGE OUTLINE

REVISION HISTORY

Version No.	Date	Description	
Preliminary	2018-02-08	- Initial preliminary release	
V0.1	2018-07-10	- Update typical performance characteristics	
V0.2	2018-08-22	- Update ordering information and PN rules	
V0.3	2018-10-08	- Update IMIN function description	
V0.4 2018-10-30	2010 10 20	- Update description of IMIN and IREF	
	- Update electric parameters		
V0.5	2019-01-25	11-25 - Add 4.4V charge voltage	
V0.6	2019-04-12 - Update package information		
V0.7	2019-05-13	- Update electrical characteristics	
V0.8	2019-06-24	- Add programmed charge current	
V 1.0	2019-12-02	- Update marking description	

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Battery Management category:

Click to view products by Hypower Microelectronics manufacturer:

Other Similar products are found below :

MP2602DQ-LF-P MP26053DQ-LF-Z MP2611GL-P NCP347MTAHTBG LM3658SD-AEV/NOPB MP2607DL-LF-P MP26121DQ-LF-P MP26123DR-LF-P MP2633GR-P MP2637GR-P BQ24212EVM-678 NCP1855FCCT1G MP2636GR-P FAN54063UCX MAX14680EWC+T MAX14634EWC+T DS2745U+T&R MAX14578EETE+T DS2781EVKIT+ DS2781E+T&R MP2605DQ-LF-P DS2710G+T&R MAX17040G+T MAX14525ETA+T MP2615GQ-P MAX14578EEWC+T LC05132C01NMTTTG MAX8971EWP+T MAX14630EZK+T MAX1873TEEE+T PSC5415A AUR9811DGD SN2040DSQR DS2715BZ+T&R MAX1508ZETA+T MAX14921ECS+T MAX77301EWA+T BD8668GW-E2 MAX16024PTBS+T DS2715Z+T&R MAX16024LTBZ18+T DS2782E+T&R DS2782G+T&R MAX1908ETI+T ISL95522IRZ ISL95522HRZ ARD00558 NCP4371AAEDR2G BD8665GW-E2 MAX8934EETI+T