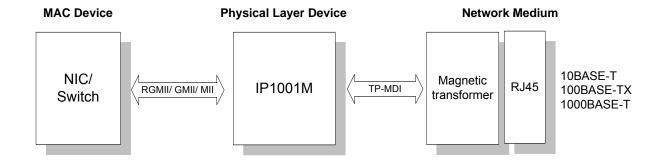


Integrated 10/100/1000 Gigabit Ethernet Transceiver


Features

- IEEE 802.3 compliant 1000BASE-T, 100BASE-TX. and 10BASE-T
- Support auto-negotiation
- Support timing programmable MII/ GMII/ RGMII (delay clock, and driving current etc.)
- Support 2 power saving modes
 - Power down mode
 - Auto Power Saving(APS) mode
- Support software based Smart Cable Analyzer (SCA)
- Support auto MDI/MDIX (auto negotiation or force mode)
- Support auto polarity correction
- Support programmable LED modes and LED driving current
- Support speed down shift feature
- Built in synchronization FIFO to support jumbo frame size up to 10KB in Giga mode (4KB in 10M/100M mode)
- Support 1.2V built-in regulator control
- Provide a 125MHz free running clock
- Operating voltage GMII 3.3V/1.8V
- Operating voltage RGMII 3.3V/2.5V/1.8V
- 64-pin QFN lead-free package

General Description

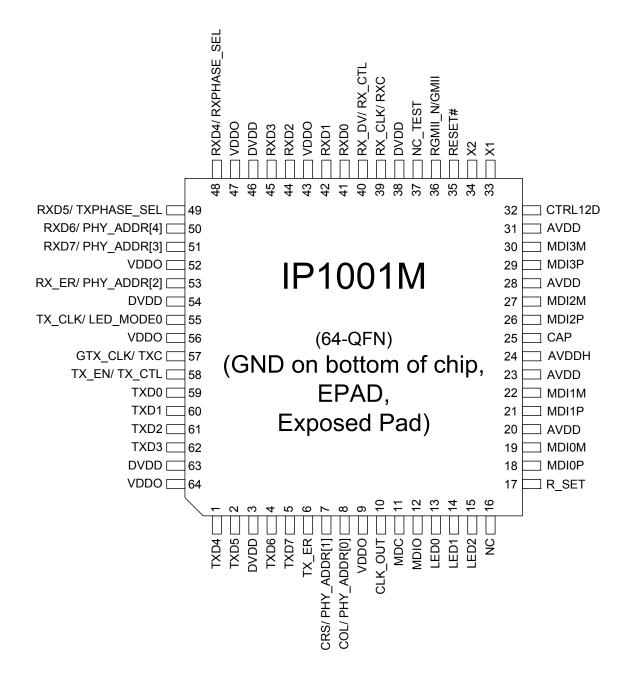
IP1001M is an integrated physical layer device for 1000BASE-T, 100BASE-TX, and 10BASE-T applications. IP1001M supports MII, GMII and RGMII for different types of 10/100/1000Mb Media Access Controller (MAC). It supports Auto MDI/MDIX function to simplify the network installation and reduce the system maintenance cost. IP1001M supports speed down shift feature for a poor link quality to guarantee data transmission. Cable analysis function "SCA" is supported by programming MII registers of IP1001M through MDC/MDIO.

IP1001M supports 2 types of power saving modes; i.e., power down mode defined in IEEE802.3, and APS (auto power saving).

Table of Contents

Fea	atures		1
Ge	neral De	escription	1
Tab	ole of Co	ontents	2
Re	vision H	istory	3
1		agram	
2		scription	
3		onal Description	
	3.1	Medium Dependent Interface (MDI) for Twisted Pair Cable	15
	3.2	MAC Interface (RGMII/ GMII/ MII)	
	3.3	Serial Management Interface	19
	3.4	LED	
	3.5	Auto MDI/MDIX Crossover	21
	3.6	Polarity Correction	
	3.7	Auto-Negotiation	
	3.8	Smart speed	
	3.9	Power supply	
	3.10	Digital Internal Function	
	3.11	IEEE802.3 1000BASE_T Test mode	
	3.12	Auto Power Saving (APS)	
4	Regist	er Descriptions	
	4.1	Control Register (Reg0)	
	4.2	Status Register (Reg1)	
	4.3	PHY Identifier Register (Reg2)	
	4.4	PHY Identifier Register (Reg3)	
	4.5	Advertisement Register (Reg4)	
	4.6	Link Partner's Ability Register (Base Page) (Reg5)	
	4.7	Auto-Negotiation Expansion Register (Reg6)	
	4.8	Auto-Negotiation Next Page Transmit Register (Reg7)	
	4.9	Auto-Negotiation Link Partner Next Page Register (Reg8)	
	4.10	1000BASE-T Control Register (Reg9)	
	4.11	1000BASE-T Status Register (Reg10, Reg 0x0A)	35
	4.12	Extended Status Register (Reg15, Reg 0x0F)	
	4.13	PHY Specific Control & Status Register (Reg16, Reg 0x10)	37
	4.14	PHY Link Status Register (Reg17, Reg 0x11)	39
	4.15	PHY Specific Control Register2 (Reg20, Reg 0x14)	40
5	Electri	cal Characteristics	
	5.1	Absolute Maximum Rating	41
	5.2	DC. Characteristics	
	5.3	Power consumption	42
	5.4	AC Timing	
		.4.1 Reset, Clock and Power Source	
	5	.4.2 MII Timing	
	5	.4.3 GMII Timing	
		.4.4 RGMII Timing	
		.4.5 SMI Timing	
	5.5	Thermal Data	
6		Information	
7		ge Detail	

Revision History


Revision #	Change Description
IP1001M-DS-R01	Initial release.
IP1001M-DS-R02	1.Add power consumption
	2.Modify VCT(Transformer center tap voltage) on DC Characteristics
	3.Modify voltage of VDDO on DC characteristics

Legal Disclaimer

This document probably contains the inaccurate data or typographic error. In order to keep this document correct, IC Plus reserves the right to change or improve the content of this document.

1 Pin diagram

2 Pin description

Abbreviation description

Abbreviation	Description					
PWR	Power and Ground Pin					
I	Schmitt trigger input					
LI	The input is latched at the end of reset and used as a default value					
0	Output					
I/O	Schmitt trigger input/ Output					
OD	Open drain output					
IPH	Schmitt trigger input with 60 Kohm internal pull high					
IPL	Schmitt trigger input with 60 Kohm internal pull low					
IPECL	PECL input					
OPECL	PECL output					

Pin no.	Label	Туре	Description
Configuratio	n		
50,51,53,7,8	PHY_ADDR[4:0]	LI/O, IPH	PHY Address Configuration These pins are latched upon power-on reset to define the PHY address of IP1001M. PHY_ADDR[1:0] are internally pulled high. PHY_ADDR[4:0] share the same pins with RXD6, RXD7, RX_ER, CRS and COL.
36	RGMII_N/GMII	IPL	GMII (MII)/ RGMII MAC Interface Mode Selection This pin is latched upon power-on reset to define the RGMII/GMII interface mode. 0: RGMII mode (default) 1: GMII/MII mode
48	RXPHASE_SEL	LI/O	RX_CLK Phase Selection This pin is latched upon power-on reset, and acts as the initial value of register16 [0] to adjust timing of RX_CLK. 0: No output delay is added on RX_CLK 1: An output delay is added on RX_CLK (with respect to RXD, about 2ns delay in 1000BASE-T RGMII mode, and about 4ns delay in 1000BASE-T GMII mode, 100BASE-TX and 10BASE-T). RXPHASE_SEL shares the same pin with RXD4.
49	TXPHASE_SEL	LI/O	GTX_CLK/TXC Phase Selection This pin is latched upon power-on reset, and acts as the initial value of register16 [1] to adjust timing of GTX_CLK/TXC. 0: No input delay is added on GTX_CLK/TXC 1: An input delay is added on GTX_CLK/TXC (with respect to TXD, about 2ns delay in 1000BASE-T RGMII mode, and about 4ns delay in 1000BASE-T GMII mode, 100BASE-TX and 10BASE-T). TXPHASE_SEL shares the same pin with RXD5.

6/48

Pin no.	Label			Туре	Descript	ion	
	MAC Interface						
	GMII	RGMII	MII				
57	GTX_CLK	TXC		I		MII Transı	
					I/F	MDI speed	Description
						Gigabit	125MHz input.
					GMII Mode		IP1001M utilizes this clock to sample TXD[7:0], TX_ER and
							TX_EN at the rising edge. Not used.
						ps Gigabit	125MHz input.
					RGMII Mode	Olgabit	IP1001M utilizes this clock to sample TXD[3:0] and TX_CTL at both the rising edge and
							falling edge of GTX_CLK.
						100Mbps	25MHz input.
							IP1001M utilizes this clock to sample TXD[3:0] and TX_CTL at both the rising edge and
							falling edge.
						10Mbps	2.5MHz input. IP1001M utilizes this clock to
							sample TXD[3:0] and TX_CTL at both the rising edge and
55			TX_CLK	0	MII Trans	smit Clock	falling edge.
					I/F	MDI speed	Description
							Not used.
					GMII	100Mbps	25MHz output.
					Mode		IP1001M uses the clock to sample TX_EN, TX_ER, and
						10Mbps	TXD[3:0]. 2.5MHz output.
							IP1001M uses the clock to sample TX_EN, TX_ER, and
						0: 1:1	TXD[3:0].
					RGMII Mode		Not used. This pin should be left open for normal operation.
58	TX_EN	TX_CTL	TX_EN	I			smit Enable/ RGMII Transmit
					Control		
					I/F	MDI speed	Description
					GMII	Gigabit,	Indicates the valid data is present on the data bus of
					Mode		TXD. Synchronous to the rising edge of GTX_CLK
							(Gigabit) or TXC_CLK

Pin no.	Label			Туре	Description	on	
	MAC Interface				•		
	GMII	RGMII	MII				
							(10/100M). The TX_CTL indicates a
					RGMII 1 Mode	10Mbps	signal like TX_EN at the rising edge of TXC. A signal like TX_ER is derived by the logical operation of latched "TX_EN" and the value at the falling edge of TXC.
5,4,2,1	TXD[7:4]			I	Please se	ee the pin	a (high nibble) description of pin 57. st to connect to ground in RGMII
62,61,60,59	TXD[3:0]	TXD[3:0]	TXD[3:0]	I	GMII/RGI		ansmit Data description of pin 57.
6	TX_ER		TX_ER	l (IPH)		MII Trans	
				, ,	I/F	MDI speed	Description
					GMII Mode	_	A "high" state present on this pin indicates transmit data error or carrier extension. It is synchronous to GTX_CLK
						100Mbps, 10Mbps	A "high" state present on this pin indicates transmit data error. It is synchronous to TX_CLK
						Gigabit, 100Mbps, 10Mbps	Not used.
39	RX_CLK	RXC	RX_CLK	0	GMII/ RG	MII Recei	ve Clock.
					I/F	speed	Description
					GMII Mode	J	125MHz output. IP1001M sends out RXD[7:0], RXDV and RX_ER at the rising edge of RX_CLK.
						·	25MHz output. IP1001M sends out RXD[3:0], RXDV and RX_ER at the rising edge of RX_CLK.
						10Mbps	2.5MHz output. IP1001M sends out RXD[3:0], RXDV and RX_ER at the rising edge of RX_CLK.
					RGMII Mode	J	125MHz output. IP1001M sends out RXD[3:0] and RX_CTL at both the rising edge and falling edge of RXC.

Pin no.	Label			Type	Description
	MAC Interface			,	•
	GMII	RGMII	MII		
					100Mbps 25MHz output. IP1001M sends out RXD[3:0] and RX_CTL at both the rising edge and falling edge of RXC. 10Mbps 2.5MHz output. IP1001M sends out RXD[3:0] and RX_CTL at both the rising edge and falling edge of RXC.
40	RX_DV	RX_CTL	RX_DV	0	GMII and MII Receive Enable/ RGMII Receive Control
					I/F MDI speed Gigabit RX_DV indicates the valid 100Mbps data is present on the data 10Mbps bus of RXD. Synchronous to the rising edge of RX_CLK. Gigabit RX_CTL indicates a signal like RX_DV at the rising edge of TXC. A signal like RX_ER is
51,50,49,48	RXD[7:4]			0	derived by the logical operation of latched RX_DV and the value at the falling edge of RX_CLK GMII Receive Data (high nibble)
45,44,42,41	DADI3:01	DADI3:01	DADI3-01	0	Please see the pin description of pin 39. RXD[7:4] share the same pins with PHY_ADDR[3:4], TXPHASE_SEL, and RXPHASE_SEL. GMII/RGMII/MII Receive Data
40,44,42,41	IXXD[3.0]	IXXD[3.0]	IXXD[3.0]		Please see the pin description of pin 39.
53	RX_ER		RX_ER	0	RX_ER shares the same pin with PHY_ADDR2. I/F MDI Description speed Gigabit A "high" state present on this pin indicates received data error or carrier extension. It is synchronous to RX_CLK 100Mbps, A "high" state present on this 10Mbps pin indicates received data error. It is synchronous to RX_CLK Gigabit, Not used. RGMII 100Mbps, Mode 10Mbps
7	CRS		CRS	IPH/O	GMII/MII Carrier Sense It asserts during either the transmission or the reception. CRS shares the same pin with PHY_ADDR1.

Pin no.	Label	Label			Description
	MAC Interface				
	GMII	RGMII	MII		
8	COL		COL	IPH/O	GMII/MII Collision If IP1001M operates in half mode, it asserts when both transmission and reception are running. If IP1001M works in full duplex mode, COL is always idle (logic low). COL shares the same pin with PHY ADDR0.

Pin no.	Label	Туре	Description
LED Display			
55	LED_MODE0	LI/O	LED Mode Selection (MODE0~MODE3). LED_MODE[1:0] can provide 4 LED display modes, Mode0~ Mode3. LED_MODE1 is set by register16[15]. LED_MODE0 is defined by pin or by register16[14]. The pin state of LED_MODE0 is latched upon reset and set to register 16[14]. After power up, the designer can configure LED_MODE[1:0] register during the operation. Since LED_MODE1 is set to "0" upon reset, the designer can set pin 55 to select "00" or "01" display mode if the register
			16[15:14] is unchanged.
15,14,13	, ,	IPH/O, LI/O	LED output pins 0,1,2 LED pins have to add driver buffer by serial connection if VDDO input voltage is lower than 2.5V.

	Mode0	Mode1	Mode2	Mode3
LED_MODE[1:0]	2'b00	2'b01	2'b10	2'b11
LED0	10/100M Link/Act	Bi-color mode	1G Link/Act	Bi-triple-color mode
	0: link off	{LED0, LED1}=	0: link off	{LED0, LED1}=
	1: 10/100M link on		1: Giga link on	
	Flash: TX or RX	10= 1G Link;	Flash: TX or RX	10= 1G Link;
LED1	100M Link/Act	01=10/100M Link;	100M Link/Act	01= 100M Link
	0: link off	00= link off	0: link off	00= 10M Link;
	1: 100M link on	11= reserved	1: 100M link on	11= link off
	Flash: TX or RX		Flash: TX or RX	
LED2	1G Link/Act	Act	10M Link/Act	Link/ Act
	0: link off	0: link off or idle	0: link off	0: link off
	1: Giga link on	1: TX or RX	1: 10M link on	1: 10/100M/Giga link on
	Flash: TX or RX		Flash: TX or RX	Flash: TX or RX

Pin no.	Label	Type	Description		
Serial Management Interface					
11	MDC		Management Data Clock. MDC is the management data clock reference. A continuous clock is not expected. The maximum frequency supported is 12.5 MHz.		
12	MDIO	I/O	Management Data Input Output. MDIO transfers management data in and out of the device synchronous to MDC. This pin should be connected a resistor to VDDO, and refer to the application circuit for details.		

Pin no.	Label	Туре	Description			
Medium Inte	Medium Interface					
29,26,21,18, 30,27,22,19	MDI[3:0]P, MDI[3:0]M	I/O	Twisted- Pair Media Dependent Interface In 1000BASE-T mode, all 4 pairs are both input and output at the same time. In 100BASE-TX and 10BASE-T mode, MDI[0]P/M are used for transmit pair under MDI configuration, and is used for receive pair under MDIX configuration. MDI[1]P/M are used for receive pair under MDIX configuration, and is used for transmit pair under MDIX configuration. MDI[2]P/M and MDI[3]P/M are unused in 100BASE-TX and 10BASE-T mode.			

Pin no.	Label	Туре	Description
Miscellan	eous		
16	NC	0	It's a NC pin. This pin can be left open.
32	CTRL12D	0	Regulator Control.
			The internal linear regulator uses this pin to control an external PNP transistor to generate a 1.2v voltage source. The circuit is shown below. The 1.2v power source is connected to DVDD. The built in regulator works only if DVDD pins are connected to the collector of the external PNP transistor. If DVDD pins are connected to an external power source instead of the collector of PNP transistor, the function of CTRL12D doesn't work. *VDDO or other power source must be reference 5.2 DC. Characteristics
			VDDO or other power source CTRL12D 1.2v
			This pin can be left open if it is not used.

scillator input.
X2 to provide the 25MHz clock.
s the clock source and its power
connect the output of oscillator
tor.
nen this pin is pulled low.
should be left open for normal
vice. This signal is always active
Albraciah an automal 40uF
through an external 10uF
e the internal analog power.
pointer between this pin and
esistor between this pin and sistor to set the current source.
1

Pin no.	Label	Туре	Description
Power pins	Labor	11 ypo	Bookpash
3, 38, 46, 54 63	, DVDD		1.2V digital power
20, 23, 28,31	I, AVDD		The power source for analog circuit. The operating range of this power is specified in the DC characteristics.
9, 43, 47, 52 56, 64	, VDDO		Digial I/O power for RGMII/GMII/MII.
			The operating range of VDDO is specified in DC characteristics.
24	AVDDH		The analog power of AVDDH. The operating range of this power source is specified in DC characteristics.
			AVDDH can be connected to the same power source of VDDO; otherwise it can be connected to a separate power source. Although VDDO and AVDDH use the same power source, user has to place a ferrite bead between VDDO and AVDDH to prevent the noise coupling.
	GND		Exposed PAD (E-PAD) (Thermal PAD) is Analog and Digital ground.

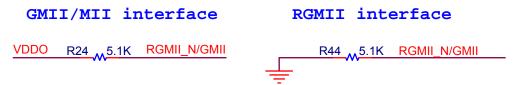
3 Functional Description

The IP1001M is an Ethernet transceiver for 1000BASE-T, 100BASE-TX, and 10BASE-T. It uses one pair of UTP wires to transmit data and uses another pair to receive data when working in 100BASE-TX or 10BASE-T. It uses four pairs of UTP wires to transmit and to receive data when working in 1000BASE-T.

It supports auto-negotiation, including next page exchanging, speed (1000M, 100M, 10M), duplex (full/ half) mode and master/slave resolution. This device also supports RGMII/ GMII/ MII to interface a MAC device.

Registers in the IP1001M can be accessed via the SMI (MDC/MDIO). Three LEDs shows the various statuses of the device. Pair skews in the cables are automatically adjusted. Wiring errors are automatically corrected via pair swapping (automatic MDI/MDIX) and polarity correction.

3.1 Medium Dependent Interface (MDI) for Twisted Pair Cable


The interface between IP1001M and CAT5 cable consists of four signal pairs, channel A, B, C and D, that are used for 1000BASE-T transmission/receiving. Each signal pair consists of two bi-directional pins that transmit and receive data stream at the same time.

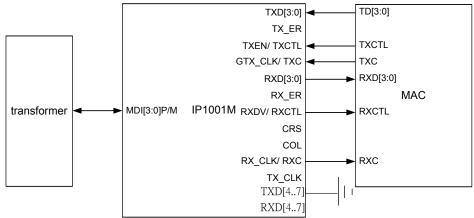
When the IP1001M operates in 100BASE-TX or 10BASE-T mode, only channel A and B are used. One is for transmission and the other is for reception. IP1001M will handle the MDIX/MDI crossover issue of the twisted-pair wire automatically. Please refer to section 3.5 Auto MDI/MDIX Crossover in details.

3.2 MAC Interface (RGMII/ GMII/ MII)

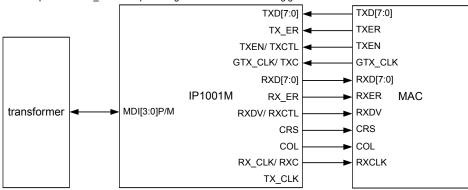
IP1001M supports RGMII and GMII/ MII interfaces. User can select the one of the interfaces by configure pin 36 and IP1001M will latch the setting at the end of hardware reset. If pin 36 is connected to GND through a resistor R44, RGMII is selected. If pin 36 is connected to VDDO through a resistor R24, GMII/ MII is selected.

If GMII mode is selected and IP1001M links in 1000BASE-T mode, GTX_CLK, TX_EN, TXD[7:0] and TX_ER are input signals and should be driven by an external MAC device, TX_CLK is driven low. RX_CLK, CRS, RX_DV, RXD[7:0], RX_ER and COL are output signals to an external MAC device.

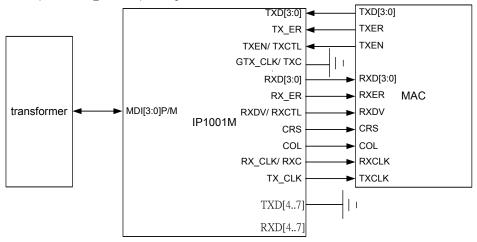
In the 100BASE-TX (10BASE-T) modes, both TX_CLK and RX_CLK source 25 MHz (2.5 MHz) clock respectively. TX_EN, TXD[3:0] and TX_ER are input signal and should be driven by an external MAC device. RX_CLK, CRS, RX_DV, RXD[3:0], RX_ER and COL are output signals to an external MAC device. GTX_CLK and TXD[7:4] signals are ignored and RXD[7:4] drives low.


If RGMII mode is selected, TXC, TX_CTL and TXD[3:0] are input signals and should be driven by an external MAC device, TX_CLK is driven low. RXC, RX_CTL and RXD[3:0] are output signals to an external MAC device. RXC provides a 125 MHz, 25 MHz or 2.5 MHz reference clock depending on the link speed is 1000M, 100M or 10M.

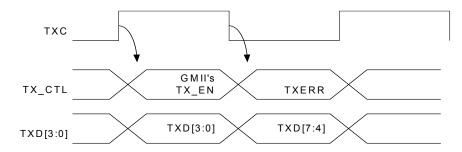
A timing adjustment on MAC interface is implemented in IP1001M by adding delay to the clock pins and changing driving capability on RX pins. User can add input delay to the GTX_CLK(TXC) by programming pin 49 TXPHASE_SEL or register 16.1 or add output delay to the RX_CLK(RXC) by programming pin 48 RXPHASE_SEL or register 16.0. The driving capability of RX signals can be configured by programming MII register 16[8:5]

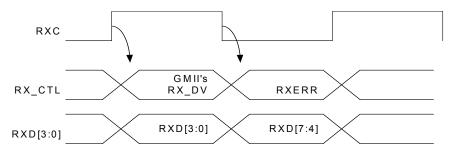


MII/GMII/RGMII selection and signal direction


RGMII is active if pin 36 RGMII_N/GMII is pulled low.

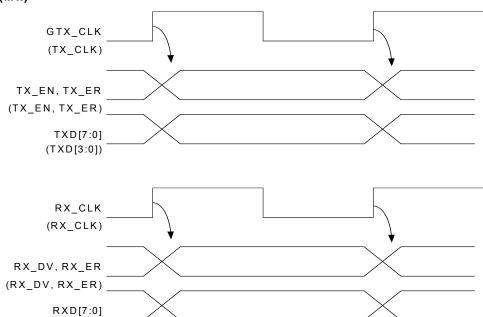
GMII is active if pin 36 RGMII_N/GMII is pulled high and IP1001is linked at giga mode.


MII is active if pin 36 RGMII_N/GMII is pulled high and IP1001 islinked at 100M, or 10M.



Waveform of RGMII and GMII (MII)

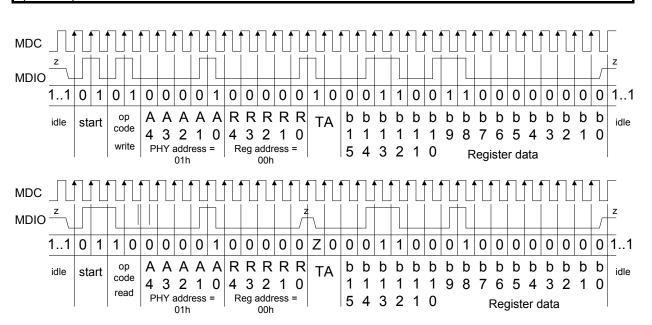
RGMII



TXERR = GMII'S TX_EN (XOR) GMII'S TX_ER

RXERR = GMII'S RX_DV (XOR) GMII'S RX_ER

GMII (MII)


(RXD[3:0])

3.3 Serial Management Interface

The serial management interface consisting of two pins, MDC and MDIO, provides access to the MII registers of IP1001M. MDC is a clock input and runs at a maximum rate of 12.5 MHz. MDIO is a bi-directional data pin that runs synchronously to MDC. To access MII register in IP1001M, MDC should be at least one more cycle than MDIO. That is, a complete command consists of 32 bits MDIO data and at least 33 MDC clocks.

Frame	<idle><start><op code=""><phy address=""><registers address=""><turnaround><data><idle></idle></data></turnaround></registers></phy></op></start></idle>
format	
Read	$<01><10>$
Operation	
Write	$ < \text{Idle} > < 01 > < 01 > < A_4A_3A_2A_1A_0 > < R_4R_3R_2R_1R_0 > < 10 > < b_{15}b_{14}b_{13}b_{12}b_{11}b_{10}b_9b_8b_7b_6b_5b_4b_3b_2b_1b_0 > < \text{Idle} > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > < 01 > $
Operation	

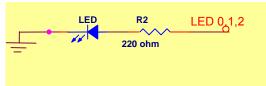
3.4 LED

IP1001M provides 3 LED pins, LED0~2, and four LED display modes, mode0~3. User can select one of four LED modes by configuring LED_MODE1 and LED_MODE0. LED_MODE1 and LED_MODE0 are defined in register 16[15:14]. Pin 55 LED_MODE0 defines the default value of register 16[14]. The functionality of the LED pins is shown in the table below. The driving capability of LED pins can be

LED mode setting

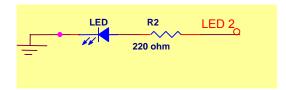
programmed by writing MII register 16[13].

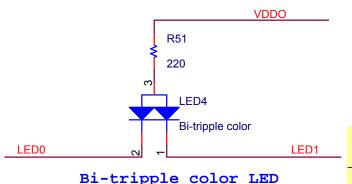
LED mode 1

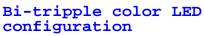

VDDO R24 M5.1K TX_CLK/LED_MODE0

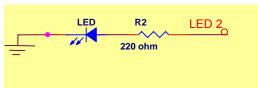
R44 M5.1K TX_CLK/LED_MODE0

LED application circuit


Mode 0 & mode 2


Mode 1




Bi-color LED configuration

Mode 3

	Mode0	Mode1	Mode2	Mode3
LED_MODE[1:0]	0,0	0,1	1,0	1,1
Pin 13 LED0	10/100M Link/Act	Bi-color mode	1G Link/ Act	Bi-triple-color mode
Pin 14 LED1	100M Link/Act	,	100M Link/ Act	{LED0, LED1}=
		10= 1G Link;		10= 1G Link;
		01=10/100M Link;		01= 100M Link
		00= link off		00= 10M Link;
		11= reserved		11= link off
Pin 15 LED2	1G Link/Act	Act	10M Link/ Act	Link/ Act

Note:

Link: LED on

Act (activity): LED blinking (frequency is about 10Hz)

3.5 Auto MDI/MDIX Crossover

The IP1001M implements auto-crossover function, that is, users don't have to care using a crossover or non-crossover cable. Its pin mapping in MDI and MDIX modes is shown in the following table. If IP1001M interoperates with a device that does not implement auto MDI/MDIX crossover, the IP1001M makes the necessary adjustment prior to performing auto-negotiation. If the IP1001M interoperates with a device that implements auto MDI/MDIX crossover, a random algorithm as described in IEEE 802.3 section 40.4.4 determines which device performs the crossover.

When the IP1001M interoperates with a 10BASE_T PHY or a PHY that implements auto-negotiation, IP1001M decides the MDI/MDIX by the presence of link pulses. However, when interoperating with a 100BASE_TX PHY that does not implement auto-negotiation (i.e. link pulses are not present), IP1001M uses signal energy of receiving MLT3 signals to determine whether or not to crossover.

The auto MDI/MDIX function is turned on automatically after hardware reset and users can disable it by programming MII register 20.2. User can check if IP1001M is in MDI or MDIX type by reading MII register 17.11. Auto MDI/MDIX function is not affected by disabling auto-negotiation function.

Pin	MDI			MDIX			
	1000BASE-T	100BASE-TX	10BASE-T	1000BASE-T	100BASE-TX	10BASE-T	
MDI[0]P/M	BI_DA+/-	TX+/-	TX+/-	BI_DB+/-	RX+/-	RX+/-	
MDI[1]P/M	BI_DB+/-	RX+/-	RX+/-	BI_DA+/-	TX+/-	TX+/-	
MDI[2]P/M	BI_DC+/-	Unused	Unused	BI_DD+/-	Unused	Unused	
MDI[3]P/M	BI_DD+/-	Unused	Unused	BI_DC+/-	Unused	Unused	

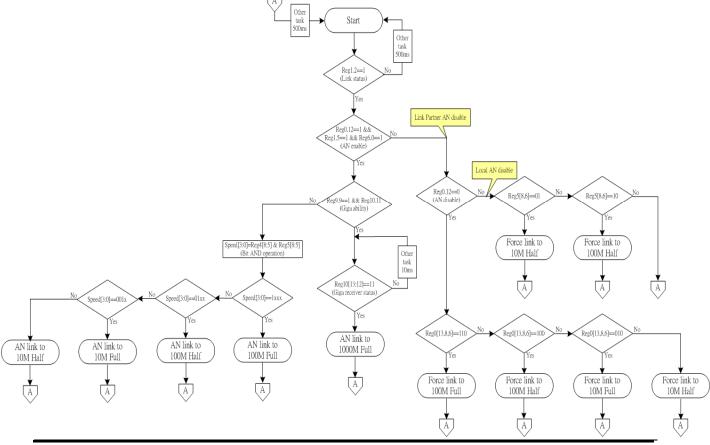
3.6 Polarity Correction

The IP1001M performs polarity correction without any manual setting. It corrects polarity errors on the receive pairs in 1000BASE-T and 10BASE-T modes automatically.

In 1000BASE-T mode, polarity correction is based on the sequence of idle symbols. In 10BASE-T mode, polarity correction is based on the detection the polarity of valid normal link pulse and idle pulse. In 100BASE-TX mode, the polarity does not matter.

3.7 Auto-Negotiation

IP1001M will perform Auto-Negotiation automatically if one of the following conditions happened:

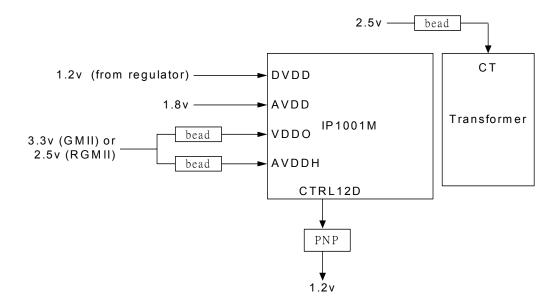

- 1) Power up reset, hardware reset, or software reset (by programming MII register 0.15).
- 2) Restart Auto-Negotiation (by programming MII register 0.9).
- 3) Transition from power down to power up (by programming MII register 0.11).
- 4) Link is down.

Once Auto-Negotiation is initiated, IP1001M sends out the appropriate base pages/ next pages to advertise its capability and negotiate with the link partner to determine speed, duplex, and master/slave. Note that IP1001M handles the base page/ next page exchanges automatically without user intervention. To link at Giga mode, the link partner of IP1001M has to support Auto-Negotiation, too. Once IP1001M completes Auto-Negotiation it updates the statuses in registers 1, 5, 6, 10 and 17. The advertised abilities can be changed by writing registers 4 and 9. It is noted that a write access to register 4 or 9 has no effect once the IP1001M begins transmitting Fast Link Pulses (FLPs). This guarantees that the transmitted FLPs are consistent. Register 7 is treated in a similar way as registers 4 and 9 during additional next page exchanges.

If the link partner doesn't support Auto-Negotiation, IP1001M determines the link speed using parallel detection and the link result is either 10M half duplex or 100M half duplex. Please refer to IEEE 802.3 clause 28 and 40 for more detailed description of Auto-Negotiation.

Auto-Negotiation can be disabled by programming register 0.12. When Auto-Negotiation is disabled, the speed and duplex of IP1001M can be changed by programming registers 0.13, 0.6 and 0.8, respectively.

Customer can follow the under figure for software check PHY speed.


3.8 Smart speed

IP1001M supports smart speed function. If IP1001M can't link at Gigabit speed due to cable quality, the link speed is down shift to 100M automatically if smart speed option is turned on. If the function is turned off, IP1001M will link down if it can't link at Giga mode due to cable quality. The function is default on and it can be enabled or disabled by programming MII register 16.11.

3.9 Power supply

IP1001M has 4 sets of power pins, DVDD, AVDD, VDDO and AVDDH. VDDO is connected to 3.3v or 2.5v depending on MAC interface is GMII or RGMII. AVDDH can use the same power source of VDDO, that is 3.3v or 2.5v, but it needs a bead to prevent VDDO noise. AVDD should be connected to 1.8v with an external 1.8v power source. DVDD is connected to 1.2v. The center tap of transformer can be connected to 2.5v. The current limit of bead should be large enough to prevent the IR drop in power supply input.

* DVDD,AVDD,VDDO,AVDDH and VCT must be reference 5.2 DC. Characteristics

3.10 Digital Internal Function

The IP1001M integrates all necessary function blocks to achieve the communication ability over CAT5 unshielded twisted pair cables. These function blocks include analog blocks and digital blocks.

Analog function blocks includes analog to digital converter (ADC), digital to analog converter (DAC), active hybrid, and high-speed 1.25GHz transmitter/receiver. Digital function blocks include digital adaptive feed-forward equalizer (FFE), decision-feedback equalizer (DFE), echo canceller (EC), near-end-cross-talk canceller, baseline wander canceller, and digital phase lock-loop (DPLL). Some other encoding/decoding blocks are also necessary in the transmission/receiving data path.

3.11 IEEE802.3 1000BASE_T Test mode

IP1001M supports four test modes for 1000BASE_T defined in IEEE802.3 clause 40.6. User can force IP1001M to be in test mode to characterize its waveform, jitter, and distortion by programming MII register 9[15:13].

3.12 Auto Power Saving (APS)

IP1001M provides the auto power saving mode to minimize the power consumption during the link down state. This function is enabled by reset default and can be configured by register 20.11. When set to APS mode, IP1001M will transmit link pulse every 50ms. When set to normal operating mode, IP1001M will transmit link pulse based on IEEE802.3 standard, i.e, a burst of Fast Link Pulse every 16ms. Since the power consumption is proportional to the number of the transmitted link pulse, it is recommended that the designer keeps APS enabled to minimize the power consumption during link down state.

4 Register Descriptions

Abbreviation description

Abbreviation	Description
SC LH	Self-Clear
	Latched High
LL	Latched Low
RO	Read Only
R/W	Read and Write
NA	Not Affected
HW Reset	Reset by RESET# pin
SW Reset	Reset by MII register 0 bit 15

PHY registers

The IP1001M supports a full set of PHY registers, which can be accessed through the MDC/MDIO interface.

Note:

The register address listed in the following table is in "decimal" number rather than "hex-decimal" number.

Register	Description
Reg0	Control Register
Reg1	Status Register
Reg2	PHY Identifier Register
Reg3	PHY Identifier Register
Reg4	Auto-Negotiation advertise register
Reg5	Link Partner Ability Register
Reg6	Auto-Negotiation Expansion Register
Reg7	Auto-Negotiation Next Page Transmit Register
Reg8	Auto-Negotiation Link Partner Next Page Register
Reg9	1000BASE-T Control Register
Reg10	1000BASE-T Status Register
Reg11~14	Reserved. Do not access to these registers.
Reg15	Extended Status Register
Reg16	PHY Specific Control Register1
Reg17	PHY Link Status Register
Reg18~19	Reserved. Do not access to these registers.
Reg20	PHY Specific Control Register2
Reg21~31	Reserved. Do not access to these registers.

4.1 Control Register (Reg0)

Bit	Name	Description	Туре	HW Reset	SW Reset
0.5:0	Reserved		RO	Always	0
0.6	Speed Selection (MSB)	0.6	R/W	1	NA
0.7	Collision Test	Enable COL signal test Disable COL signal test	R/W	0	0
0.8	Duplex Mode	1: Full duplex 0: Half duplex	R/W	1	NA
0.9	Restart Auto-NEG	Restart Auto-Negotiation Process Normal operation	R/W SC	0	SC
0.10	Isolate	1: Isolate PHY from MII, GMII, or RGMII electrically 0: normal operation	R/W	0	0
0.11	Power Down	1: Power down 0: Normal operation	R/W	0	0
0.12	Auto-Negotiation Enable	Enable Auto-Negotiation Process Disable Auto-Negotiation Process	R/W	1	NA
0.13	Speed Selection (LSB)	Please refer to bit 0.6 for detail information	R/W	0	NA
0.14	Loopback	1: Enable loop back mode 0: Disable loop back mode	R/W	0	0
0.15	Software Reset	1: PHY software reset 0: normal operation	R/W SC	0	0 (SC)

4.2 Status Register (Reg1)

Bit	Name	Description	Туре	HW Reset	SW Reset
1.0		Support extended register capabilities Support basic register set capabilities only	RO	1	1
1.1	Jabber Detect	Jabber condition detected No jabber condition detected	RO LH	0	0
1.2	Link Status	1: Link is up 0: Link is down	RO LL	0	0
1.3	Auto-Negotiation Ability	PHY is able to perform Auto-Negotiation PHY is not able to perform Auto-Negotiation	RO	1	1
1.4	Remote Fault	Remote fault condition detected No remote fault condition detected	RO LH	0	0
1.5	Auto-Negotiation Complete	Auto-Negotiation process completed Auto-Negotiation process not completed	RO	0	0
1.6	MF Preamble Suppression	PHY accepts management frames with preamble suppressed. PHY does not accept management frames with preamble suppressed.	RO	Reserve	d 1
1.7	Reserved	Ignore when read	RO	Reserve	d 0
1.8	Extended Status	There is extended status information in Register 15 No extended status information in Register 15	RO	Reserve	d 1
1.9	100BASE-T2 Half Duplex	1: PHY able to perform half duplex 100BASE-T2 0: PHY not able to perform half duplex 100BASE-T2	RO	Reserve	d 0
1.10	100BASE-T2 Full Duplex	1: PHY able to perform full duplex 100BASE-T2 0: PHY not able to perform full duplex 100BASE-T2	RO	Reserve	d 0
1.11		1: PHY able to operate at 10 Mb/s in half duplex mode 0: PHY not able to operate at 10 Mb/s in half duplex mode	RO	1	1
1.12	·	PHY able to operate at 10Mb/s in full duplex mode PHY not able to operate at 10Mb/s in full duplex mode		1	1
1.13	100BASE-X Half Duplex		RO	1	1
1.14	100BASE-X Full Duplex	1: PHY able to perform full duplex 100BASE-X 0: PHY not able to perform full duplex 100BASE-X		1	1
1.15	100BASE-T4	1: PHY able to perform 100BASE-T4 0: PHY not able to perform 100BASE-T4	RO	Reserve	d 0

4.3 PHY Identifier Register (Reg2)

Bit	Name	Description	Туре	_	SW Reset
' ' '	,	0000_0010_0100_0011 Note: ICPlus's OUI is 0x0090C3	RO	Always 0	x0243

4.4 PHY Identifier Register (Reg3)

Bit	Name	Description	llvne	HW Reset	SW Reset
3[3:0]	Revision Number			Change revision	with IC
3[9:4]	Manufacturer's Model Number	011001	RO	Always 0)11001
3[15:10]	Organizationally Unique Identifier Bit [19:24]	000011	RO	Always 0	000011

4.5 Advertisement Register (Reg4)

Bit	Name	Description	Туре	HW Reset	SW Reset
4[4:0]	Selector Filed	Only CSMA/CD <00001> is specified. No other	RO	00001	00001
		protocols are supported.			
4.5	10BASE-T Half	1 = 10Base-T full duplex is supported	R/W	1	1
	Duplex	0 = 10Base-T full duplex not supported			
4.6	10BASE-T Full	1 = 10Base-T half duplex is supported	R/W	1	1
	Duplex	0 = 10Base-T half duplex not supported			
4.7	100BASE-TX Half	1 = 100Base-TX half duplex is supported	R/W	1	1
	Duplex	0 = 100Base-TX half duplex not supported			
4.8	100BASE-TX Full Duplex	1 = 100Base-TX full duplex is supported	R/W	1	1
		0 = 100Base-TX full duplex not supported			
4.9	100BASE-T4	1 = 100Base-T4 is supported	RO) Reserved	
		0 = 100Base-T4 not supported			
4.10	PAUSE	1 = flow control is supported	R/W	0	
		0 = flow control is not supported			
4.11	Asymmetric Pause	1 = asymmetric flow control is supported	R/W	0	
		0 = asymmetric flow control is not supported			
4.12	Reserved	Ignore when read	R/W	0	0
4.13	Remote Fault	1 = Advertise remote fault detection capability	R/W	0	
		0 = Not advertise remote fault detection			
		capability			
4.14	Reserved	Ignore when read	RO	Reserve	ed 0
4.15	Next Page	1 = Next pages are supported	R/W	1	
		0 = Next pages are not supported			

4.6 Link Partner's Ability Register (Base Page) (Reg5)

Bit	Name	Description	Туре	HW Reset	SW Reset
5[4:0] 5.5	Selector Field		RO	0	0
5.5	10BASE-T Half Duplex	1 = 10Base-T is supported by link partner	RO	0	0
	•	0 = 10Base-T not supported by link partner			
5.6	10BASE-T Full Duplex	1 = 10Base-T full duplex is supported by link	RO	0	0
	Вирісх	partner			
		0 = 10Base-T full duplex not supported by link			
		partner			
5.7	100BASE-TX Half Duplex	1 = 100Base-TX is supported by link partner	RO	0	0
	Duplex	0 = 100Base-TX not supported by link partner			
5.8	100BASE-TX Full Duplex	1 = 100Base-TX full duplex is supported by link	RO	0	0
		partner			
		0 = 100Base-TX full duplex not supported by			
		link partner			
5.9	100BASE-T4	1 = 100Base-T4 is supported by link partner	RO	0	0
		0 = 100Base-T4 not supported by link partner			
5.10	PAUSE	1 = flow control is supported by Link partner	RO	0	0
		0 = flow control is not supported by Link partner			
5.11	Asymmetric Pause	1 = asymmetric flow control is supported by Link	RO	0	0
		partner			
		0 = asymmetric flow control is NOT supported			
		by Link partner			
5.12	Reserved		RO	0	0

Bit	Name	Description	Туре	HW Reset	SW Reset
5.13	Remote Fault	1 = link partner is indicating a remote fault	RO	0	0
		0 = link partner does not indicate a remote fault.			
		It is Received Code Word Bit 13.			
5.14	Acknowledge	1 = link partner acknowledges reception of local	RO	0	0
		node's capability			
		0 = no acknowledgement			
		It is Received Code Word Bit 14.			
5.15	Next Page	1 = Next pages are supported by link partner	RO	0	0
		0 = Next pages are not supported by link partner. It is Received Code Word Bit 15.			

4.7 Auto-Negotiation Expansion Register (Reg6)

Bit	Name	Description	Туре	HW Reset	SW Reset
6.0	Link Partner Auto-Negotiation Able	Link partner supports Auto-Negotiation Link partner does not support Auto-Negotiation	RO	0	0
6.1	Page Received	1: A new page has been received 0: A new page has not been received	RO LH	0	0
6.2	Local Next Page Able	Local device supports Next Page Local device does not support Next Page	RO	1	0
6.3	Link Partner Next Page Able	Link Partner supports Next Page Eink Partner does not support Next Page	RO	0	0
6.4	Parallel Detection Fault	A fault has been detected via Parallel Detection function A fault has not been detected via Parallel Detection function	RO	0	0
6.15:5	Reserved	Ignore when read	RO	Reserve	0

4.8 Auto-Negotiation Next Page Transmit Register (Reg7)

Bit	Name	Description	IIVne		SW Reset
	Message/Unformatted Field	Transmit Code Word Bit 10:0	R/W	0x001	0x001
	Toggle	Transmit Code Word Bit 11	RO	0	0
7.12	Acknowledge 2	Transmit Code Word Bit 12	R/W	0	0
	Message Page	Transmit Code Word Bit 13	R/W	1	1
7.14	Reserved	Transmit Code Word Bit 14	RO	Reserve	0 b
7.15	Next Page	Transmit Code Word Bit 15	R/W	0	0

4.9 Auto-Negotiation Link Partner Next Page Register (Reg8)

Bit	Name	Description	IIVne		SW Reset
	Message/Unformatted Field	Received Code Word Bit 10:0	RO	0x000	0x000
	Toggle	Received Code Word Bit 11	RO	0	0
	Acknowledge 2	Received Code Word Bit 12	RO	0	0
	Message Page	Received Code Word Bit 13	RO	0	0
	Acknowledge	Received Code Word Bit 14	RO	0	0
8.15	Next Page	Received Code Word Bit 15	RO	0	0

4.10 1000BASE-T Control Register (Reg9)

Bit	Name	Description	n	Туре	HW Reset	SW Reset
9[7:0]	Reserved	Ignore when read			Reserve	d to 0x00
9.8	1000BASE-T Half Duplex		1: Advertise 1000BASE-T half duplex capable D: Not advertise			0
9.9	1000BASE-T Full Duplex	1: Advertis 0: Not adv	e 1000BASE-T full duplex capable ertise	R/W	1	0
9.10	Port Type		nulti-port device (MASTER) ingle-port device (SLAVE)	R/W	1	0
9.11	Configuration Value	0: Manual	configure as MASTER configure as SLAVE only if bit 9.12 is set to 1.	R/W	0	0
9.12	Manual Configuration Enable		l: Manual Configuration Enabled): Manual Configuration Disabled			0
9[15:13]	Test mode	clause 40. 9[15:13] 000 001 010 011	_	R/W	000	000

4.11 1000BASE-T Status Register (Reg10, Reg 0x0A)

Bit	Name	Description T		HW Reset	SW Reset
10[7:0]	Idle Error Count		RO	0x00	0x00
10.8	Reserved	Ignore when read	RO	Reserve	d to 0
10.9	Reserved	Ignore when read	RO	Reserve	d to 0
10.10	Link Partner's 1000BASE-T Half Duplex Capability	I: Link Partner is capable of 1000BASE-T half RO duplex D: Link Partner is not capable of 1000BASE-T half duplex		0	0
10.11	Link Partner's 1000BASE-T Full Duplex Capability	I: Link Partner is capable of 1000BASE-T full duplex D: Link Partner is not capable of 1000BASE-T full duplex		0	0
10.12	Remote Receiver Status	1: Remote Receiver OK 0: Remote Receiver Not OK	RO	0	0
10.13	Local Receiver Status	1: Local Receiver OK 0: Local Receiver Not OK	RO	0	0
10.14	MASTER/SLAVE Configuration Resolution	1: Local PHY configuration resolved to MASTER D: Local PHY configuration resolved to SLAVE		0	0
10.15	MASTER/SLAVE Configuration Fault	: MASTER/SLAVE configuration fault detected RC LH detected LH detected SC		0	0

4.12 Extended Status Register (Reg15, Reg 0x0F)

Bit	Name	Description	IIVna		SW Reset
15[11:0]	Reserved	Ignore when read	RO	0x000	0x000
15.12		1: be able to perform half duplex 1000BASE-T 0: not able to perform half duplex 1000BASE-T	RO	1	1
15.13		1: be able to perform full duplex 1000BASE-T 0: not able to perform full duplex 1000BASE-T	RO	1	1
15.14		1: be able to perform half duplex 1000BASE-X 0: not able to perform half duplex 1000BASE-X	RO	0	0
15.15		1: be able to perform full duplex 1000BASE-X 0: not able to perform full duplex 1000BASE-X	RO	0	0

4.13 PHY Specific Control & Status Register (Reg16, Reg 0x10)

	Name	Descripti	on				Type	HW Reset	SW Reset
16.0 F	_	respec 1000E delay	SMII intersput delay put delay put delay ct to RXE SASE-T Fin 1000B	face y is adde y is adde), about 2 RGMII mo ASE-T Cand 10BA	ed on RX_d on RX_2ns delayode, and SMII mod	_CLK _CLK (with / in about 4ns e,	RW	Pin 48	NA
		1: An inp (with r 1000E delay 100B <i>F</i> Pin 49 se	GMII inter ut delay ut delay espect to GASE-T F in 1000B ASE-TX a ets the de	face is added is added o TXD, al RGMII mo ASE-T C and 10BA efault val	on GTX on GTX bout 2ns ode, and GMII mod ASE-T). ue of this	_CLK/TXC _CLK/TXC delay in about 4ns e,	RW	Pin 49	NA
16.2 F		1 = Enab 0 = Disab					RW	0	NA
16[4:3] F	Reserved							01	NA
16[6:5] F		of RX_CI I/F MII GMII/ RGMII (10/100) GMII/		2'b01 4mA 4mA 8mA	djust driv 2'b10 8mA 8mA	2'b11 2mA 2mA 2mA	RW	10	NA
16[8:7] F		of RXD[7 The drivi I/F MII GMII/ RGMII/ (10/100) GMII/ RGMII (1000) The drivi I/F MII GMII (10/100) GMII (1000) RGMII (1000) RGMII (10/100)	7:0], RX_ ng currer 27:b00 2mA 2mA 4mA	ER, and of RXE 2'b01 4mA 4mA 8mA	RX_DV. D[3:0] and 2'b10 8mA 8mA	2mA 2mA 2mA 2mA 2mA 2mA 2mA 2mA	:RVV	10	NA
16.9 J	Jabber	(1000) 1 = Enab	le .lahhe	r			RW	1	NA

Bit	Name	Description	Туре	HW Reset	SW Reset
		0 = Disable Jabber			
16.10	Heart beat	1 = Enable Heart beat 0 = Disable Heart beat	RW	0	NA
16.11	Smart Speed	1 = Downshift to 100Mbps when 1000Mbps link fails 0 = No Downshift	RW	1	NA
16.12	Reserved	The default value (1) should be adopted for normal operation.		1	NA
16.13	LED_DRIVE	This bit is used to adjust LED driving current 1'b0 1'b1 4mA 8mA	RW	0	NA
16[15:14]	LED_MODE[1:0]	These 2 bits are used to select LED displaying mode (Pin 55 sets the default value of bit14)	RW	0 Pin55	NA

4.14 PHY Link Status Register (Reg17, Reg 0x11)

Bit	Name	Descri	iption						Туре	HW Reset	SW Reset
17[8:0]	Reserved								RO	0	
17.9	Jabber Detected		D: 10Base Jabber not detected 1: 10Base Jabber detected						RO	0	
17.10	APS_Sleep		D: Normal Operation 1: APS sleep mode is entered						RO	0	
17.11	MDI/MDIX	0: MD 1: MD	: MDI : MDIX				RO	0			
			MDI		1	MDIX		1			
			1G	100M	10M	1G	100M	10M			
			Α	TX	TX	В	RX	RX	_		
			В	RX	RX	Α	TX	TX			
		MDI2	С			D					
			D			С					
17.12	Link_Duplex		at half						RO	0	
			at full								
			alid onl								
17[14:13]	Link_Speed[1:0]	2'b00:	link at	:10Bas	se-T				RO	0	
		2'b01:	link at	:100Ba	ase-T≯	(
		2'b10:	2'b10: link at 1000Base-T								
		2'b11:	Reser	ved							
		It is va	alid onl	v if bit	15 is 1						
17.15	Link_Status	1: link							RO	0	
	_	0: link									

Register 18~19 are reserved registers. User is inhibited to access to these registers. It may introduce abnormal function to write these registers.

4.15 PHY Specific Control Register2 (Reg20, Reg 0x14)

Bit	Name	Description	Туре	HW Reset	SW Reset
20[1:0]	SR_V/ SR_FAST	Slew rate control parameters 00: slew rate = Slowest 01: slew rate = Slow 10: slew rate = Medium 11: slew rate = Fast	RW	11	NA
20.2	Auto-crossover Enable	1: Enable auto MDI/MDIX 0: Disable auto MDI/MDIX	RW	1	NA
20[5:3]	Reserved	The default value should be adopted for normal operation.	R/W	101	NA
20.6	Speed10to100ena ble	Detect the link partner's speed change from 10BASE-T to 100BASE-TX by detecting MLT3 signals 1: Enable 0: Disable	RW	1	NA
20[8: 7]	FIFO_Depth	FIFO depth latency 00: latency = 2 01: latency = 3 10: latency = 4 11: latency = 5	RW	10	NA
20.9	MDIX Enable	When disable auto-crossover 0: MDI 1: MDIX	RW	0	0
20.10	Reserved	The default value should be adopted for normal operation.	R/W	1	NA
20.11	APS_ON	This bit is used to activate auto power saving (APS) mode 0: Disable APS 1: Enable APS	RW	1	NA
20[15:12]	Reserved	The default value should be adopted for normal operation.	R/W	0000	NA

Register 21~31 are reserved registers. User is inhibited to access to these registers. It may introduce abnormal function to write these registers.

5 Electrical Characteristics

5.1 Absolute Maximum Rating

Stresses exceed those values listed under Absolute Maximum Ratings may cause permanent damage to the device. Functional performance and device reliability are not guaranteed under these conditions. All voltages are specified with respect to GND.

 $\begin{array}{lll} \text{Supply Voltage} & -0.3 \text{V to } 4.0 \text{V} \\ \text{Input Voltage} & -0.3 \text{V to } 5.0 \text{V} \\ \text{Storage Temperature} & -65 ^{\circ}\text{C to } 150 ^{\circ}\text{C} \\ \text{IC Junction Temperature} & -40 ^{\circ}\text{C to } 70 ^{\circ}\text{C} \\ \text{Ambient Operating Temperature (Ta)} & -10 ^{\circ}\text{C to } 70 ^{\circ}\text{C} \\ \end{array}$

5.2 DC. Characteristics

Symbol	Conditions	Minimum	Typical	Maximum	Note
DVDD	Digital core supply voltage	1.1V	1.2V	1.3V	
AVDD	Analog core supply voltage	1.73V	1.8V	1.9V	
VDDO	I/O pad supply voltage	2.05V		3.47V	Both MAC side and IP1001M use the same I/O supply voltage for MII/GMII/RGMII.CTRL12D BJT Emitter=VDDO.
		1.8V		2.75V	Both MAC side and IP1001M use the same I/O supply voltage for MII/GMII/RGMII.CTRL12D BJT Emitter=2.5V+-10%.
AVDDH	Analog supply voltage	2.375V		3.47V	
VCT	Transformer center tap voltage	2.25V	2.5V	2.75V	
TA	Operating Temperature	-10°C		70°C	_

Crystal specification for X1, X2

Item	Parameter	Range
1	Nominal Frequency	25.000 MHz
2	Oscillation Mode	Fundamental Mode
3	Frequency Tolerance at 25°C	+/- 50 ppm
4	Temperature Characteristics	+/- 50 ppm
5	Operating Temperature Range	-10℃ ~ +70℃
6	Equivalent Series Resistance	40 ohm Max.
7	Drive Level	100μW (Typ.)
8	Load Capacitance	20 pF
9	Shunt Capacitance	7 pF Max
10	Insulation Resistance	Mega ohm Min./DC 100V
11	Aging Rate A Year	+/- 5 ppm/year

I/O Electrical Characteristics

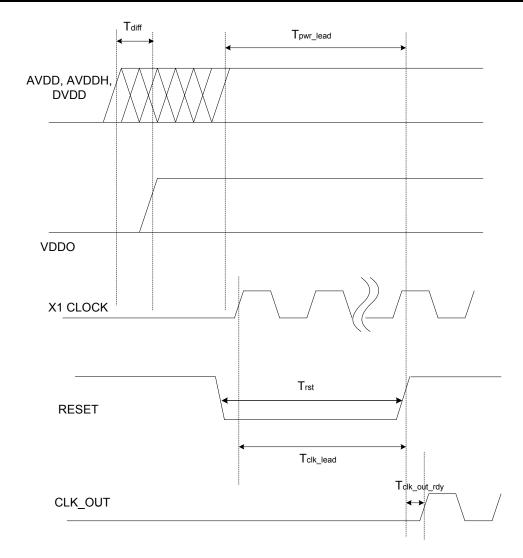
Symbol	Specific Name	Condition	Min	Max
V_{IH}	Input High Vol.		0.5*VDDO	VDDO+0.5V
V_{IL}	Input Low Vol.		-0.5V	0.3* VDDO
V_{OH}	Output High Vol.		0.9*VDDO	VDDO
V_{OL}	Output Low Vol.			0.1*VDDO
V_{IH}	X1 Input High Voltage		1.25V	
V_{IL}	X1 Input Low Voltage			0.42V
V_{RST}	RESETB Threshold Voltage		0.4*VDDO	0.6*VDDO

5.3 Power consumption

RGMII mode (PW from the external source)

Link Mode	VDDO	DVDD	AVDDH	AVDD	Center Tap (2.5V)	Total watt
Actual Voltage	2.5V	1.2V	2.5V	1.8V	2.5V	
1000M(TX &RX)	26mA	294mA	62mA	84mA	179mA	1.1665W
100M(TX &RX)	24mA	57mA	49mA	36mA	47mA	0.4282W
10M (TX&RX)	20mA	8mA	45mA	24mA	54mA	0.3503W
No link (APS mode)	18mA	4mA	44mA	20mA	11mA	0.2233W

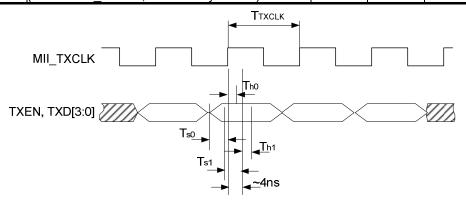
GMII mode (PW from the external source)


Similar of the month the oxid						
Link Mode	VDDO	DVDD	AVDDH	AVDD	Center Tap (2.5V)	Total watt
Actual Voltage	3.3V	1.2V	3.3V	1.8V	2.5V	
1000M (TX & RX)	55mA	295mA	69mA	84mA	179mA	1.3553W
100M(TX& RX)	53mA	58mA	55mA	35mA	46mA	0.5875W
10M(TX& RX)	44mA	8mA	52mA	24mA	54mA	0.5046W
No link (APS mode)	41mA	4mA	50mA	20mA	11mA	0.3686W

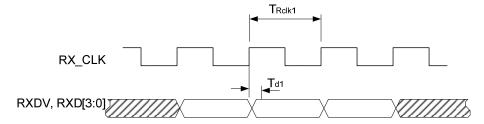
5.4 AC Timing

5.4.1 Reset, Clock and Power Source

Symbol	Description	Min.	Тур.	Max.	Unit
Tclk_lead	X1 clock valid period before reset released	10	_	_	ms
Trst	Reset period	10	_	-	ms
Tclk_MII_rdy	MII/GMII/RGMII clock output ready after reset released	-	-	10	ms
Tclk_out_rdy	CLK_OUT clock out ready after reset released (Pin 10 output)	0	-	20	ns
Tdiff	Time difference between VDDO and AVDD, AVDDH, DVDD			30	ms
T _{pwr_lead}	All power source ready before reset released	11			ms



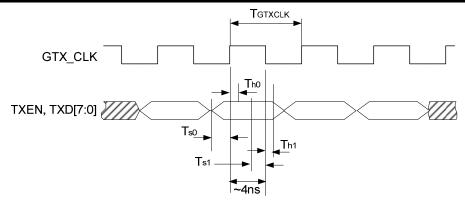
5.4.2 MII Timing


a. Transmit Timing Requirements

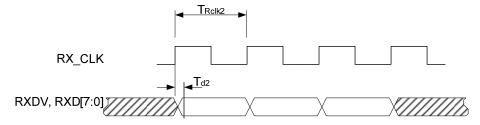
Symbol	Description	Min.	Тур.	Max.	Unit
T _{TXCLK}	Period of transmit clock in 100M mode	_	40	-	ns
T _{TXCLK}	Period of transmit clock in 10M mode	_	400	-	ns
T_{s0}	TXEN, TXD to TX_CLK setup time (TXPHASE_SEL=0, no clock delay added)	0.85			ns
T _{s1}	TXEN, TXD to TX_CLK setup time (TXPHASE_SEL=1, clock delay added)	0.85			ns
T_{h0}	TXEN, TXD to TX_CLK hold time (TXPHASE_SEL=0, no clock delay added)	1.7			ns
T _{h1}	TXEN, TXD to TX_CLK hold time (TXPHASE_SEL=1, clock delay added)	1.7			ns

b. Receive Timing

Symbol	Description	Min.	Тур.	Max.	Unit
T _{Rclk1}	Period of receive clock in 100M mode	-	40	-	ns
T_{Rclk1}	Period of receive clock in 10M mode	-	400	-	ns
T _{d1} (100Mbps mode)	MII_RXCLK rising edge to RXDV, RXD	10	18	20.4	ns
T _{d1} (10Mbps mode)	MII_RXCLK rising edge to RXDV, RXD	100	180	200.4	ns



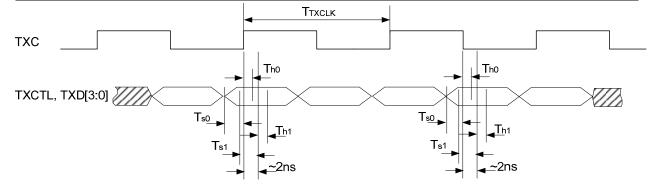
5.4.3 GMII Timing


a. Transmit Timing Requirements

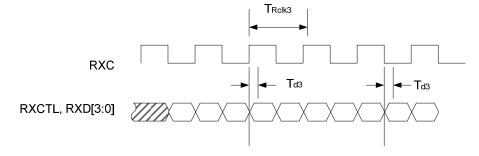
Symbol	Description	Min.	Тур.	Max.	Unit
T _{GTXCLK}	Period of transmit clock	-	8	-	ns
T _{s0}	TXEN, TXD to GTX_CLK setup time (TXPHASE_SEL=0, no clock delay added)	0.85			ns
T _{s1}	TXEN, TXD to GTX_CLK setup time (TXPHASE_SEL=1, clock delay added)	0.85			ns
T_{h0}	TXEN, TXD to GTX_CLK hold time (TXPHASE_SEL=0, no clock delay added)	1.7			ns
T _{h1}	TXEN, TXD to GTX_CLK hold time (TXPHASE_SEL=1, clock delay added)	1.7			ns

b. Receive Timing

Symbol	Description	Min.	Тур.	Мах.	Unit
T _{Rclk2}	Period of receive clock	_	8	_	ns
T _{d2} (Giga mode)	RX_CLK rising edge to RXDV, RXD (RXPHASE_SEL=0, no clock delay added)		0	0.4	ns
	RX_CLK rising edge to RXDV, RXD (RXPHASE_SEL=1, clock delay added)		2	4.4	ns



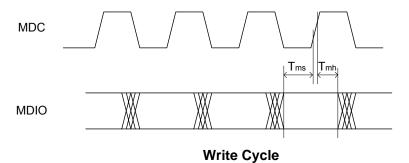
5.4.4 RGMII Timing

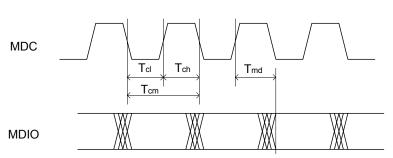

a. Transmit Timing Requirements

Symbol	Description	Min.	Тур.	Max.	Unit
T _{TXCLK}	Period of transmit clock in Giga mode	-	8	-	ns
T_{TXCLK}	Period of transmit clock in 100M mode	-	40	_	ns
T_{TXCLK}	Period of transmit clock in 10M mode	-	400	_	ns
T _{s0}	TXEN, TXD to TXC setup time (TXPHASE_SEL=0, no clock delay added)	0.85			ns
T _{s1}	TXEN, TXD to TXC setup time (TXPHASE_SEL=1, clock delay added)	0.85			ns
T_{h0}	TXEN, TXD to TXC hold time (TXPHASE_SEL=0, no clock delay added)	1.7			ns
T _{h1}	TXEN, TXD to TXC hold time (TXPHASE_SEL=1, clock delay added)	1.7			ns

b. Receive Timing

Symbol	Description	Min.	Тур.	Max.	Unit
T _{Rclk3}	Period of receive clock in Giga mode	-	8	-	ns
T _{Rclk3}	Period of receive clock in 100M mode	-	40	-	ns
T _{Rclk3}	Period of receive clock in 10M mode	-	400	-	ns
T _{d3} (Giga mode)	RXC edge to RXCTL, RXD (RXPHASE SEL=0, no clock delay added)		0	0.4	ns
	RXC edge to RXCTL, RXD (RXPHASE_SEL=1, clock delay added)		2	2.4	ns
T _{d3} (10M or 100N mode	RXC edge to RXCTL, RXD (RXPHASE SEL=0, no clock delay added)		0	0.4	ns
	RXC edge to RXCTL, RXD (RXPHASE_SEL=1, clock delay added)		4	4.4	ns





5.4.5 SMI Timing

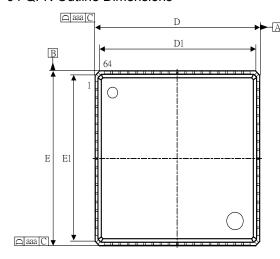
a. MDC/MDIO Timing Requirements

Symbol	Description	Min.	Тур.	Max.	Unit
T_ch	MDC High Time	40	-	-	ns
T_{cl}	MDC Low Time	40	-	-	ns
T_{cm}	MDC period	80	-	-	ns
T_{md}	MDIO output delay	-	-	20	ns
T_{mh}	MDIO setup time	10	-	-	ns
T_{ms}	MDIO hold time	10	-	-	ns

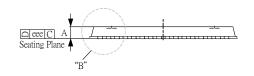
Read Cycle

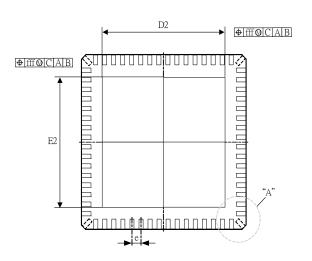
5.5 Thermal Data

Theta Ja	Psi JT	Theta Jc	Conditions	Units
24.5	3.7	11.1	4 Layer PCB; air flow@ 0m/sec	°C/ W
68.6	10.7	14.2	2 Layer PCB; air flow@ 0m/sec	°C/ W


6 Order Information

Part No.	Package	Notice
IP1001M LF	64-PIN QFN	Lead free




7 Package Detail

64 QFN Outline Dimensions

0 1 1	Dim	ension in	mm	Dimension in inch		
Symbol	Min	Nom	Max	Min	Nom	Max
А	0.80	0.85	1.00	0.031	0.033	0.039
A1	0.00	0.02	0.05	0.000	0.001	0.002
A2	0.60	0.65	0.80	0.024	0.026	0.031
A3		0.20REF			0.008REF	7
b	0.18	0.25	0.30	0.007	0.010	0.012
D/E		9.00BSC		().354BSC	2
D1/E1	8.75BSC			0.344BSC		
е		0.50BSC		0.020BSC		
L	0.30	0.40	0.50	0.012	0.016	0.020
θ	0°		14°	0°		14°
R	0.09			0.004		
K	0.20			0.008		
aaa			0.15			0.006
bbb			0.10			0.004
ccc			0.10			0.004
ddd			0.05			0.002
eee			0.08			0.003
fff			0.10			0.004

IOTE:

CONTROLLING DIMENSION: MILLIMETER

Exposed Pad Size							
Ι	02/E2 (mi	n)	D2/E2 (inch)			*	
Min	Nom	Max	Min	Nom	Max	*	
5.49	5.64	5.79	0.216	0.222	0.228	N	

IC Plus Corp.

Headquarters

10F, No.47, Lane 2, Kwang-Fu Road, Sec. 2,

Hsin-Chu City, Taiwan 300, R.O.C.

Website: www.icplus.com.tw

Sales Office

4F, No. 106, Hsin-Tai-Wu Road, Sec.1,

Hsi-Chih, New Taipei City, Taiwan 221, R.O.C.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Ethernet ICs category:

Click to view products by IC Plus manufacturer:

Other Similar products are found below:

12200BS23MM DSL4510 S R15X BCM53115SIPB BCM54612EB1IMLG BCM54616C0KMLG BCM5461A1KPFG BCM5461SA1IPFG
BCM5461SA3KFBG BCM54640EB2KFBG BCM5464SA1IRBG SBL2ECHIP-236IR BCM54210B0KMLG BCM54612EB1KMLG
BCM54618SEA2IFBG BCM8727MCIFBG KSZ8091RNDCA-TR VSC7421XJQ-02 VSC8522XJQ-02 LAN91C93I-MU WGI219LM SLKJ3
VSC7389XHO 78Q2133S/F BCM54210EB1IMLG BCM5720A0KFBG BCM54210SB0IMLG BCM54220SB0KFBG
BCM54220SB0KQLEG MAX3956AETJ+ KSZ8441FHLI BCM5396IFBG BCM53262MIPBG BCM54640EB2IFBG BCM5461SA1KPFG
BCM53402A0IFSBG KSZ8091MNXCA JL82599ES S R1VN BCM53125MKMMLG F104X8A VSC7440XMT VSC7512XMY
VSC7511XMY EQC0850SC.3 VSC7418XKT-01 VSC7432YIH-01 WGI219V SLKJ5 BCM84793A1KFSBG BCM56680B1KFSBLG
FTX710-BM2 S LLKB 88E3082-C1-BAR1C000 WGI210CS S LKKL