idee

IDEC CORPORAT
Sunnyvale, CA 94089-2240, USA
Tel (408) 747-0550
Toll Free (800) 262-IDEC
Fax (408) 744-9055
Fax (800) 635-6246
E-mail ideccorpe@industry.net
Japan
IDEC IZUMI CORPORATION
7-31, Nishi-Miyahara
1-Chome, Yodogawa-
Osaka 532, Japan
Tel (06) 398-2571
Fax (06) 392-9731
canada
CANADA
IDEC CANADA LIMTED
Unit 22-151 Brunel Road
Mississauga, Ontario, L4Z 1X3, Canada
Tel (905) 890-8561
Fax (905) 890-8562
GERMANY
IDEC ELEKTROTECHNIK GmbH
Wendenstraße 331
D-20537 Hamburg, Germany
Tel (040) 2511 11-93
united kingdom
IDEC ELECTRONICS LIMITED
Unit 12, Canbury Business Park
Elm Crescen
Kingston-Upon-Thames
Surrey KT 26 HJ , United Kingdom
Tel (0181) 549-0737
Fax (0181) 546-0963
hong kong
IDEC IZUMI (H.K. CO., LTD.
IDEC IZUMI (H.K.).) CO., LTD.
Room No. 1409, Tower 1 Sivercord
30 Canton Road, Tsimshatsui
Kowloon, Hong Kong
Tel (02) 376-2823
Fax (02) 376-0790
TAIWAN
IDEC TAIWAN CORPORATION
3F., No. 75 , Hsin Tai Wu Road, Sec.
Hsi-Chin, Taipei
Hsi-Chih, Taipei County, Taiwan
Republic of China
Tel (O2) 698-2601
Tel (02) 698-202) 698-2709
australia
IDEC AUSTRALIA PTY. LTD.
2/3 Macro Court
Rowville, Victoria 3178
Austraia
Tel (03) 9763-3244
Fax (03) 9763-3255
Users Manual \#EM317-0
Printed in the USA 5 U $2 / 97$

MICRO^{3}
Micro Programmable
Logic Controller

…: рррррррррррри

230
adnanananana

Mबता

idue MCRO'

$11 月 H$

User's Manual

MICRG
sure of correct operation before starting installation, wiring, operation, maintenance, and inspection of the MICRO ${ }^{3}$
All MICRO ${ }^{3}$'s are manufactured under IDEC's rigorous quality control system, but users must add a backup or failsafe provision to the control system using the MICRO ${ }^{3}$ in applications where heavy damage or personal injury may be caused in - In this mer's

! Warning | Warning notices are used to emphasize that improper operation may cause |
| :--- |
| severe personal injury or death. | severe personal injury or death.

Caution
 Caution notices are used where inattention might cause personal injury or

 damage to equipment
\ Warning

- Turn power off to the MICRO ${ }^{3}$ before starting installation, removal, wiring, maintenance, and inspection on the MICRO ${ }^{3}$ Failure to turn power off may cause electrical shocks or fire hazard
Special expertise is required to install, wire, program, and operate the MICRO ${ }^{3}$. People without such expertise must not use the MICRO ${ }^{3}$
- Emergency and interlocking circuits must be configured outside the MICRO ${ }^{3}$. If such a circuit is configured inside the MICRO^{3}, failure of the MICRO ${ }^{3}$ may cause disorder of the control system, damage, or accidents.

Caution

Install the MICRO 3 according to instructions described in this user's manual. Improper installation will result in falling, failure, or malfunction of the MICRO

- MICRO ${ }^{3}$ is designed for installation in equipment. Do not install the MICRO 3 outside of equipment.
- Install the MICRO ${ }^{3}$ in environments described in this user's manual. If the MICRO ${ }^{3}$ is used in places where the MICRO ${ }^{3}$ is subjected to high-temperature, high-humidity, condensation, corrosive gases, excessive vibrations, and excessive shocks,
The pollution degree of the MICRO ${ }^{3}$ is "Pollution degree 2"
ing to IEC664-1).
All DC power type MICRO ${ }^{3}$ units are "PS2" type (according to EN61131)
- Prevent the MICRO^{3} from falling while moving or transporting the MICRO^{3}, otherwise damage or malfunction of the MICRO^{3} will result.
- Prevent metal fragments and pieces of wire from dropping inside the MICRO ${ }^{3}$ housing. Put a cover on the MICRO ${ }^{3}$ during installation and wiring. Ingress of such fragments and chips may cause fire hazard, damage, or malfunction
- Use a power supply of the rated value. Use of a wrong power supply may cause fire hazard.

Use wires of a proper size to meet voltage and current requirements. Tighten M3 terminal screws to a proper tightening
-Use an IEC127-approved fuse on the power line outside the MICRO ${ }^{3}$. This is required when exporting equipment containing MICRO ${ }^{3}$ to Europe.

- Use an IEC127-approved fuse on the output circuit. This is required when exporting equipment containing MICRO ${ }^{3}$ to Europe.
Use an EU-approved circuit breaker. This is required when exporting equipment containing MICRO ${ }^{3}$ to Europe.
Make sure of safety before starting and stopping the MICRO ${ }^{3}$ or when operating the MICRO 3 to force outputs on or off
Incorrect operation on the MICRO^{3} may cause machine damage or accidents.
heavy accidents, provid a MICRO ${ }^{3}$ output circuit fail, outputs may remain on or off. For output signals which may cause
- Do not connect to the ground directly from the MICRO ${ }^{3}$. Connect a protective ground to the equipment containing MICRO ${ }^{3}$ using an M4 or larger screw. This is required when exporting equipment containing MICRO ${ }^{3}$ to Europe.
- Do not disassemble, repair, or modify the MICRO ${ }^{3}$.

Dispose of the battery in the MICRO ${ }^{3}$ when the battery is dead in accordance with pertaining regulations. When storing or disposing of the battery, use a proper container prepared for this purpose. This is required when exporting equipment con taining MICRO ${ }^{3}$ to Europe

- Dispose of the battery in the memory card when the battery is dead in accordance with pertaining regulations.

MICRO ${ }^{3}$ USER'S MANUAL

This user's manual primarily describes MICRO ${ }^{3}$'s entire functions shared with the MICRO $^{3} \mathrm{C}$ programmable controllers, such as installation instructions, general specifications, basic and advanced instructions, allocation numbers, and FUN settings. For the MICRO ${ }^{3} \mathrm{C}$ additional functions not included in the MICRO^{3}, see the MICRO ${ }^{3} \mathrm{C}$ user's manual.

PLC			MICRO ${ }^{3}$	MICRO ${ }^{3} \mathrm{C}$
Advanced Instructions			38	40 (TXD, RXD, CMP2 added; ANR1 deleted)
Data Registers	Standard Processing		100 points	500 points
	High-speed Processing		32 points	32 points
Analog Potentiometers			1 point (10-1/O type) 2 points (16/24-I/O types)	1 point
Communication Specifications	Loader Port	Standards	EIA RS485	EIA RS232C
	Data Link Terminal	Standards	EIA RS485	EIA RS485
		Baud Rate	Expansion/data link communication: 19,200 bps (fixed)	Expansion/data link communication: 19,200 bps (fixed) Loader protocol communication: 9,600 bps (fixed)
Weight (approx.)			$\begin{aligned} & \text { 290g (10-1/O type) } \\ & 350 \mathrm{~g}(1-1 / \mathrm{O} \text { Otype) } \\ & 390 \mathrm{~g}(16-1 / \mathrm{ACC} \text { input type) } \\ & 400 \mathrm{~g}(24-1 / \mathrm{O} \text { type) } \end{aligned}$	380 g (16-I/O type) 430g (24-I/O type)
Standards			EN61131-1, EN61131-2, EN60204-1 IEC801-2, -3, -4 PrEN50082-2, EN55011 UL508, CSA C22.2, No. 142	EN55011 Group 1, Class A EN50082-2 UL508, CSA C22.2, No. 142 EN61131-1, EN61131-2, EN60204-1
Certification File No.			TÜV Product Service E9 950913332 313 UL E102542 CSA LR66809	TÜV Product Service B950913332 UL E102542 CSA LR66809

Program Loader for MICRO ${ }^{3}$

To edit user programs for the MICRO ${ }^{3}$, read FUN11 (program capacity and PLC type selection) on the program loader, and set the fourth line in the FUN11 screen to 0 to select MICRO ${ }^{3}$ as the PLC type, using the FUN11, $\boldsymbol{\nabla}, \boldsymbol{\nabla}, \boldsymbol{\nabla}, 0$, and $\boldsymbol{\downarrow}$ keys. When FUN11 is set to 0 , available data registers are limited to D0 through D99 for programming the MICRO
Since the loader port on the MICRO ${ }^{3}$ uses RS485 communication while the loader port on the MICRO ${ }^{3} \mathrm{C}$ uses RS232C, a different loader cable is needed to connect the program loader to MICRO^{3} or MICRO ${ }^{3} \mathrm{C}$. Use loader cable FC2A-KL1 or FC2AKL2 to connect a program loader to the MICRO ${ }^{3}$ loader port.
To use the expanded capabilities of the $\mathrm{MICRO}^{3} \mathrm{C}$ such as new advanced instructions for communication and comparison and increased data registers, use an upgraded program loader of version 2.00 or later. To check the program loader version, read FUN31 (program loader version readout/hardware check) using the FUN31 and $\boldsymbol{\nabla}$ keys on the program loader.
To connect a program loader to the MICRO ${ }^{3} \mathrm{C}$ loader port, use loader cable 3C (FC2A-KL3C). A program loader can also be connected to the data link terminals on the $\mathrm{MICRO}^{3} \mathrm{C}$ using loader cable 4C (FC2A-KL4C). In either case, loader proto-
col must be selected for the loader port or data link terminals using the protocol selector switch. For selection of the protocol must be selected for the loader port or data link
col selector switch, see the MICRO

IMPORTANT INFORMATION

Under no circumstances shall IDEC Corporation be held liable or responsible for indirect or consequential damages resulting from the use of or the application of IDEC PLC components, individually or in combination with other equipment. All persons using these components must be willing to accept responsibility for choosing the correct component to suit their application and for choosing an application appropriate for the component, individually or in combination with other equipment.
All diagrams and examples in this manual are for illustrative purposes only. In no way does including these diagrams and examples in this manual constitute a guarantee as to their suitability for any specific application. To test and approve all programs, prior to installation, is the responsibility of the end user.

MICRO Table of Contents
Chapter 1
General Information
Features . $1-1$
Parts Description . 1-2
System Setup . 1 .3
General Specifications . $1-5$
Function Specifications. $1-7$
Communication and Noise Specifications. 1 .
Digital DC Input Specifications .
Digital AC Input Specifications .
Digital AC/DC Output (Relay Output) Specifications. 1-13
Digital DC Output (Transistor Sink Output) Specifications . 1-14
Digital DC Output (Transistor Protect Source Output) Specifications .15
Program Loader Specifications .
nput Terminal Arrangements. 1 .19
Uutput Terminal Arrangements . 1-20
nput Wiring Diagrams. $1-21$
Output Wiring Diagrams .
Dimensions . $1-24$
. ${ }^{2}$ MICRO 3 Units . 1 .
Wiring . 1 1-27
Chapter 2: $\begin{aligned} & \text { Operation Basics } \\ & \\ & \\ & \\ & \begin{array}{l}\text { Start/Stop Operation . } \\ \text { Simple Operation . }\end{array} \text { 2-3 }\end{aligned}$
Chapter 3: Program Loader
Program Loader
Parts Description .
Program Loader Operation Modes . 3-3
Internal Memory and User Memory . 3
Programming Procedures and Precautions . 3-4
Using Editor Mode . 3 .5
ssing Transfer Mode . 3-9
Using Monitor Mode . 3-12
Error Messages for Program Loader Operation . 3-20

Chapter 4: Special Functions

High-speed Processing Mode . 4-1
.. 4-2 4-3 $_{\text {4-3 }}^{\text {4- }}$
Pulse Output Function. $4-5$
High-speed Counter Function. .
Expansion Link Function .
Data Link Function .
External Analog Timer . 4 4-18
Analog Input Function .
Analog Output Function .

Chapter 5: cpu Configuration (FUn)

UN Settings (FUN1 through FUN11) . 5-1
UN Settings (FUN20 through FUN50)
ey Operation.
FUN1: Stop Input Number Selection .
FUN2: Reset Input Number Selection .
FUN3: Internal Relay "Keep" Designation .
FUN4: Shift Register "Keep" Designation .
FUN5: Processing Mode Selection . 5-5
FUN6: Rising or Falling Edge Selection for Catch Inputs . 5-6
FUN7: Input Filter Time Selection . 5-6
FUN8: Loader Port Communication Mode Setting . 5-7
FUN9: PLC Address for Network Communication .
FUN10: Control Data Register Setting. 5-8
FUN11: Program Capacity and PLC Type Sele .
FUN2O: PLC Error Data Readout alue Readout and Restore .
FUN22: User Program Protection . 5-10
FUN23: PLC System Program Version Readout . 5-10
UN24: PLC Operating Status Readout. .
FUN25: Scan Time Readout. .
FUN26: Operand Data Clear. .
FUN27: Link Formatting Sequence . 5-11
FUN28: Calendar/Clock Data Readout and Setting . 5-12
UN29: User Communication Status Readout . 5-12
FUN30: Program Check .
UN31: Program Loader Version Readout/Hardware Check .
FUN32: Sequential Monitoring . 5-13
FUN33: Monitor Screen Holding . 5-13
FUN34: Program Loader Beep Sound . 5-14
FUN35: Display Language Selection . 5-14
UN36: Display Data Type Selection. .
FUN40: Memory Card Identification . 5-15
FUN41: Memory Card Formatting . 5-15
FUN42: Program Loader System Program Installation . 5-15
FUN43: Program Loader System Program Restore . 5-16
FUN50: User Communication Data Monitor . 5-16
Chapter 6: allocation Numbers
Allocation Numbers. 6-1
Data Register Allocation Numbers . 6.
Chapter 7: Basic instructions
Basic Instruction List 7-1
LOD (Load) and LODN (Load Not). 7-2
(Output) and OUTN (Output Not) 7-4
ND and ANDN (And Not)
$7-4$
AND LOD (Load)$7-5$
$7-7$
R LOD (Load).
7-9
7-9
IM, TMH, and TMS (Timer) 7-14
CNT (Counter)
7-18
$\mathrm{CC}=$ and $\mathrm{CC} \geq$ (Counter Comparison) $7-21$
7
and SFRN (Forward and Reverse Shift Registe) 7-27
CS and MCR (Master Control Set and Reset) 7-28
MP (Jump) and JEND (Jump End)
7-32
END and RST (Reset) 7-32
Chapter 8: advanced Instructions
Advanced Instruction Menus 8-1
dvanced Instruction List 8-2
rogramming Advanced Instructions Using Program Loader 8-3
tructure of an Advanced Instruction $8-4$
put Condition for Advanced Instructions. 8-4
Source and Destination Operands. $8-4$
$8-4$
Using Timer or Counter as Source Operand $8-4$
$8-4$
sing Timer or Counter as Destination Operand8-5
sing Input or Output as Source or Destination Operand
8-6
8-6 8-6
iscontinuity of Operand Area
iscontinuity of Operand Area
Chapter 9:
Move instructions
Move instructions
11 MOV (Move) 9-1
13 IMOV (Indirect Move). 9-4
14 IMOVN (Indirect Move Not) 9-5
Chapter 10:
COMPARP (NATM
10-1
10-1
21 CMP = (Compare Equal To) $10-1$
$10-1$
23 CMP< (Compare Less Than). $10-1$
$10-1$
25 CMP $<=$ (Compare Greater Than). $10-1$
$10-1$
Chapter 11: Binary Arithmetic Instructions
31 ADD (Addition). 11-1
33 MUL (Subtraction)
11-1
34 DIV (Division)

Chapter 12:	Boolean Computation instructions	
	41 ANDW (AND Word)	12-1
	42 ORW (OR Word).	12-1
	43 XORW (Exclusive OR Word).	12-1
Chapter 13:	Bit Shift / Rotate instructions	
	51 SFTL (Shift Left).	13-1
	52 SFTR (Shift Right).	13-2
	53 ROTL (Rotate Left).	13-3
	54 ROTR (Rotate Right).	13-4
Chapter 14:	Clock / Calendar instructions	
	71 CALR (Calendar Read)	14-1
	72 CALW (Calendar Write).	14.2
	73 CLKR (Clock Read).	14.3
	74 CLKW (Clock Write)	143
	75 ADJ (Adjust).	14.4
Chapter 15:	interface instructions	
	81 DISP (Display).	15-1
	82 DGRD (Digital Read)..	15-3
	83 ANRO (Analog Read 0)	15-5
	84 ANR1 (Analog Read 1)	15-5
Chapter 16:	Pulse, a/d Conversion instructions	
	91 PULS (Pulse Output).	16-1
	92 PWM (Pulse Width Modulation).	16-3
	93 A/D (Analog/Digital Conversion)	16-5
Chapter 17:	High-speed Counter instructions	
	A1 HSCO (Single-stage Comparison). .	17-1
	A2 HSC1 (Mutti-stage Comparison)	17-3
	A3 HSC2 (Pulse Output Control).	17-6
	A4 HSC3 (Gate Control).	17-9
Chapter 18:	Troubleshooting	
	Error Indicators ERR1 and ERR2.	18-1
	Reading Error Data	18-1
	Error Messages	18-1
	General Error Codes	18-2
	Error Causes and Actions	18-3
	Troubleshooting Diagrams,	18-6
Appendix		
	Type List	A-1
		A-3

InoEx

ntroduction

This chapter describes general information for understanding MICRO 3 functions and specifications.

Features

MICRO^{3} is a space-saving micro programmable controller, yet has high-performance functions described below:
MICRO ${ }^{3}$ operates in stand . 1012 steps, minimum processing time of $1.2 \mu \mathrm{sec}$ per basic instruction, and average scan time of 2.9 msec for 1,000 steps. High-speed processing mode has a program capacity of 100 steps, minimum processing time of 0.2 usec per basic instruction, and average scan time of 400 usec for 100 steps. Data and expansion link cannot be used with high-speed processing.

Catch Input Function

The catch input function makes sure to receive short input pulses ($40 \mu \mathrm{sec}$ minimum at the rising edge) from sensors without regard to the scan time.
The 10-I/O type MICRO 3 base unit can receive short pulse inputs at 6 input terminals (I0 through I5). The 16 - and 24-I/O type base units can use 8 input terminals (I0 through 17) for catch inputs.

Input Filter Function (DC Input Type Only)

The input filter can be adjusted for input signal durations. This function is useful for adjusting the input pulse width in senThe input filter can be adjusted for input signal durations. This function is useful for adju
sor controller applications and for eliminating input noises and chatter in limit switches.

High-speed Counter Function

MICRO 3 has a built-in high-speed counter to make it possible to count up to 4,294,967,295 (FFFF FFFFh) high-speed pulses which cannot be counted by the normal user program processing. The maximum count input frequency is 10 kHz , This function can be used for simple positioning control and simple motor control

Pulse Output Function

Pulse outputs can be generated using advanced instructions. The PULS (pulse output) instruction can vary the output frequency at a fixed duty ratio of 50%. This instruction can be used in combination with the high-speed counter function to control servo motors and stepper motors. The PWM (pulse width modulation) instruction can change the duty ratio at a fixed frequency. This instruction can be used for illumination control.

Computer Link Function

A personal computer can be connected to MICRO^{3} in 1:1 peer-to-peer or $1: \mathrm{N}$ network communication system to monitor the operating statuses and change data in MICRO ${ }^{3}$. CUBIQ software is available for easy programming and monitoring

Expansion Link Functio

The I/O points can be expanded from 6 inputs and 4 outputs up to 28 inputs and 20 outputs by connecting another MICRO ${ }^{3}$ in six combinations, maximizing flexibility, (see note),

Data Link Functio

A maximum of seven MICRO ${ }^{3}$ base units (1 master station and 6 slave stations) can be linked in the data link network for distributed control. FA-3S high-performance CPU can also be used as a master station in the data link system (see note).

Real-time Clock/Calendar Function (16- and 24-1/0 Type Units Only)

The 16- and 24-I/O type MICRO 3 base units feature a real-time clock/calendar to program year, month, day, day of week hour, minute, and second using advanced instructions. This function can be used for time-scheduled control of illumination, air conditioners, sprinklers, and many others

External Analog Time

MICRO 3 is equipped with one or two analog potentiometers to enter analog values. In addition, a separate analog timer unit can also be connected to MICRO^{3}, allowing for fine adjustment of timer preset values on the control panel.

User Program Read and/or Write Protection

User programs in the MICRO^{3} base unit can be protected from reading and/or writing by setting a pass word. This function is ideal for the security of user programs and prevention of inadvertent rewriting of programs.

Analog I/O Function

A / D and D / A converter units are available for 8 -bit conversion to process analog signals
Note: Expansion link and data link cannot be used concurrently.

Parts Description

This section describes parts names and functions of the MICRO^{3} base unit.
For supplying power to sensors (24 V DC, 150 mA). These

- Input Terminals

For connecting input signals from input
devices such as sensors, pushbuttons, and source) and AC input (100-120V AC) types

For connecting output signals to output devices such as electroFor connecting output signals to output devices such as electro-
mechanical relays and solenoid valves. Available in relay output $(240 \mathrm{~V} / 2 \mathrm{~A}, 30 \mathrm{~V}$ DC/2A), transistor sink output (24 V DC , 0.5 A),
transistor protect source output (24 V DC, 0.5 A) types.
Data Link Terminals
For connecting the d For connecting the data
link line in the expansion link or data link system.

Press the lid to open and gain access to the function selector switch, analog potentiometer, and loader port.

\bullet For the MICRO ${ }^{3}$ c, see the MICRO${ }^{3}$ C User's Manual. \downarrow

System Setup

This section describes settings and precautions for the basic system, expansion system, and various link systems consisting of MICRO ${ }^{3}$.

Basic System

The basic system consists of the base unit and the program loader. This system is used to edit a user program on the pro gram loader, transfer the user program to the base unit, start and stop the base unit operation, and monitor the operating status.

- For the MICRO ${ }^{3}$ c, see the MICRO ${ }^{3}$ C User's Manual. \downarrow

When connecting and disconnect ing the loader cable, be sure to hold the connector. Since the connector has a latch, the cable canno be removed by holding the cable

Connecting the Cable

The program loader has a cover on the top to select the loade cable connection port or AC adapter jack. Slide the cover to the right to open the loader cable connector
Connect the connector of the loader cable to the loader cable connection port on the program loader and the other connector of the cable to the loader port on the MICRO ${ }^{3}$ base unit

In addition to the program loader, optional software CUBIQ is available for editing user programs on a personal computer. See page 4-16.

Link Systems

MICRO 3 has three link functions; expansion link, data link, and computer link. When using a link function, the function selector switch may have to be set or the FUN settings may be required. For details of these settings, see Expansion Link Function on page 4-6, Data Link Function on page 4-8, and Computer Link 1:N Communication on page 4-17. The expanion link cannot be used in the data link system.

Expansion Link System

The expansion link system consists of two MICRO 3 base units connected through the data link terminals using the optional expansion cable FC2A-KE1 ($250 \mathrm{~mm} / 9.84$ " long) or a shielded twisted pair cable as shown below. The cable for the expansion link system can be extended up to 200 meters (656 feet). Every MICRO ${ }^{3}$ base unit can be used as an expansion station

The RUN indicator on the expansion station remains off whether the base station is running or stopped.

Data Link System

The data link system consists of one master station connected to a maximum of six slave stations to communicate control data for distributed control. Every MICRO 3 base unit can be used as a master or slave station. When a slave station performs communication at 19,200 bps through the loader port, multi-stage comparison instruction HSC1 cannot be used a the slave station.

Computer Link System

In the computer link system, a personal computer is connected to one or a maximum of $32 \mathrm{MICRO}^{3}$ base units to control the operation of all MICRO ${ }^{3}$ base units. The $1: 1$ computer link system requires the computer link cable FC2A-KC2. The 1:N computer link system requires computer link interface unit FC2A-LC1 and RS232C/RS485 converter FC2A-MD1 in addition to three types of cables.

MICRG
1: General Information

General Specifications

Type		AC Power	DC Power
Power Supply	Rated Power Voltage	100 to 240V AC	24V DC
	Allowable Voltage Range	85 to 264 V AC	19 to 30V DC (including ripple)
	Dielectric Strength	Between power terminal and FG : 2000 AC , 1 minute Between I/O terminal and FG: 1500V AC, 1 minute	Between power terminal and FG : 1500 V AC, 1 minute Between I/O terminal and FG: 1500 AC , 1 minute
	Repetitive Peak Current	Approx. 310 mA (maximum at 85V)	-
	Input Current	Approx. 220 mA (maximum at 85V)	Approx. 500 mA (maximum at 19V)
	Rated Frequency	$50 / 60 \mathrm{~Hz}(47$ to 63 Hz)	
	Power Consumption	Approx. 30 VA (240V AC)	Approx. 14W (24V DC)
	Allowable Momentary Power Interruption	$25 \mathrm{msec}(100 \mathrm{~V})$	$25 \mathrm{msec}(24 \mathrm{~V})$, Level PS-2
	Insulation Resistance	Between power terminal and FG: $10 \mathrm{M} \Omega$ minimum (500 V DC megger)Between I/O terminal and FG: $\quad 10 \mathrm{M} \Omega$ minimum (500 V DC megger)	
	Inrush Current	40A maximum	
	Ground	Grounding resistance: 100Ω maximum	
	Protective Ground	Allowable current 10A maximum, 10 sec	
	Grounding Wire	$1.25 \mathrm{~mm}^{2}$ (AWG16)	
Effect of Improper Power Supply Connection	Reverse Polarity	No trouble	No operation, no damage
	Improper Voltage or Frequency	Permanent damage may be caused	
	Improper Lead Connection	Connection failure may be caused	
Power Up/Down Order		AC or DC main power must be turned on not later than I/O power. AC or DC main power must be turned off not earlier than I/O power.	
Memory Backup	Backup Duration	Without clock/calendar ($10-1 / \mathrm{O}$ type): Approx. 50 days at $25^{\circ} \mathrm{C}$ With clock/calendar ($16 / 24-\mathrm{I} / \mathrm{O}$ types): Approx. 30 days at $25^{\circ} \mathrm{C}$ (after backup battery fully charged)	
	Battery	Lithium secondary battery	
	Charging Speed	Approx. 2 hours from 0\% to 90\% of full charge	
	Backup Subjects	Internal relays, shift registers, counters, data registers, clock/calendar	
	Replaceability	Impossible	
	User Program Storage	EEPROM	
Others		IEC1131-2 3.2.3.4) Non-standard power supply cannot be connected	

Operating Temperature	0 to $60^{\circ} \mathrm{C}$	
Storage Temperature	-25 to $+70^{\circ} \mathrm{C}$	
Relative Humidity	Relative humidity severity level RH1, 30 to 95% (non-condensing)	
Pollution Degree	2 (IEC 664)	
Corrosion Immunity	Free from corrosive gases	
Altitude	Operation: 0 to $2,000 \mathrm{~m}$ (0 to 6,565 feet) Transport: 0 to $3,000 \mathrm{~m}$ (0 to 9,840 feet)	
Vibration Resistance (IEC 68-2-6)	5 to $55 \mathrm{~Hz}, 60 \mathrm{~m} / \mathrm{sec}^{2}, 2$ hours each in 3 axes	
Shock Resistance (IEC 62-2-27)	$300 \mathrm{~m} / \mathrm{sec}^{2}, 11 \mathrm{msec}, 3$ shocks each in 3 axes	
I/O Duty Ratio	All specification values are determined at an I/O duty ratio of 100% for the 10-I/O type and at an I/O duty ratio of 80% for the 16 - and $24-1 / 0$ types	
Wiring	Core wire 0.75 to $1.25 \mathrm{~mm}^{2}$ (AWG18 to AWG16) Input lines must be separated from power, output, and motor lines M3 screw terminal	
Degree of Protection	IP40 (IEC 529), provided with finger protection covers	
Installation	35 -mm-wide DIN rail and wall mount In either case, MICRO ${ }^{3}$ must be mounted on a vertical plain	
Dimensions		
Weight	MICRO 3 Approx. 290g (10-I/O type) Approx. 350g (16-//O type) Approx. 390g (16-1/O AC input type) Approx. 400 g ($24-\mathrm{I} / \mathrm{O}$ type)	$\mathrm{MICRO}^{3} \mathrm{C}$ Approx. 380g (16-1/O type) Approx. 430g (24-I/0 type)
Standards	MICRO ${ }^{3}$ EN61131-1, EN61131-2, EN60204-1 IEC801-2, -3, -4 PrEN50082-2, EN55011 UL508, CSA C22.2 No. 142	MICRO ${ }^{3} \mathrm{C}$ EN55011 Group 1, Class A EN50082-2 UL508, CSA C22.2 No. 142 EN61131-1, EN61131-2, EN60204-1
Certification File No.	MICRO ${ }^{3}$ TÜV Product Service E9 950913332313 UL E102542 CSA LR66809	MICRO ${ }^{3} \mathrm{C}$ TÜV Product Service B950913332 UL E102542 CSA LR66809

Function Specifications

Mode		Standard Processing	High-speed Processing
Program Capacity		1012 steps	Approx. 100 steps
User Program Memory		EEPROM, RAM (backed up by battery)	
Backup Function		A user program is transferred from the program loader through the CPU to RAM and EEPROM in the MICRO ${ }^{3}$. The user program and data in the RAM are backed up by a lithium secondary battery. If the contents in the RAM are destroyed after a power failure longer than the specified value, the user program is transferred from the EEPROM to the RAM automatically at power up, and is not erased. However, since data is destroyed, the user is alerted with an error message (keep data sum check error, etc.).	
Control System		Stored program system (not in compliance with IEC1131-3)	
Programming Method		Logic symbol	
Instruction Words	Basic Instruction	28 basic instructions LOD, LODN, OUT, OUTN, SET, RST, AND, ANDN, OR, ORN, AND LOD, OR LOD, BPS, BRD, BPP, TIM, CNT, CC=, CC \geq, SFR, SFRN, SOTU, SOTD, JMP, JEND, MCS, MCR, END	
	Advanced Instruction	MICRO ${ }^{\mathbf{3}} \mathbf{: 3 8}$ advanced instructions NOP, MOV, MOVN, IMOV, IMOVN, CMP=, CMP<>, CMP<, CMP>, CMP<=, CMP>=, ADD, SUB, MUL, DIV, ANDW, ORW, XORW, SFIL, SFTR, ROTL, ROTR, CLS4, CALW, CLKR, CLKW, ADF, DISP, DGRD, ANRO, ANR1, PULS, PWM, A/D, HSCO, HSC1, HSC2, HSC3 MICRO ${ }^{3}$ C: $\mathbf{4 0}$ advanced instructions NOP, MOV, MOVN, IMOV, $\operatorname{IMOVN,~CMP=,~CMP<>,~CMP<,~CMP>,~CMP<=,~}$ CMP>=, ADD, SUB, MUL, DIV, ANDW, ORW, XORW, SFIL, SFTR, ROTL, ROTR, CLS4, CALW, CLKR, CLKW, ADF, DISP, DGRD, ANRO, PULS, PWM, A/D, HSCO, HSC1, HSC2, HSC3, TXD, RXD, CMP2	
1/0	Input Points	6 points (10-I/O type), 9 points ($16-1 / 0$ type), 14 points ($24-\mathrm{I} / \mathrm{O}$ type)	
	Output	4 points ($10-\mathrm{I} / \mathrm{O}$ type), 7 points ($16-1 / \mathrm{O}$ type), 10 points ($24-\mathrm{I} / \mathrm{O}$ type)	
	Expansion 1/0	One expansion station can be added. Maximum I/O is 48 points.	-
Data Link		Possible with 6 slave stations	
Scan Time		2.9 msec average/1K steps	400 usec average/100 steps
Processing Time (basic instruction)		$2.2 \mu \mathrm{sec}$ average	$0.45 \mu \mathrm{sec}$ average
Internal Relay		232 points	40 points
Data Register	MICRO ${ }^{3}$	100 points	32 points
	MICRO ${ }^{3} \mathrm{C}$	500 points	
Control Data Register		10 points (designated from data registers)	-
Shift Register		64 points	32 points
Counter/Timer		32 points total	16 points total
Counter/ Timer Presets	Adding Counter	0 to 9999	
	Reversible Counter	0 to 9999	
	1-msec Timer	1 msec to 9.999 sec	
	10-msec Timer	10 msec to 99.99 sec	
	100-msec Timer	100 msec to 999.9 sec	
Catch Input Relay		8 points	
Special Internal Relay		16 points	
Catch Input	Points	8 points	
	Must Turn ON Pulse	$40 \mu \mathrm{sec}$ minimum (when hard filter is set to 10)	
	Must Turn OFF Pulse	150μ sec minimum (when hard filter is set to 10)	

Mode		Standard Processing	High-speed Processing
High-speed Counter	Points/Phase	1 point, single-phase	
	Preset Value	HSCO, HSC1, HSC2: 0 to $4,294,967,295$ HSC3: 0 to 65535	
	Frequency Response	HSCO and HSC3: 10 kHz HSC1 and HSC2: 5 kHz	
Pulse Output		1 channel (available on transistor output types only)	
Analog Potentiometer	MICRO ${ }^{3}$	1 point (10-I/O type), 2 points (16/24-I/O types), Converted value: 0 to 249	
	$\mathrm{MICRO}^{3} \mathrm{C}$	1 point, Converted value: 0 to 249	
Real-time Clock/ Calenda	Accuracy	$\pm 30 \mathrm{sec} / \mathrm{month}$ at $25^{\circ} \mathrm{C}$ (typical)	
	Backup Duration	30 days at $25^{\circ} \mathrm{C}$ (typical)	
	Calendar Function	Year, month, day, day of week, hour, minute, second	
Sensor Power Supply	Output Voltage/Current	Available on AC power, DC input types only $24 \mathrm{~V} \pm 3.6 \mathrm{~V}$ DC, 150 mA maximum including input signal current	
	Overload Detection	Overload detection current: $190 \pm 40 \mathrm{~mA}$	
	Isolation	Isolated from the internal circuit	
Selfdiagnostic Function	System Initialization	Keep data sum check	
	Internal Processing A	Power failure check, WDT (watchdog timer) check, user program sum check, sensor power overload check, clock error check, LED indicator data update	
	(Read Inputs)	Update input data	
	Internal Processing B	Processed only once immediately after starting to run: User program CRC check, timer/counter preset value CRC check	
	Execute Program	Execute the user program	
	(Update Outputs)	Update outputs	
	Loader Communication	User program syntax check, user program writing check	
	Data Link Communication	Data link connection check	
Execution Time	Basic Instruction Execution time	$2.2 \mu \mathrm{sec}$ average	0.45 usec average
	Basic Processing (Processing A/B + Determination)	200 нsec	220 usec
	1/0 Processing	$130 \mu \mathrm{sec}$ (update inputs and outputs)	
	Expansion Link	9 to 10 msec	
	Control Data Register Service	$15 \mu \mathrm{sec}$ when all control data registers are enabled	
	Clock/Calendar Processing	Processed at every 500 msec	
	Data Link Master Station Processing	12.5 to 13 msec when using data link function	
Start/Stop Method		Turning power on and off. Using the RUN/STOP switch on the program loader. Turning special internal relay M300 on and off. Turning designated stop or reset input off and on.	
Restart	Cold Restart	Possible to restart using program loader, power supply, or special internal relay (response time: 1 sec maximum)	
	Hot Restart	Impossible because timer data cannot be maintained	
	Warm Restart	Possible using a user program	
Stop/Reset Using External Signal		Possible using inputs 10 through 115 designated as a stop or reset input	

Communication and Noise Specifications

Loader Port Communication Specifications

- For the MICRO ${ }^{3}$ C specifications, see the MICRO${ }^{3}$ C User's Manual. *

Standards		EIA RS485 (termination resistor is not required)		
Connection to Program Loader				Using optional loader cable (FC2A-KL1 or FC2A-KL2)
Cable	1:1 Communication	Using optional computer link cable FC2A-KC2		
	1:N Communication	Using $\varnothing 0.9-\mathrm{mm}$ shielded twisted pair cable		
	Conductor Resistance	85Ω /km maximum		
	Shield Resistance	$12 \Omega / \mathrm{km}$ maximum		
Slave Stations	32 maximum in the 1:N network communication			
Maximum Cable Length	200 m (656 ft.) between RS232C/RS485 converter and most distant station			
RS232C/RS485 Converter	FC2A-MD1			
Computer Link Interface Unit		FC2A-LC1		

Data Link Terminal Communication Specifications

- For the MICRO ${ }^{3}$ C specifications, see the MICRO ${ }^{3}$ C User's Manual. \downarrow

Standards	EIA RS485 (termination resistor is not required)
Recommended Cable	$\varnothing 0.9 \mathrm{~mm}$ shielded twisted cable
Conductor Resistance	$85 \Omega / \mathrm{km}$ maximum
Shield Resistance	$12 \Omega / \mathrm{km}$ maximum
Maximum Cable Length	200 m (656 ft.)
Isolation	Between data link terminals of multiple MICRO ${ }^{3} \mathrm{C}$ units: Not isolated
Baud Rate	19200 bps (fixed)
Communication Delay	Expansion link:Master station normal scan time + approx. 9 to 10 msec Data link: Master station normal scan time + approx. 12.5 to 13 msec + Slave station scan time

Noise Immunity Specifications

Electrostatic discharge (IEC 801-2)	
RH-1/ESD-3	Level 3 (8 kV)
Field withstandability (IEC 801-3)	
	Level $3(10 \mathrm{~V} / \mathrm{m}$
Damped oscillatory wave withstandability (IEC 801-4)	
Power supply	1 kV
Digital 1/Os	1 kV
Fast transient withstandability (IEC 801-4)	
Power supply	Level 3 (2 kV)
Digital I/Os	Level 4 (2 kV) Analog I/Os, Co

Noise Emission Specifications

Radiated emission (EN55011)	
Line conduction (EN55011)	

Power Supply Timing Chart
Turn on AC or DC main power and I/O power at the same time, or turn on AC or DC main power first. Turn off AC or DC main power and I/O power at the same time, or turn off I/O power first.

Memory Backup Function

The user program and data stored in the RAM are backed up by a lithium secondary battery. When the contents in the RAM are destroyed When the contents in the RAM are destroyed
after a power failure longer than the specified value, the user program is transferred from the EEPROM to the RAM at power up automatically, so the user memory is not erased. Since the data is destroyed, an error message, such keep data sum check error, is evoked to alert the user.

Self-diagnostics Flow Chart

> | Interrupt |
| :---: |
| \downarrow |
| Loader Communication |

Scanning Process and WDT (Watch Dog Timer)

Power on ${ }^{\text {s }}$	$\begin{array}{\|l\|l\|} \hline \text { Intitilize } \\ \text { System } \end{array}$	Process Read		Determina		$\begin{aligned} & \text { sinal } \\ & \text { sing } \end{aligned}$		eecute	$\begin{aligned} & \text { Updo } \\ & \text { Outp } \end{aligned}$		$\begin{gathered} \text { Processi } \\ \text { Read In } \end{gathered}$		Determ	nation	Execute Prograa		$\begin{aligned} & \text { Undote } \\ & \text { untputs } \end{aligned}$	Processing A Read Inputs
Scan 1 Scan 2																		Scan 3
Update	Proce				Execute			Proces			mination			Updat				
Outputs		Inputs		RUN	Program	Outp		Read					gram	Outpu				
Scan N-1	Scan N							Scan $\mathrm{N}+1 \longrightarrow$ Scan N										

Digital DC Input Specifications

Rated Input Voltage		24V DC sink/source input signal
Input Voltage Range		19 to 30V DC
Input Impedance		
Turn ON Time		IO: $4 \mu \mathrm{sec}+$ filter preset I1 to I15: $20 \mu \mathrm{sec}+$ filter preset I20 to I35: 3 msec
Turn OFF Time		IO: $6 \mu \mathrm{sec}+$ filter preset I1 to I15: $120 \mu \mathrm{sec}+$ filter preset I20 to I35: 3 msec
Common and Input Points		$10-1 / O$ type: 6 input points connected in 1 common line $16-/ O$ type: 9 input points connected in 1 common line $24-1 / O$ type: 14 input points connected in 1 common line
Isolation		Between input terminals: Not isolated Internal circuit: Photocoupler isolated
Input Type		Type 1 (IEC 1131)
External Load for 1/O Interconnection		Not needed
Signal Determination Method		Static
Input Filter	Filter Function	The meaning of the filter values shown below: Inputs accept signals of the pulse width shown.
	Soft Filter	$0 \mathrm{msec}, 3 \mathrm{msec}$ (default), $7 \mathrm{msec}, 10 \mathrm{msec}$ [Setting] IO and I1: Independently set 12 and I3: Set in combination 14 to 17: Set in combination Input reject pulse width: (Soft filter value) - 2 msec
	Hard Filter	
	Factory Initial Setting	Default value
Effect of Improper Input Connection		Both sinking and sourcing input signals can be connected. If any input exceeding the rated value is applied, permanent damage may be caused.
Cable Length		3 m (9.84 ft .) in compliance with electromagnetic immunity
Others (IEC 1131-2 Information)		IEC 1131-2 3.3.1.4 8) Input part cannot be replaced because of non-modular structure

Digital AC Input Specification

Rated Input Voltage	100 to 120 V AC
Input Voltage Range	85 to 132 V AC
Input Impedance	$13 \mathrm{k} \Omega$ at 60 Hz
Turn ON Time	20 msec maximum
Turn OFF Time	20 msec maximum $\quad 9 \quad 9$ input points connected in 1 common line
Common and Input Points	$16-1 / 0$ type: \quadBetween input terminals: Not isolated Internal circuit: \quad Photocoupler isolated Isolation Typut Type Type 1(IEC 1131)
External Load for I/O Interconnection	Not needed
Signal Determination Method	Operation using system program

User's manual

Input Operating Range

Input Internal Circuit

 Digital DC Input

Digital AC Input

Digital AC Input

Digital AC/DC Output (Relay Output) Specifications

1/0 Type			10-1/0 Type	16-1/0 Type	24-1/0 Type
Output Protection			Without protection		
Protection Circuits Prepared by User			See page 1-17.		
Output Points			4 points	7 points	10 points
Output Points per Common Line		COMO	Common NO 3 points	Common NO 4 points	
		COM1	$\begin{aligned} & \text { Independent NO } \\ & 1 \text { point } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Common NO } \\ & 2 \text { points } \end{aligned}$	Common NO $4 \text { points }$
		COM2	-	Independent NO 1 point	Independent NO 1 point
		COM3	-	-	Independent NO 1 point
Output Terminal Ratings (Relay Contact Capacity)		Tüv	$240 \mathrm{VAC}, 2 \mathrm{~A}$ (RES) 240 V AC, $1.5 \mathrm{~A}(\varnothing=0.4)$ 30 V DC, 2A (RES) 240 V AC, 1.5A (AC-15)		
		UL/CSA	240V AC, 2A (RES) 30 V D, 2A (RES)		
COM Current			Total of all contacts in a COM circuit: 8A maximum		
Minimum Switching Load			$1 \mathrm{~mA} / 5 \mathrm{~V}$ DC (reference value)		
Initial Contact Resistance			$30 \mathrm{~m} \Omega$ maximum		
Electrical Life			100,000 operations minimum (rated load 1,800 operations/hour)		
Mechanical Life			20,000,000 operations minimum (no load 18,000 operations/hour)		
Isolation	Between Output Terminal and FG		1,500V AC		
	Between Output Terminal and Internal Circuit		1,500V AC		
	Between Output Terminals of Different COM Points		1,500V AC		
Effect of Improper Connection			When a current larger than the rated current flows, permanent damage such as contact welding may be caused.		
Output Status by MPU Operation	Stop		OFF		
	Power Interruption over 25 msec		OFF		
	Power Interruption 25 msec or less		ON/OFF status maintained		
	Power Up		OFF until MPU starts to run		
Others (IEC 1131-2 Information)			IEC 1131-2 3.3.2.3 3) Not zero-cross switching IEC 1131-2 3.3.2.3 9) Not tested for other categories IEC 1131-2 3.3.2.3 10) Not multichannel module IEC 1131-2 3.3.2.3 11) Suppressor networks are not incorporated into the relay output circuit IEC 1131-2 3.3.2.3 16) Output can not be replaced because of non-modular structure IEC 1131-2 3.3.2.3 18) Non-latching type output operation IEC 1131-2 3.3.2.3 19) Not multi-circuit module		

1/0 Type			10-1/0 Type	16-1/0 Type	24-1/0 Type
Output Protection			Without protection		
Protection Circuits Prepared by User			See page 1-23.		
Output Points			4 points	7 points	10 points
Output Points per Common Line		como	4 points	4 points	5 points
		COM1	-	3 points	5 points
Rated Load Voltage			24 V DC		
Operating Load Voltage Range			19 to 30V DC		
Rated Load Current			0.5A per output point		
Maximum Load Current			0.625 A per output point (at 30V DC)		
Voltage Drop (ON Voltage)			1.5 V maximum (voltage between COM and output terminals when output is on)		
Inrush Current			5A maximum		
Leakage Current			0.1 mA maximum		
Clamping Voltage			$39 \mathrm{~V} \pm 1 \mathrm{~V}$		
Maximum Clamping Load			10W		
Inductive Load			Continuous operation of $\mathrm{T} .95=60 \mathrm{msec}(\mathrm{DC13})$ at 1 Hz , 24V DC		
External Current Draw			10 mA maximum, 24V DC (power supply to the +V terminal)		
Maximum Frequency Response Test Condition: Load resistance $1 \mathrm{k} \Omega, 24 \mathrm{~V}$ DC		Q0	10 kHz minimum		
		Q1-Q31	1 kHz minimum (not including scan time)		
Isolation	Between Output Terminal and FG		1,500V AC		
	Between Output Terminal and Internal Circuit		Photocoupler isolated		
	Between Output Terminals of Different COM Lines		Not isolated		
Effect of Improper Connection			When a current larger than the rated current flows, permanent damage of output elements may be caused.		
Output Status by MPU Operation	Stop		OFF		
	Power Interruption over 25 msec		OFF		
	Power Interruption 25 msec or less		ON/OFF status maintained		
	Power Up		OFF until MPU starts to run		
Others (IEC 1131-2 Information)			IEC 1131-2 3.3.3.3 3) Not applicable IEC 1131-2 3.3.3.3 8) Not applicable IEC 1131-2 3.3.3.3 9) Not tested for other categories IEC 1131-2 3.3.3.3 10) Not multichannel module IEC 1131-2 3.3.3.3 16) Output can not be replaced because of non-modular structure IEC 1131-2 3.3.3.3 18) Non-latching type output operation IEC 1131-2 3.3.3.3 19) Not multi-circuit module		

Digital DC Output (Transistor Protect Source Output) Specifications

1/0 Type			10-1/0 Type	16-1/0 Type	24-1/0 Type
Output Protection			Protected output		
Output Points			4 points	7 points	10 points
Output Points per Common Line		como	4 points	4 points	5 points
		com1	-	3 points	5 points
Rated Load Voltage			24 V DC		
Operating Load Voltage Range			19 to 30V DC		
Rated Load Current			0.5 A per output point		
Maximum Load Current			0.625 A per output point (at 30V DC)		
Voltage Drop (ON Voltage)			1.5 V maximum (voltage between COM and output terminals when output is on)		
Inrush Current			5A maximum		
Leakage Current			0.1 mA maximum		
Clamping Voltage			$39 \mathrm{~V} \pm 1 \mathrm{~V}$		
Maximum Clamping Load			10W		
Inductive Load			Continuous operation of To.95 $=60 \mathrm{msec}(\mathrm{DC13})$ at 0.5 Hz , 24V DC		
External Current Draw			100 mA maximum, 24V DC (power supply to the -V terminal)		
Protected Output	Protect Activation Current	$\begin{aligned} & \text { Q0 \& } \\ & \text { Q20 } \end{aligned}$	0.626 to 0.9A		
		$\begin{aligned} & \hline \text { Q1-Q11 } \\ & \text { Q21-Q31 } \end{aligned}$	0.7 to 1.5A		
	Restarting Method	$\begin{aligned} & \text { Q0 \& } \\ & \text { Q20 } \end{aligned}$	- Remove the cause of overload and turn outputs off for 5 sec using the program loader or CUBIQ on the computer. - Or, turn power off.		
		$\begin{aligned} & \text { Q1-Q11 } \\ & \text { Q21-Q31 } \end{aligned}$	- Remove the cause of overload, then the output protection is reset automatically. Note: When using at a high temperature ($45^{\circ} \mathrm{C}$ or above), it may take a long time before normal operation is restored. If this is the case, turn output power off.		
	Maximum Frequency Response Test Condition: Load resistance $1 \mathrm{k} \Omega, \mathbf{2 4 V}$	Q0	10 kHz minimum		
		Q1-Q31	1 kHz minimum (not including scan time)		
	PWM Setting		Protection function does not work.		
	Note		The protected output is not reset using FUN20 PLC error data readout and reset without removing the cause of the overload.		
Isolation	Between Output Terminal and FG		1,500V AC		
	Between Output Terminal and Internal Circuit		Photocoupler isolated		
	Between Output Terminals of Different COM Lines		Not isolated		
Effect of Improper Connection			When a current larger than the rated current flows, permanent damage of output elements may be caused.		
Output Status by MPU Operation	Stop		OFF		
	Power Interruption over 25 msec		OFF		
	Power Interruption 25 msec or less		ON/OFF status maintained		
	Power Up		OFF until MPU sta	to run	
Others (IEC 1131-2 Information)			- See Isolation described above. - See Effect of Improper Connection described above.		

Output Delay

Digital AC/DC Output (Relay Output)

Digital DC Output (Transistor Sink Output)

Digital DC Output (Transistor Protect Source Output)

Output Internal Circuit

Digital DC Output (Transistor Sink Output)
Digital DC Output (Transistor Protect Source Output)

ider

Contact Protection Circuit for Relay Output

Depending on the load, a protection circuit may be needed for the relay output of the MICRO ${ }^{3}$. Choose a protection circuit from A through D shown below according to the power supply and connect the protection circuit to the outside of the MICRO ${ }^{3}$.

Protection Circuit A

This protection circuit can be used when the load impedance is smaller than the RC impedance in an AC load power circuit.
C: 0.1 to $1 \mu \mathrm{~F}$
R: Resistor of approximately the same resistance value as the load

Protection Circuit B

This protection circuit can be used for both AC and DC load power circuits.
C: 0.1 to $1 \mu \mathrm{~F}$
R: Resistor of approximately the same resistance value as the load

Protection Circuit C

This protection circuit can be used for DC load power circuits.
Use a diode with the following ratings.
Reverse withstand voltage: Power voltage of the load circuit $\times 10$ Forward current: More than the load current

Protection Circuit D

This protection circuit can be used for both AC and DC load power circuits.

Program Loader Specifications

Power Supply	- Supplied by the MICRO ${ }^{3}$ base unit through the loader cable. - Supplied by an AC adapter during off-line programming. Applicable AC adapter 5 to 6.5 V DC, 4 W Output plug: Polarity
Operating Temperature	0 to $50^{\circ} \mathrm{C}$
Storage Temperature	-20 to $+70^{\circ} \mathrm{C}$
Relative Humidity	Relative humidity severity level RH1, 30 to 95% (non-condensing)
Pollution Degree	3 (IEC 664)
Vibration Resistance	5 to $55 \mathrm{~Hz}, 60 \mathrm{~m} / \mathrm{sec}^{2}, 2$ hours each in 3 axes
Shock Resistance	$300 \mathrm{~m} / \mathrm{sec} 2,11 \mathrm{msec}$, 3 shocks each in 3 axes
Power Consumption	Normal operation: Approx. 1.5 W Writing to flash PROM: Approx. 2.5 W
Mounting Method	The permanent magnet on the back of the program loader attaches to iron panels.
Dimensions	$185 \mathrm{H} \times 95 \mathrm{~W} \times 30 \mathrm{Dmm}$ (7.283"H $\times 3.740$ "W $\times 1.181$ "D)
Weight	Approx. 300g
Noise Immunity	Withstands the noise same as the MICRO ${ }^{3}$ noise immunity
Display	4 lines $\times 16$ characters Back-lighted LCD with automatic turn off function
Program Key	35 keys, membrane switch key pad (key sheet replaceable)
Control Switch	RUN/STOP for MICRO ${ }^{3}$ operation
Connection to MICRO ${ }^{3}$	Using loader cable FC2A-KL1 ($2 \mathrm{~m} / 6.56 \mathrm{ft}$.) or FC2A-KL2 ($5 \mathrm{~m} / 16.4 \mathrm{ft}$.), round 8 -pin DIN connector Baud rate: 9600 bps, using RS485 special protocol
Power Failure Protection	Approx. 1 hour at $25^{\circ} \mathrm{C}$, using a super capacitor
Memory Card	Compliance with JEIDA Ver. 4.0/PCMCIA Rel. 1.0 Accessible capacity 256 K bytes SRAM card (with battery) User program storage Read, write, and battery voltage drop detection Applicable cards: Fujitsu, Mitsubishi, Rohm, Fuji Electrochemical, Towa Electron PROM card Upgrade system program storage (128K bytes) Read only
User Program Edit Capacity	8K st

MICRO

nput Terminal Arrangements

DC Input (AC Power Type)

AC Input (AC Power Type)

DC Input (DC Power Type)

Output Terminal Arrangements

Relay Output (DC Input Type)

Relay Output (AC Input Type)

Transistor Sink Output

Transistor Protect Source Output

$\underset{\substack{24-I / O ~ U n i t \\ \text { (10 outputs) }}}{\text { 2 }}$
(10 outputs)

MICRO

nnut Wiring Diagrams

\ Warning -Emergency and interlocking circuits must be configured outside the MICRO ${ }^{3}$. If such a circuit is configured inside the MICRO^{3}, failure of the MICRO^{3} may cause disorder of the control system, damage, or accidents.

- Caution - Use a power supply of the rated value. Use of a wrong power supply may cause fire hazard.
- Use an IEC127-approved fuse on the power line outside the MICRO ${ }^{3}$. This is required when
exporting equipment containing MICRO${ }^{3}$ to Europe.
Use an EU-approved circuit breaker. This is required when exporting equipment containing MICRO 3 to Europe.
- Do not connect to the ground directly from the MICRO ${ }^{3}$. Connect a protective ground to the equipment containing MICRO ${ }^{3}$ using an M4 or larger screw. This is required when exporting equipment containing MICRO ${ }^{3}$ to Europe
If relays or transistors in the MICRO ${ }^{3}$ output circuit fail, outputs may remain on or off. For output signals which may cause heavy accidents, provide a monitor circuit outside of the MICRO ${ }^{3}$ Use an IEC127-approved fuse on the output circuit. This is required when exporting equipmen containing MICRO ${ }^{3}$ to Europe

DC Source Input (AC Power Type)

- When using the sensor power supply from the DC OUT terminals

- When using an external power supply

DC Source Input (DC Power Type)

Input Wiring Diagrams, continued

DC Sink Input (AC Power Type)

- When using the sensor power supply from the DC OUT terminals

- When using an external power supply

DC Sink Input (DC Power Type)

AC Input
$100-240 \mathrm{~V}$ AC

idee

MICRG

Output Wiring Diagrams

Relay Output

Transistor Sink Output

Transistor Protect Source Output

Dimensions

MICRO ${ }^{3}$ Base Unit

Mounting Hole Layout for MICRO ${ }^{3}$ Base Units

Program Loader

A/D and D/A Converter Units

1-24

Mounting Hole Layout For A/D and D/A Converter Units

ides

Installation

This section describes the methods and precautions for installing the MICRO ${ }^{3}$.

- Turn power off to the MICRO^{3} before starting installation, removal, wiring, maintenance, and inspection on the MICRO^{3}. Failure to turn power off may cause electrical shocks or fire hazard. Emergency and interlocking circuits must be configured outside the MICRO ${ }^{3}$. If such a circuit is configured inside the MICRO^{3}, failure of the MICRO^{3} may cause disorder of the control system, damage, or accidents.
-Special expertise is required to install, wire, program, and operate the MICRO ${ }^{3}$. People without such expertise must not use the MICRO ${ }^{3}$
- Prevent metal fragments and pieces of wire from dropping inside the MICRO ${ }^{3}$ housing. Put a cover on the MICRO^{3} during installation and wiring. Ingress of such fragments and chips may cause fire hazard, damage, or malfunction.
MICRO 3 is designed for installation in equipment. Do not install the MICRO 3 outside of equipment The pollution degree of the MICRO ${ }^{3}$ is "Pollution degree 2" Use the MICRO ${ }^{3}$ in environments of pollution degree 2 (according to IEC664-1).

nstallation Location

The MICRO ${ }^{3}$ programmable controller should be installed correctly for optimum performance.
Mount the MICRO 3 base unit on a vertical plane; not on a horizontal plane. When mounting the MICRO 3 base unit vertically, place the pop-up lid down to prevent heat build-up.

Make sure that the operating temperature does not drop below $0^{\circ} \mathrm{C}$ or exceed $60^{\circ} \mathrm{C}$. If the temperature does exceed $60^{\circ} \mathrm{C}$, use a fan or cooler.
To eliminate excessive temperature build-up, provide ample ventilation. Do not install MICRO^{3} near, and especially above, any device which generates considerable heat, such as a heater, transformer, or large capacity resistor. The relative humidity should be above 45% and below 85%,
MICRO 3 should not be exposed to excessive dust, dirt, salt, direct sunlight, vibrations, or shocks. Do not use MICRO ${ }^{3}$ in an area where corrosive chemicals or flammable gases are present. The unit should not be exposed to chemical, oil, or water splashes.

Installation Methods

Caution - Install the MICRO ${ }^{3}$ according to instructions described in this user's manual and the MICRO ${ }^{3}$ user's manual. Improper installation will result in falling, failure, or malfunction of the MICRO ${ }^{3}$.

MICRO ${ }^{3}$ can be installed in two ways; direct mounting on a panel surface and mounting on a DIN rail.

Direct Mounting

The MICRO ${ }^{3}$ base unit can be mounted on a panel surface
Drill mounting holes as shown on page 1-24. Use M4 screws (6 or 8 mm long) to mount the MICRO ${ }^{3}$ base unit. Spring washers can be used with the screws.

DIN Rail Mounting

The MICRO 3 unit can be mounted on a 35 -mm-wide DIN rail.
Applicable DIN rail: IDEC's BAA1000 ($1000 \mathrm{~mm} / 39.4$ " long)

- Mounting on DIN Rail

Fasten the DIN rail to a panel using screws firmly.
Put the groove of the MICRO^{3} base unit on the DIN rail, with the input ter minal side up, and press the unit to the panel as shown on the right.
Use BNL6 mounting clips on both sides of the MICRO ${ }^{3}$ base unit to prevent moving sideways.

Insert a flat screwdriver into the slot in the clamp, pull the screwdriver up, and turn the MICRO ${ }^{3}$ base unit bottom out.

nstallation in Control Pane

When wiring input and output lines in ducts, keep a minimum space of 20 mm above and below the MICRO^{3} base unit for maintenance. To prevent excessive heat built-up, keep a minimum space of 20 mm around the MICRO^{3} unit for ventilation.

Disposing of the MICRO ${ }^{3}$ Units

Caution - When disposing of the MICRO^{3} units, do so as an industrial waste.
Dispose of the battery in the MICRO ${ }^{3}$ when the battery is dead in accordance with pertaining regulations. When storing or disposing of the battery, use a proper container prepared for this purpose. CRO^{3} to Europe

- Dispose of the battery in the memory card when the battery is dead in accordance with pertaining regulations.

Wiring

> | Caution | $\begin{array}{l}\text { - Use wires of a proper size to meet voltage and current requirements. Tighten } \mathrm{M} 3 \text { screws for power } \\ \text { and I/O terminals to a proper tightening torque of } 0.3 \text { to } 0.5 \mathrm{~N}-\mathrm{m} .\end{array}$ |
| :--- | :--- |
| | |
| - Do not disassemble, repair, or modify the MICRO | |

ower Supply Wiring

Use a stranded wire of $1.25 \mathrm{~mm}^{2}$ cross section (AWG16) for power supply wiring. Make the power supply wiring as short as possible and run the wiring as far away as possible from motor lines.
To prevent electrical shocks or malfunctioning due to noise, connect the FG terminal to the ground using a grounding wire of $2 \mathrm{~mm}^{2}$ cross section (AWG14) minimum (grounding resistance 100Ω maximum). Do not connect the grounding wire in common with the grounding wire of motor equipment.
When using MICRO ${ }^{3}$ on AC power, noise can be greatly reduced by connecting a 1:1 transformer as shown below
Do not connect to the ground directly from the MICRO^{3}. Connect a protective ground to the equipment containing MICRO ${ }^{3}$ using an M4 or larger screw. This is required when exporting equipment containing MICRO ${ }^{3}$ to Europe
Use an EU-approved circuit breaker. This is required when exporting equipment containing MICRO ${ }^{3}$ to Europe.

nput Wiring

Use wire between 0.75 and $1.25 \mathrm{~mm}^{2}$ cross section (AWG18 and AWG16) for input wiring. Separate the input wiring from the output line, power line, and motor line. For input wiring diagrams, see pages 1-21 and 1-22.

Output Wiring

If relays or transistors in the MICRO ${ }^{3}$ output circuit fail, outputs may remain on or off. For output signals which may cause heavy accidents, provide a monitor circuit outside of the MICRO^{3} Use an IEC127-approved fuse on the output circuit. This is required when exporting equipmen containing MICRO ${ }^{3}$ to Europe.Sse wire between 0.75 and $1.25 \mathrm{~mm}^{2}$ cross section (AWG18 and AWG16) for output wiring.
When driving loads which generate noise, such as electromagnetic contactors and solenoid valves, use a surge absorber for AC power or a diode for DC power
For output wiring diagrams, see page 1-23.

Data Link Wiring

For wiring the data link terminals in the expansion link or data link system, use a two-core twisted pair shielded cable with a minimum core wire diameter of 0.9 mm . Separate the data link wiring from the output line, power line, and motor line.

Power Supply Voltage

Caution	Use a power supply of the rated value. Use of a wrong power supply may cause fire hazard.
- Use an IEC127-approved fuse on the power line outside the MICRO	

exporting equipment containing MICRO 3 to Europe.

The applicable power range for MICRO^{3} is 85 to 264 V AC or 19 to 30 V DC. When MICRO^{3} is powered up, the inrush current flow is 40 A maximum at 264 V AC or 30 V DC with the rated input and output.
Power failure voltage varies with the operating conditions of the program loader and the number of I/O points used. In most cases, power failure is detected when the power voltage drops below 85 V AC or 19 V DC. Operation is stopped at this point to prevent malfunctioning. Momentary power failures of 25 msec or less are not detected at the rated power voltage.

Other Precautions

\. Caution - Do not use the MICRO ${ }^{3}$ in environments outside of the specification values.
Caution - Connect the FG terminal to a proper ground; otherwise, electrical shocks may be caused.
Do not touch all screw terminals while the MICRO ${ }^{3}$ is powered up; otherwise, electrical shocks may be caused.
the input terminals immediately after inputs are turned off: otherwise, electrica shocks may be caused.

Crimping Termina

When connecting one wire to one terminal, use a crimping terminal shown on the left below.
Only when connecting two wires to one terminal, use the longer crimping terminal shown in the middle below.

Introduction

This chapter describes general information for starting and stopping MICRO ${ }^{3}$ operation, and introduces simple operating procedures from creating a user program to monitoring the MICRO^{3} operation.

Caution

- Make sure of safety before starting and stopping the MICRO 3 or when operating the MICRO^{3} to
force outputs on or off. Incorrect operation on the MICRO dents

Start/Stop Operatio

This section describes operations to start and stop MICRO^{3} and to use the stop and reset inputs.

Start/Stop Schematic

The start/stop circuit of MICRO ${ }^{3}$ consists of three
blocks; power supply, M300 (start control special internal relay), and stop/reset inputs. Each block can be used to start and stop MICRO ${ }^{3}$ while the other two blocks are set to run MICRO ${ }^{3}$

Start/Stop Operation using Program Loader

MICRO 3 can be started and stopped using the program loader connected to the MICRO ${ }^{3}$ base unit. When the RUN/STOP switch on the program loader is set to RUN, start control special internal relay M300 is turned on to start MICRO ${ }^{3}$. When the RUN/STOP switch is set to STOP, M300 is turned off to stop MICRO
Connect the program loader to MICRO^{3} and power up MICRO ${ }^{3}$. See page 1-3.
Check that a stop input is not designated using FUN1. See 5-3.
To start or stop MICRO ${ }^{3}$ operation, set the RUN/STOP switch to RUN or STOP.
Note: When a stop input is designated using FUN1, MICRO ${ }^{3}$ cannot be started or stopped when start control special internal relay M300 is turned on or off.
The response time of the RUN/STOP switch operation is

When setting the RUN/STOP switch to STOP, MICRO ${ }^{3}$ stops operation and the program loader displays "PC-STOP"
immediately. After approximately 1 second, the program loader restores the previous display.
When setting the RUN/STOP switch to RUN, MICRO ${ }^{3}$ starts operation and the program loader displays "PC-RUN." After approximately 1 second, the program loader restores the previous display.
The status of start control special internal relay M300 can be monitored using the program loader. MICRO^{3} can also be started and stopped by turning M300 on and off using the program loader.
Monitor and set M300 to start MICRO ${ }^{3}$.

Monitor and reset M300 to stop MICRO ${ }^{3}$.

Note: Special internal relay M300 is a keep type internal relay and stores the status when power is turned off. M300 retains its previous status when power is turned on again. However, when the backup battery is dead, M300 loses the stored status and is turned on when MICRO ${ }^{3}$ is powered up. The backup time after lithium battery fully charged is:

Without clock/calendar (10-I/O type): Approx. 50 days at $25^{\circ} \mathrm{C}$ (typical)
With clock/calendar (16/24-I/O types): Approx. 30 days at $25^{\circ} \mathrm{C}$ (typical)

Start/Stop Operation using the Power Supply

$M_{I C R O}{ }^{3}$ can be started and stopped by turning power on and off.
Check that start control special internal relay M300 is on using the program loader. If M300 is off, turn it on. See above.
Turn power on to start operation. Turn power off to stop operation
Note: If M300 is off, MICRO ${ }^{3}$ does not to start operation when power is turned on even if the RUN/STOP switch on the pration when power is RUN To start if the RUN/STOP switch on the program loader is set to RUN. To start operation, turn power on, and set he RUN ${ }^{3}$ IOP swith ion when power is tued in RUNTOP switch ting position.

Stop Input (FUN1) and Reset Input (FUN2)

Input I0 through I15 can be designated as a stop input using FUN1. Input I0 through I15 can also be configured as a reset input using FUN2. These functions are explained in detail on pages 5-3 and 5-4
Note: When using a stop and/or reset input to start and stop MICRO ${ }^{3}$ operation, make sure that start control special internal relay M300 is on. If M300 is off, then MICRO ${ }^{3}$ does not start operation when the stop or reset input is turned off. M300 is not turned on or off when the stop and/or reset input is turned on or off.
When a stop or reset input is turned on during program operation, the RUN indicator is turned off, MICRO ${ }^{3}$ stops operation, and all outputs are turned off.
The reset input has priority over the stop input.

System Statuses

The system statuses during running, stop, reset, restart after resetting, and restart after stopping are listed below:

Mode	Outputs	Internal Relays, Shift Registers	Timer Current Value	Counter Current Value	Data Register	
Run		Operating	Operating	Operating	Operating	Operating
Reset	OFF	OFF	OFF	Reset to zero	Reset to zero	Reset to zero
Stop	OFF	Unchanged	Unchanged	Unchanged	Unchanged	Unchanged
Reset \rightarrow Restart	OFF	OFF	OFF	Reset to preset	Reset to zero	Reset to zero
Stop \rightarrow Restart	OFF	Unchanged	OFF	Reset to preset	Unchanged	Unchanged

Simple Operation

This section describes how to edit a simple program using the program loader connected to MICRO ${ }^{3}$, transfer the program to MICRO^{3}, run the program on MICRO^{3}, and monitor the operation on the program loader.

Connect Program Loader to MICRO ${ }^{3}$

Connect the program loader to MICRO^{3} using the loader cable. The program loader is powered by MICRO ${ }^{3}$.

- For the MICRO ${ }^{3}$ c, see the MICRO ${ }^{3}$ C User's Manual. \downarrow

Loader Cable
 FC2A-KL2 ($5 \mathrm{~m} / 16.4 \mathrm{ft}$. long)

Plug the connector of the loader cable into the loader port on the MICRO^{3} base unit until the connector clicks. Plug the connector on the other end of the loader cable into the loader cable connection port on the program loader.
\ Caution - The connector has an orientation. Make sure of the correct orientation when plugging. To disconnect the cable, squeeze the connector, and pull it out.

Connect power supply and input switches to the MICRO ${ }^{3}$
base unit. See pages 1-21 and 1-22.
Turn power on. The POW (power) indicator on the base unit goes on.

Program Loader Display

Check that the program loader displays the messages as shown on the right when the program loader is powered up.

Create a User Program

Create a simple program using the program loader. The sample program performs the following operation:
When input 10 is turned on, output Q 0 is maintained
When input I 1 is turned on, output Q 1 is maintained
When input I2 is turned on, both outputs Q0 and Q1 are reset.
Set the RUN/STOP switch on the program loader to STOP. This will stop the MICRO ${ }^{3}$ operation.
Delete the entire program from the program loader

DEL END
 Make a time chart, relay diagram, and program list to perform the intended operation.

Enter the program by pressing the keys on the program loader. If you make a mistake in the key sequence, press the CLR key to begin the current line of programming (current address) again

Address 0	LOD 10 10	SET 1	0	\downarrow
Address 1	E/OR	F/RST	0	-
Address 2	AND	NOT	SET 1	$\begin{gathered} \mathbf{2} \\ \text { BRD } \\ \hline \end{gathered}$
Address 3	OUT 16	F/RST	0	\square
Address 4	LOD 10	SET 1	$\begin{gathered} 1 \\ \text { BPS } \\ \hline \end{gathered}$	-
Address 5	E/OR	\|F/RST Q	$\begin{gathered} \hline 1 \\ \text { BPS } \end{gathered}$	-
Address 6	AND	NOT	SET 1	$\begin{gathered} \hline \mathbf{2} \\ \text { BRD } \\ \hline \end{gathered}$
Address 7	OUT 16	F/RST	$\begin{gathered} 1 \\ \text { BPS } \\ \hline \end{gathered}$	-

Check the program from address 0 to the end of the program using th program loader.
Press the CLR key three times to read address 0
Press the $\boldsymbol{\nabla}$ key to verify the program up to the last address.

l	$0 \sim$ LOD	I
1	0	
1 OR	Q	0
2 ANDN	I	2
3 OUT	Q	0

$\begin{array}{llll}2 & \text { ANDN } & \mathrm{I} & 2 \\ 3 & \text { OUT } & 8 & 0\end{array}$

Transfer Program and Monitor MICRO ${ }^{3}$ Operation

Transfer the program to the MICRO ${ }^{3}$ base unit, run the program and monitor the operation using the program loader using the following procedures.

Press the TRS key on the program loader to select the transfer mode. The program loader displays as shown on the right

TRS

TRS 1 Kstep Loader \quad PC OK?

```
TRS 1Kstep
(Write)
Loader * PC
END
```


Introduction

This chapter describes general information for understanding the functions and specifications of the FC2A-HL1E program loader. The program loader is used to edit user programs, transfer a user program to the MICRO ${ }^{3}$ base unit, and monitor the loader. The program loader is used to edit user programs, transfer a user program to the MICRO ${ }^{3}$ base unit, and monitor
MICRO 3 operation. Operating procedures for the editor, transfer, and monitor modes are described later in this chapter.

Parts Description

Magnets on the Back

Magnet sheets are provided on the back of the program loader to attach to steel panels.

Caution
Keep diskettes and magnetic cards away from the magnets; otherwise, data may be lost.

\! Caution

Prevent the program loader from falling while inserting a memory card, connecting the loader cable, or plugging an AC adapter; otherwise damage or malfunction of the program loader, memory card, or MICRO ${ }^{3}$ connector will result.
Dispose of the battery in the memory card when the bat tery is dead in accordance with pertaining regulations.

Function Keys

	tion level or back to the editor mode.
INS	Insert key used to insert a program instructio
	Delete key used to delete program instructions
	Address key used to select a program address.
MON	Monitor key used to monitor the MICRO ${ }^{3}$ oper ation, to change timer/counter preset value, o

ation, to change timer/counter
to enter data into data register

Program Keys

LOD Programs the LOD instruction. 10 Precedes entering a decimal value.

OUT Programs the OUT instruction. | 16 | Precedes entering a hexadecimal value. |
| :---: | :---: |

SET Programs or executes the SET instruction. Specifies the input operand (I).
TIM Programs the TIM, TMH, or TMS instruction. Specifies the timer operand (T)

D Enters hexadecimal value D.
AND Programs the AND instruction.
E/OR Enters hexadecimal value E.
OR Programs the OR instruction Programs the OR instruction.
Specifies the data register operand (D)
F/RST Enters hexadecimal value F.

RST	
Q	Programs or executes the RST instruction

CNT Programs the counter instruction. | CNT | Specifies the counter operand (C). |
| :---: | :---: |
| C | |

A/ Enters hexadecimal value A. Programs the NOT instructionEnters hexadecimal value B.
\qquad Programs the repeat or selects an option.
Enters hexadecimal value C Programs the SOTU or SOTD instruction Programs the SOTU or SOTD instruction
Specifies the internal relay operand (M).

Program keys have one or more legends or numbers on the key top. These keys select the operation automatically depending on the preceding key. For example, when the following keys are pressed in sequence
LOD
SET $\underset{\text { BPS }}{ }$ The first key selects "LOD" to start key sequence.
The second key selects "Input" because "SET" does not follow "LOD." The third key selects " 1 " because "BPS" does not follow "I."

Program Loader Operation Modes

The program loader has four operation modes and displays as shown below

Editor Mode

The editor mode is used to edit a user program in the user program memory of the program loader. See page 3-5. From the normal editor mode, the operation mode can be changed to the address selection mode, insert mode, or delete mode.
Address selection mode: A program address is selected by pressing the ADRS key.

The transfer mode is used to transfer or compare user programs between the program loader and the MICRO ${ }^{3}$ base unit or memory card. See page 3-9.

Monitor Mode

The monitor mode is used to monitor input, output, internal relay, shift register sta tuses, preset and current values of timers and counters, and data of data registers on the program loader display. The monitor mode is also used to set or reset an input, output, internal relay, or shift register bit from the program loader. Timer/counter preset values and data register values are also changed using the monitor mode. See page 3-12.

FUN (Function) Mode

The FUN mode is used to change the FUN table settings for the MICRO ${ }^{3}$ base unit, program loader, and memory card. See page page 5-1.

Internal Memory and User Memory

When a user program and FUN settings are edited using the program loader, the data is stored in the internal RAM of the program loader. When the user program is transferred to the MICRO ${ }^{3}$ base unit, FUN1 through FUN11 settings are also transferred.
When program transfer and verification are performed, the user program moves as follows:
Write: The user program and FUN1 through FUN11 settings are written from the program loader to the EEPROM in the MICRO 3 base unit.
Read: The user program and FUN1 through FUN11 settings are read from the MICRO ${ }^{3}$ base unit to the internal RAM of the program loader.
Verify: User programs and FUN1 through FUN11 settings are compared between the MICRO ${ }^{3}$ base unit and the internal RAM of the program loader.

Programming Procedures and Precautions

This section describes the programming procedures using the program loader.

Supply Power

The program loader can be powered in two ways. When the program loader is connected to the MICRO^{3} base unit using the loader cable, the program loader is powered by the base unit. Another way is to use an AC adaptor to power the program loader directly. For specifications of an applicable AC adapter, see page A-4.
Nhen powered up, the program loader beeps and displays the initial screen.
While the initial screen is displayed, pressing any key except the FUN, MON,

$$
\begin{aligned}
& \text { While the initial screen is displayed, pressing any key except the FUN, MON, } \\
& \text { and TRS keys enables the editor mode and displays the user program stored in }
\end{aligned}
$$

the program loader internal RAM. The FUN kev calls the FUN setting mode.

$$
\begin{aligned}
& \text { the program key the monitor mode, and the TRS key the transfer mode } \\
& \text { the MON }
\end{aligned}
$$

Delete User Program from Program Loade

To delete the entire user program from the program loader, press the following keys on the program loader. When the user program is deleted, the FUN1 through FUN10 settings are also deleted.

O END

1 END 2 END 3 END

Change FUN Settings

See FUN Settings on page 5-1.

Create a User Program

See Using Editor Mode on the next page.
Check User Program
When programming is completed, check the user program by pressing the following keys.

FUN \begin{tabular}{c}
3

BPP

\hline
\end{tabular}

When the program is correct:

FUN $>30 \quad$ CHECK1
 Program OK

When the program is incorrect

Correct the program and check the program again.
For error details, see FUN30 on page 5-12

Transfer the User Program from the Program Loader to the MICRO ${ }^{3}$ Base Unit
To transfer the user program to the MICRO^{3} base unit, press the following keys.

TRS \begin{tabular}{|c|c|}

\hline TRS | 1Kstep |
| :---: |
| (Write) | \& | Note: When the MICRO 3 base unit is running, user |
| :--- |
| programs cannot be transferred. To stop the MICRO |

operation, set the RUN/STOP switch on the program

loader to STOP.
\end{tabular}

When the user program in the MICRO^{3} base unit is write- or read/write-protected, "Protected PC" is displayed. Before transferring the user program, cancel the program protection using FUN22. See page 5-10

| TRS1Kstep
 (Write)
 Loader
 --Protected PC-- |
| :---: | :---: |

Using Editor Mode

The editor mode is used to create and revise user programs by writing, deleting, and inserting program instructions in the internal RAM (program memory) of the program loader. The display can be scrolled and a selected program instruction or address can be searched for in the editor mode.

Deleting Entire User Program

The entire user program can be deleted by clearing the user program memory. When the program memory is cleared FUN1 through FUN10 settings are also cleared to the default values.
Before creating a new program, delete the entire program from the program memory in the program loader.
To delete all program instructions, press the keys:
DEL $\begin{gathered}7 \\ \text { END }\end{gathered}$
page 3-6.

Selecting Program Addresses and Displaying Instructions

It is possible to select a program address and read out the instruction on the display. Selecting program addresses is possible whether MICRO ${ }^{3}$ is running or not. Press the ADRS key, enter an address to which to jump, and press the $\boldsymbol{\nabla}$ key to start. Selecting address is started in either direction by pressing the $\boldsymbol{\nabla}$ key.

Example: Jump to Address 50

Enter the address to jump to

$50 \vee$ AND	T	7
51	LOD	M

To display the first instruction at address zero.
7
To display the address where an END statement first occurs.
The program loader usually displays 4 lines of the program in the editor mode. The display window can be scrolled to read the program. To scroll up or down through instructions surrounding a particular address, first select the desired address (shown above).To scroll up through preceding instructions.To scroll down through following instructions.

If the $\boldsymbol{\nabla}$ key is pressed when the program loader is displaying the last address, the program loader beeps twice to signal an error.

Entering Program Instructions

Program instructions are entered to the program memory at the selected address in the program loader. A new program instruction overwrites the existing program instruction at the selected address.

Move the cursor where you want to enter a program instruction using the $\boldsymbol{\nabla}$ and $\mathbf{\Delta}$ keys. To select an address, press the ADRS key, address number, and the $\boldsymbol{\nabla}$ key.
Enter an instruction and operand.
Press the $\boldsymbol{\downarrow}$ key to enter the program instruction into the program memory.

Example: Enter an OR program shown below at address 101

Move the cursor to address 101 by pressing keys:
\square

Prgm Adrs	Instruction	Data
101	LOD	I0
102	OR	Q0
103		

101 END
102 END
103 END
104 END

a key is pressed. When the instruction word and oper and are correct, the program loader beeps once When incorrect, the program loader beeps twice to signal an error. The beep sound can also be silenced using FUN34. See page 5-14.

Note: When the same output or internal relay number is programmed for the OUT instruction, the program loader beeps and signals Double Out Error, but the output instruction is written in the program memory.

Deleting Program Instructions

One or more program instructions can be deleted from the user program.
To delete a program instruction, move the cursor to the address, and press the keys
\square
To delete several program instructions continuously, move the cursor to the first address to delete, and press the key:

When the delete operation is completed, the remaining program is shifted up.

MICRO
3: Program Loader

nserting Program Instructions

A program instruction can be inserted at any address. When a program instruction is inserted, subsequent program instructions are shifted down.
Move the cursor to the address where you want to insert a program instruction
Press the INS key.
Enter the program instruction to insert, and press the $\boldsymbol{\checkmark}$ key.
To insert more instructions, continue to enter the instructions
To return to the normal editor mode, press the CLR key.
Example: Insert an NO contact of input 12 at the position $*$ in the diagram below

Prgm Adrs	Instruction	Data
11	LOD	I0
12	OR	I
13	OUT	Q 0

This insertion is done by inserting an AND instruction between addresses 12 and 13 . Move the cursor to address 13 by pressing keys:

Press the insert key:
INS

Enter the AND instruction and operand I2
D/AND SET
The cursor moves to the next line.

$$
\begin{array}{ccc}
12 \text { OR } & \text { I } & 1 \\
13 \text { AND } & \text { I } & 2 \\
\text { INST } & & \\
14 \text { OUT } & Q & 0
\end{array}
$$

To return the normal editor mode, press the clear key
CLR

12	OR	I	1
13	AND	I	2
14	OUT	Q	0
15	END		

Searching for a Program Instruction

A specified program instruction can be searched for through the user program.
Enter an instruction to search for and start the search by pressing the appropriate keySearches to the smaller address starting at the cursor position.Searches to the larger address starting at the cursor position.
B/B A or ${ }^{8}$ REP \qquad Repeats the search for the same instruction.

Example: Search for instruction LOD 15 to the larger address

Enter the instruction to search

LOD	SET	5 10

To start the search, press the key:Searches to the larger address starting at the cursor position and displays the instruction when found.

50 LOD I 5
51 LOD M 10
52 AND M 11
53 AND M 12
When the specified instruction is not found, the program loader beeps twice.
53 AND M 12

Reading Advanced Instructions

To read and edit the S (source) and D (destination) operands of advanced instructions, press the following keys.
Move the cursor to the address of an advanced instruction to read.

10	LOD	I
11	1	
(MOV $)$		
14	LOD	I
13	10	
AND	M	20

To display the advanced instruction operands, press the key

```
11 S1\ D 1
MOV
    D2: D 2
```

To return to the normal editor mode, press the CLR key.

Sequential Monitoring

The sequential monitoring can be enabled in the editor mode to monitor input, output, internal relay, timer, and counter statuses at 4 consecutive addresses on the program loader. For the operating procedur to enable the sequential monitoring, see FUN32 on page 5-13.
The sequential monitoring is possible at addresses of LOD, LODN,
AND, ANDN OR ORN OUT, OUTN, SET, RST, TIM, and CNT AND, ANDN, OR, ORN, OUT, OUTN, SET, RST, TIM, and CNT instructions.

Jsing Transfer Mode

User programs can be transferred between the program loader and the MICRO ${ }^{3}$ base unit or the memory card installed in the program loader. The transfer mode includes writing, reading, and comparing of user programs.
When the user program in the MICRO^{3} base unit is protected from writing and/or reading, the program transfer operation cannot be performed. For user program protection, see FUN22 on page 5-10.

Writing Program from Program Loader to MICRO ${ }^{3}$ Base Unit

A user program can be transferred from the program loader to the MICRO ${ }^{3}$ base unit only when the MICRO ${ }^{3}$ base unit is stopped. When a user program is transferred, FUN1 through FUN11 settings are also transferred.
Make sure that the MICRO ${ }^{3}$ base unit is stopped and press the keys:

$$
\begin{aligned}
& \text { TRS } \quad 1 \mathrm{Kst} \\
& \text { (Write) } \\
& \text { Loader PC } \\
& \text { OK? }
\end{aligned}
$$

To start the program transfer, press the enter key:

When the transfer is completed, "END" is displayed.

$$
\begin{array}{cc}
\hline \text { TRS } \begin{array}{c}
\text { 1Kstep } \\
\text { (Write) } \\
\text { Loader PC } \\
\text { END }
\end{array} \\
\hline
\end{array}
$$

Note: When error occurs during program transfer, see "Error Messages for Program Loader Operation" on page 20.

Reading Program from MICRO ${ }^{3}$ Base Unit to Program Loader

A user program can be transferred from the MICRO^{3} base unit to the program loader whether the MICRO^{3} base unit is running or not. When a user program is transferred, FUN1 through FUN11 settings are also transferred.

To start the program transfer, press the enter key:

TRS1Kstep (Read) Loader PC END	

When the transfer is completed, "END" is displayed.
Note: When an error occurs during the program transfer, see "Error Messages for Program Loader Operation" on page 20.

Comparing Programs between Program Loader and MICRO ${ }^{3}$ Base Unit

User programs can be compared between the program loader and the MICRO ${ }^{3}$ base unit whether the MICRO 3 base unit is running or not. When user programs are compared, FUN1 through FUN11 settings are also compared.

TRS | 1 Kstep |
| :---: |
| (Verify) |

Loader PC
OK?

To start the program comparison, press the enter key:

When the programs match, "END" is displayed.

$$
\begin{aligned}
& \text { TRS } 1 \text { Kstep } \\
& \text { Loader * PC } \\
& \text { Loader }
\end{aligned}
$$

Note: When error occurs during program comparison, see "Error Messages for Program Loader Operation" on page 20.

Writing Program from Program Loader to Memory Card

A new memory card must be formatted before writing user programs using FUN41. See "FUN41: Memory Card Formatting" on page 15. Insert a formatted memory card into the program loader. Make sure that the write protect switch on the memory card is set to the write enable side.
Press the keys:
TRS TRS

Select a storage address from 1 through 84 to store the user program in the memory card by pressing the key:
\square or \mathbf{A}

| TRS1Kstep
 (Write)
 Loader Card
 OK? $1: \star * * * * * * *$ |
| :---: | :---: |

TRS 1Kstep
 (Write)
 Loader Card
 0K? 10 Card

At storage addresses where no program is stored, 8 asterisks are displayed. At addresses where programs are stored with At storage addresses where no program is stored, 8 asterisks are displayed. At addresses where programs are stored
out program names, the program name line is left blank. A new program can be overwritten at any storage address.
To enter a program name, move the cursor to the right by pressing the
key:

Select a character at each position to enter a progran name of 8 characters maximum. When FUN35 dis play language selection is set to English, characters ram name To select a character press the key:

Move the cursor to the next or previous position by pressing the or 4 key
After entering a program name, start to transfer the program from the program loader to the memory card by pressing the key:

(Write)
 Loader Card

TRS 1Kstep

END : Card
When the transfer is completed, "END" is displayed.
Note: When an error occurs during program transfer, see "Error Messages for Program Loader Operation" on page 20.

Reading a Program from Memory Card to Program Loader

Insert a memory card containing user programs into the program loader.
Press the keys:
TRS TRS ∇

$$
\begin{gathered}
\text { TRS } \begin{array}{c}
\text { 1Kstep } \\
\text { (Read) } \\
\text { Loader Card }
\end{array} \\
\text { OK? } 1 \cdot \text { PROGRAM }
\end{gathered}
$$

Select a program name in the memory card as described above and start the program transfer by pressing the keys:

When the transfer is completed, "END" is displayed.

TRS	1Kstep (Read)
Loader Card	
END	: IDEC003

Note: When an error occurs during program transfer, see "Error Messages for Program Loader Operation" on page 20.

Comparing Programs between Program Loader and Memory Card

 Insert a memory card containing user programs into the program loader.Press the keys:
TRS TRS

Select a program name in the memory card as described on the preceding page and start the program comparison by pressing the keys:

TRS $\begin{gathered}1 \text { Kstep } \\ \text { (Verify) }\end{gathered}$	
Loader * Card	
OK?	1:PROGRAM1
TRS1Kstep (Verify)	
Loader * Card	
End	: IDEC003

When the programs match, "END" is displayed. When the programs do not match, NG is displayed. Note: When an error occurs during the program comparison, see "Error Messages for Program Loader Operation" on page 20.

Deleting a Program from the Memory Card

A user program can be deleted from the memory card. Insert a memory card containing user programs into the program loader.
Press the keys:
TRS TRS DEL

Select a program name in the memory card as described on the preceding page and start the program deletion by pressing the key:

When the program is deleted, "END" is displayed.

TRS1Kstep (Delete) Card OK?	
TRS1:PROGRAM1	
	1Kstep (Delete) Card END

To delete all programs from the memory card, see "FUN41: Memory Card Formatting" on page 15.

Using Monitor Mode

The monitoring mode is enabled by pressing the MON key on the program loader. The statuses of inputs, outputs, internal relays, shift registers, the preset and current values of timers and counters, and the data of data registers can be monitored on the program loader. Changing timer/counter preset values, entering data into data registers, and setting/resetting are also enabled in the monitor mode. The program loader has 3 lines to display the monitor data.

Monitoring I/O, Internal Relays, and Shift Registers

Bit operands such as inputs, outputs, internal relays, and shift register statuses are displayed in a group of 8 points starting at the designated number

Press the MON key to enable the monitor mode.
Enter the operand and number to monitor.
Press the $\boldsymbol{\nabla}$ key to start monitoring
Example: Monitor inputs 10 through 17
To enable the monitor mode, press the key:

MON

Enter the operand and the first number to monitor:

SET
1

Start monitoring by pressing the key:

The ON/OFF statuses of inputs I0 through I7 are displayed.
To return to the editor mode, press the CLR key.

The monitor screen shows 3 lines to monitor different operands. For example, when input I 0 , output Q 0 , and internal relay M30 are specified as monitor data, the screen displays as shown below:

To monitor the preceding or next 8 points of the same operand, move the cursor to the line and press the $\boldsymbol{\triangleleft}$ or key, respectively.

Monitoring Timers and Counters

The preset and current values of timers and counters are displayed
Press the MON key to enable the monitor mode
Enter the operand and number to monitor
Press the $\boldsymbol{\nabla}$ key to start monitoring,

Example: Mionitor timer T10

To enable the monitor mode, press the key:

MON

Enter the operand and number to monitor

When pressing the TIM or CNT key, "TC" is displayed until monitor
ing is started.
Start monitoring by pressing the key:

The preset and current values are displayed.

MON

- TC10

MON
$\rightarrow T 10 \square 10065$

To return to the editor mode, press the CLR key
The monitor screen shows 3 lines to monitor different operands. For example, when timer T10, counter C20, and counter C30, which is not programmed, are specified as monitor data, the screen displays as shown below:

■ ON (after timeout or countout) \quad OFF (during timing or counting)
The second line shows T10 timed out, preset value 100, and current value 0 . The third line shows C20 during counting, preset value D20, and current value 65 . The fourth line shows the specified timer/counter number is not programmed

Current value (remaining time of timer or counted value of counter) - Preset value (constant or data register number)

- ON/OFF status of the timer or counter

The operand number to monitor
The operand to monitor
To monitor the preceding or next number of the same operand, move the cursor to the line and press the respectively.

Changing Preset Values for Timers and Counters

Preset values for timers (TIM, TMH, and TMS) and counters can be changed by transferring a new value to the MICRO ${ }^{3}$ base unit RAM. This is possible whether the base unit is running or not. Only preset values programmed with a constan value can be changed using a constant value by this operation. MON key, TIM or CNT key, the operand number, the LOD/10 key, the new preset value, and the $\boldsymbol{\triangleleft}$ key
When the preset value is changed correctly, "OK" is displayed. If not, "NG" is

$$
\begin{aligned}
& \text { MON } \\
& \rightarrow T C \\
& 5
\end{aligned} 200 \text {-OK- }
$$

displayed. To return to the editor mode, press the CLR key
If the timer preset value is changed during timedown or after timeout, the timer remains unchanged for that cycle. The change becomes effective for the following timedown cycle. If the timer preset value is changed to zero, then the timer operation stops and the timer output is turned on immediately.
If the counter preset value is changed during counting, the new preset value becomes effective immediately. If the new preset value is smaller than or equal to the current value, the counter output goes on as soon as the new preset value is transferred. If the counter preset value is changed after countout, the counter output remains on until reset.

Data movement when changing a timer/counter preset value

When changing a timer/counter preset value using the
rogram loader, the new preset value is written into the MICRO 3 base unit RAM. The user program and preset values in the EEPROM are not changed.

Moving data when writing changed preset values into user program

The changed timer/counter preset values can be read out from the MICRO^{3} base unit RAM to the program loader using FUN21 (see page 5-9). To update the preset values for the user program in the EEPROM, transfer the user program from he program loader to the EEPROM.

Moving data when clearing changed preset values to restore original values

Changing preset values for timers and counters in the MICRO 3 base unit RAM does not automatically update preset values in the user memory, EEPROM. This is useful for restoring previous preset values using FUN21 (see page 5-9). When the program in the loader is rewritten to the EEPROM without using FUN21 to update preset values beforehand, existing values are transferred to the EEPROM and overwrite

Program Loader

\square MICRO $^{\mathbf{3}}$ Base Unit
 the modified values in the RAM, also. When the changed timer/counter preset values are cleared from the RAM using FUN21, the original preset values are written from the EEPROM to the RAM.

Monitoring High-speed Counters

The preset and current values of high-speed counters HSC0 through HSC3 are displayed in decimal or hexadecimal notation on the program loader:

Press the MON key to enable the monitor mode.
Enter the CNT and ADV keys, followed by the operand number 0 through 3 to monitor.
Press the LOD/10 or OUT/16 key to display the preset or current value in decimal or hexadecimal notation. If not pressed, the value is displayed in the data type selected by FUN36. See "FUN36: Display Data Type Selection" on page 14. The decimal or hexadecimal notation can also be switched after starting the monitor.
Press the $\boldsymbol{\nabla}$ key to start monitoring.
To return to the editor mode, press the CLR key

When the $\boldsymbol{\nabla}$ key is pressed, the capital letters, HSC0, are displayed followed by the double-word preset value of the specified high-speed counter number, and the cursor moves down to the next line. When a data- register is designated as source ified high-speed counter number, and the cursor moves down to the next line. When a data reg.

To monitor the current value, press the $\mathbf{\Delta}$ key to move the cursor one line up, and

To change the preset or current value notation between decimal and hexadecimal, place the cursor on the line, and pres the LOD/10 or OUT/16 key followed by the $\boldsymbol{\nabla}$ key

When the preset and current values of the above are monitored in hexadecimal notation, the display will be as shown on the right.

With the cursor placed at hsc0, pressing the key again will display the preset value of the next high-speed counter HSC1 in this example. The preset value and current value of the next or preceding high-speed counter is displayed by pressing the or $\boldsymbol{\triangleleft}$ key, respectively.
When high-speed counter HSC1 for multi-stage comparison is monitored, the data register designated by source operand S 1 is displayed as the preset value.
To monitor HSC1 preset value in hexadecimal notation, press the keys:

Similarly, when high-speed counter HSC2 for pulse output control is monitored, the preset value or data register designated by source operand S 1 is displayed following HSC2, and the current value is displayed following hsc 2 .

When high-speed counter HSC3 for gate control is monitored, which has no preset value, then the data register designated by destination operand D1 is displayed following HSC3. The current value is displayed following hsc3.

$\begin{array}{ll} \text { MON } \\ \text { HSC1 } & \text { D } 10 \\ \text {-hsc1 } \$ \end{array}$	
MON HSC2 -hsc2	$\begin{array}{r} 1000 \\ 850 \end{array}$
$\begin{aligned} & \text { MON } \\ & \text { HSC3 D } 10 \\ & \text { thsc3 } \end{aligned}$	65000

Entering Data into Data Registers

Data in data registers can be changed using the program loader whether the MICRO ${ }^{3}$ base unit is running or not. Data register values can be entered in decimal or hexadecimal notation. In addition, a double-word value can also be entered into wo consecutive data register in decimal or hexadecimal notation. This function is particularly useful for entering a preset value for a high-speed counter when data registers are used for a preset value.

Press the MON key to enable the monitor mode.
Enter the D key, followed by the data register number to which to enter data.
Press the ADV key to enter a double-word value into two consecutive data registers. If not pressed, a one-word value is entered into the designated data register.
Press the LOD/10 or OUT/16 key to enter the value in decimal or hexadecimal notation, followed by the value to enter Press the \boldsymbol{d} key to enter the value into the data register. "OK" is displayed for approximately 1 second. To return to the editor mode, press the CLR key.

Example: Enter hexadecimal value ABF into data register D15

MON	E/OR	1 BPS	5 cc=	OUT 16	A/	B/P	$\stackrel{\text { F/RST }}{ }$	4

MON
D 15 \$ ABF -OK-

The $\$$ symbol is displayed to show the hexadecimal data type.
Example: Enter double-word decimal value 100,000 into data registers D17 and D18

ner a decimal value. The upper word of the double-word decimal value enters
into the specified data register, and the lower word enters into the next data regis-
ter. The third and fourth lines in this example display the data of individual data registers D17 and D18, respectively.
Example: Enter double-word hexadecimal value ABCDEF into data registers DO and D1

MON	${ }^{E} / \mathrm{OR}$	0	ADV	OUT 16	
A/ NOT	B/REP	$\frac{\mathrm{C} / \mathrm{SOT}}{\mathrm{M}}$	D/and	$\frac{E_{\mathrm{OR}}}{\mathrm{D}}$	$\frac{\mathrm{F}}{\mathrm{RST}} \mathrm{Q}$

\section*{	MON			
$\rightarrow D$	0	$\$$	ABCDEF	 $\begin{array}{llll}\text { D } & 0 & \$ & \text { AB } \\ \text { D } & 0 & \$ & 0\end{array}$ D $1 \$ 0$}

D $0 \$ \mathrm{AB}-\mathrm{OK}-$

$\begin{array}{rlll}-D & 0 & \$ & A B \\ D & 0 & \$ & A B\end{array}$
D $0 \quad \$ \quad \mathrm{AB}$
If FUN36 is set to select hexadecimal data type, the OUT/16 key may be omitted
D 1 \$CDEF to enter a hexadecimal value. The upper word of the double-word hexadecimal value enters into the specified data register and the lower word enters into the next data register. The third and fourth lines in this example display the data of individual data registers D0 and D1, respectively.
Note: To clear data of all data registers to zero, use FUN26 Operand Data Clear. See page page 5-11. When the reset input is turned on, all data register values are also cleared to zero. See page 2-2.

Monitoring Data Registers

The data of data registers can be displayed in decimal or hexadecimal notation on the program loader. In addition, the douThe data of data registers can be displayed in decimal or hexadecimal notation on the program loader. In addition, the douparticularly useful for confirming the preset value of high-speed counters when or hexada registers are used for a preset value

Press the MON key to enable the monitor mode
Enter the D key, followed by the data register number to monitor.
Press the ADV key to display the double-word data of two consecutive data registers. If not pressed, the one-word value of the designated data register is displayed.
Press the LOD/10 or OUT/16 key to display the value in decimal or hexadecimal notation. If not pressed, the value is displayed in the data type selected by FUN36. See "FUN36: Display Data Type Selection" on page 14. The decimal or hexadecimal notation can also be switched after starting the monitor.
Press the $\boldsymbol{\nabla}$ key to start monitoring.
To return to the editor mode, press the CLR key
Example: Monitor data register D30 in decimal notation (FUN36 set to select decimal notation)
Enable the monitor mode, and enter the operand and number by pressing the keys:

MON
-D 30

MON

D 30
-

The data of data register D30 is displayed.
D 30 \$ 32

```

LOD/10 or OUT/16 key followed by the \(\boldsymbol{\nabla}\) key.

\section*{Example: Change decimal value of data register D30 to hexadecimal}

OUT
\begin{tabular}{|r|}
\hline 16 \\
\hline 16 \\
\hline
\end{tabular}
The \(\$\) symbol is displayed to show the hexadecimal data type.
To return to the editor mode, press the CLR key.
\(\square\)
MON
D 10 \$162E
The \(\$\) symbol is displayed to show the hexadecimal data type.

Example: Display double-word value of data registers D17 and D18 in decimal notation

lower word of the monitored double-word data.
\(\begin{array}{rrrr}D & 17 & 1 \\ \text { D } & 18 & 34464\end{array}\)
The third and fourth lines in this example display the data of individual data registers D17 and D18, respectively.
Example: Display double-word value of data registers D17 and D18 in hexadecimal notation

data registers D17 and D18, respectively.
ider

\section*{Setting and Resetting}

Caution - Make sure of safety when operating the MICRO \({ }^{3}\) to force outputs on (SET) or off (RST). Incorrect operation on the \(\mathrm{MICRO}^{3}\) may cause machine damage or accidents.
Inputs, outputs, internal relays, and shift register bits can be temporarily turned on (SET) or turned off (RST), using the program loader.

Inputs and outputs can be set or reset only while the MICRO \({ }^{3}\) base unit is running. The designated input or output is set or reset at the first execution of the END instruction after the \(\boldsymbol{d}\) key is pressed. After executing the END instruction, the input reflects the actual input, and the output is operated according to the existing program.
Internal relays and shift register bits can be set or reset whether the MICRO \({ }^{3}\) base unit is running or not. When setting or resetting internal relays or shift register bits, the on or off status becomes in effect as soon as the \(\boldsymbol{\downarrow}\) key is pressed. If the internal relay or shift register bit is designated with "keep" status, then the set or reset operation remains in effect after the MICRO \(^{3}\) base unit is tuned on. For "keep" designation, see FUN3 on page 5-4 and FUN4 on page 5-5
To set or reset an operand, press the MON key, the operand and number, followed by the SET or RST key, and the \(\boldsymbol{d}\) key. When the operand is correctly set or reset, "OK" is displayed. If not, the program loader will beep.

\section*{xample: Set input I1}


When the input is set correctly, "OK" is displayed.

\section*{Example: Reset internal relay M10}
\(\square\)
BPs 0 RST
When reset correctly, "OK" is displayed.
When input I1 is turned on (SET), the circuit on the right will be actuated to hold utput Q0. If the NC input I2 is turned off using the SET operation, the circuit ill Qo if is

\section*{Timing for SET and RST Operation}

The SET or RST operation is set to the MICRO \({ }^{3}\) base unit RAM when the first END instruction is executed after pressing the \(\boldsymbol{\sim}\) key. The subsequent sequence is executed according to the user program. Inputs are updated depending on actua external inputs. Outputs, internal relays, and shift registers are updated according to the user program.
In the END execution, the processing occurs on actual output processing, actual input processing, and SET/RST processing in this order. When input I1 is turned input remains off, the result is reflected as follows.
If input I1 is set using the SET operation in the 100th scan, input I1 in the RAM is turned on in the 101st scan, which turns output Q 1 in the RAM on. As a result, actual output Q1 is turned on when the END instruction is executed in the 101st scan. Since actual input I 1 is off in the 102 nd scan, I 1 and Q 1 in the RAM are turned off. Consequently, actual output Q 1 is turned off when the END instruction is executed in the 102nd scan. See the timing chart on the next page.

MICRO
Time Chart for SET and RST Operation


\section*{Error Messages for Program Loader Operation}

When using the program loader for programming or transferring a user program, the following error messages may be displayed.
\begin{tabular}{|c|c|}
\hline Error Message & Error Details \\
\hline Calendar NG & Invalid calendar data. \\
\hline CRC Code NG & The CRC code of the user program to be transferred is incorrect. \\
\hline Data Clear NG & The designated data cannot be initialized. \\
\hline Double Out Error & The same output operand is used repeatedly. \\
\hline Expansion Unit & Program loader is connected to the MICRO\({ }^{3}\) base unit at the expansion station. \\
\hline No Connect & Memory card is not inserted. \\
\hline Operand NG & Invalid operand. \\
\hline Pass Word NG & Incorrect password. \\
\hline PC Run Error & The MICRO \({ }^{3}\) base unit is in the run state, and user program cannot be transferred. \\
\hline Prg. NG-(A ) & User programs are different between the program loader and the MICRO \({ }^{3}\) base unit. Address is displayed in 4 digits. \\
\hline Prg. NG-(FUN ) & FUN settings are different between the program loader and the MICRO \({ }^{3}\) base unit. FUN number is displayed in 2 digits. \\
\hline Prg. Size NG & Invalid user program size selection (FUN11). \\
\hline Program Over & User program exceeds the program size selected with FUN11. \\
\hline Protected Card & The write protect switch on the memory card is set to protect. \\
\hline Protected PC & The MICRO \({ }^{3}\) base unit is read and/or write protected. \\
\hline Receive Error & Line disconnection. \\
\hline Receive Error 0 & Invalid BCC code of the received data. \\
\hline Receive Error 1 & Data parity, framing, or overrun error. \\
\hline Receive Error 2 & Time over between data characters. \\
\hline Receive Error 3 & Invalid communication command. \\
\hline Receive Error 4 & Invalid communication procedure (protocol). \\
\hline System Card ???? & A system card is inserted. The ID number is displayed in 4 digits. \\
\hline T/C Data NG & Invalid timer/counter data. \\
\hline Unformat Card & The memory card is not formatted to store user programs. \\
\hline Unrecognized One & Incompatible memory card. \\
\hline Data Over & Transmit/receive data designation exceeds 200 bytes (MICRO\({ }^{3} \mathrm{C}\) only). \\
\hline Setting NG & The protocol selector switch is not set to 3 when using FUN50 user communication data monitor (MICRO \({ }^{3} \mathrm{C}\) only). \\
\hline Speed Mode Error & TXD/RXD is programmed in the high-speed mode (MICRO\({ }^{3} \mathrm{C}\) only). \\
\hline
\end{tabular}

\section*{ntroduction}

MICRO \(^{3}\) features special functions such as the high-speed processing mode, catch input function, input filter function, pulse output function, high-speed counter function, expansion and data link functions, external analog timer function, and pulse output function, high-speed counter function, expansion and da

\section*{High-speed Processing Mode}

MICRO \(^{3}\) can execute the user program in the standard processing mode and the high-speed processing mode. The highspeed processing mode is ideal for using MICRO \(^{3}\) as a sensor controller or executing a user program when high-speed processing is required. The processing mode can be selected using FUN5 on the program loader. See page 5-5.
Using the high-speed processing mode, program capacity and available operand numbers are limited as shown below.
Processing Speed and Program Capacity
\begin{tabular}{|l|l|l|}
\hline & \multicolumn{1}{|c|}{ High-speed Processing Mode } & \multicolumn{1}{c|}{ Standard Processing Mode } \\
\hline Processing Time: & \(0.45 \mu \mathrm{sec}\) average & \(2.2 \mu \mathrm{sec}\) average \\
Basic Instructions & \(0.2 \mu \mathrm{sec}\) minimum & \(12 \mu \mathrm{sec}\) minimum \\
\hline Scan Time & \(400 \mu \mathrm{sec} / 100\) steps & \(2.9 \mathrm{msec} / 1 \mathrm{ksteps}\) \\
\hline Program Capacity & Approx. 100 steps & 1012 steps \\
\hline
\end{tabular}

LOD, LODN, AND, ANDN, OR, ORN, OUT, OUTN, SET, RST, AND LOD, and OR LOD instructions are processed
faster in the high-speed processing mode. Other instructions do not have to be processed faster in the high-speed processing mode
The average scan time is not equal to the total of instruction processing times because processing of other than user pro gram instructions is involved.

\section*{Available Operands and Allocation Numbers}
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{High-speed Processing Mode} & \multicolumn{2}{|l|}{Standard Processing Mode} \\
\hline Input (see note) & 14 points & 10 to 115 & 28 points & 10 to 135 \\
\hline Output (see note) & 10 points & Q0 to Q11 & 20 points & Q0 to Q31 \\
\hline Internal Relay & 40 points & M0 to M47 & 232 points & M0 to M287 \\
\hline Catch Input Relay & 8 points & M290 to M297 & 8 points & M290 to M297 \\
\hline Special Internal Relay & 16 points & M300 to M317 & 16 points & M300 to M317 \\
\hline Data Register & 32 points & D0 to D31 & 100 points & D0 to D99 \\
\hline Timer & \multirow[t]{2}{*}{16 points total} & TO to T15 & \multirow[b]{2}{*}{32 points total} & T0 to T31 \\
\hline Counter & & C0 to C15 & & C0 to C31 \\
\hline Shift Register & 32 points & R0 to R31 & 64 points & R0 to R63 \\
\hline
\end{tabular}

Note: Available input and output numbers depend on the MICRO \(^{3}\) base unit used.

\section*{imitations on High-speed Processing Mode}

Using the high-speed processing mode, the following functions are limited:
- The program capacity is limited to approximately 100 steps.
- Expansion link and data link functions cannot be used.
- Available operand numbers are limited as shown above
- Control data registers D90 through D99 cannot be used.

\section*{Catch Input Function}

The catch input function is used to receive short pulses from sensor outputs regardless of the scan time. Since input signals to inputs I0 through I7 are always set to special internal relays M290 through M297, input signals are securely received even if short-pulse input signals turn on and off within one scan time

Input terminals 10 through 17 are assigned to catch inputs and also used for normal inputs. All normal input signals are read when the END instruction is executed at the end of a scan

\section*{atch Input Terminals and Pulse Width}
\(10-\mathrm{I} / \mathrm{O}\) MICRO \({ }^{3}\) base unit:
Catch inputs 6 points (I0 through I5)
16 - and \(24-\mathrm{I} / \mathrm{O} \mathrm{MICRO}^{3}\) base units: Catch inputs 8 points (I0 through I7)
Minimum detectable pulse width (when hard filter is set to 10 )
Input I0 ON pulse \(=28 \mu \mathrm{sec}\), Input I0 OFF pulse \(=30 \mu \mathrm{sec}\)
Input I1 to I7 ON pulse \(=37\) usec, Input I1 to I7 OFF pulse \(=120 \mu \mathrm{sec}\)

\section*{Catch Input Terminals and Special Internal Relays}

Each catch input is assigned to a special internal relay to store the catch input signal. Catch input terminals are divided into four groups to select rising or falling edges for catch inputs.
\begin{tabular}{|c|c|c|}
\hline Catch Group & Catch Input Number & Corresponding Special Internal Relay \\
\hline G1 & IO & M290 \\
\hline G2 & 11 & M291 \\
\hline G3 & 12 & M292 \\
& 13 & M293 \\
\hline G4 & 14 & M294 \\
(see note) & 15 & M295 \\
& 16 & M296 \\
\hline
\end{tabular}

Note: The 10-I/O type \(\mathrm{MICRO}^{3}\) base unit has only inputs I4 and 15 in group G 4 .

\section*{Rising or Falling Edge Selection for Catch Inputs (FUN6)}

FUN6 is used to select whether catch inputs are accepted at the rising edge (ON pulse) or falling edge (OFF pulse). Select the rising or falling edge for each group using FUN6 on the program loader. For setting FUN6, see page 5-6.

\section*{Input Filter Time Selection (FUN7)}

To make sure of correct receiving of catch input signals, set the input filter time using FUN7 on the program loader. Only hard filter can be used for catch inputs. The hard filter can be set between 0 and 255 to select the detectable pulse width. For setting FUN7, see page 5-6. For details of the input filter function, see the following pages.

\section*{Catch Input vs Normal Input}

The figure below compares how ON-pulse catch inputs and normal inputs are processed by MICRO \(^{3}\). In this example, FUN6 is set to select the rising edge to receive ON-pulse catch inputs.
When a short-pulse input enters, the corresponding catch input special internal relay is turned on for the next one scan When a short-pulse input enters, the corresponding catch input special internal relay is turned on for the next one


\section*{xample: Counting Catch Input Pulses}

This example demonstrates a program to count short pulses using the catch input function.


Input I 1 is used as a reset input for adding counter C 2 .
Input IO is assigned to catch input special internal relay M290.
Counter C 2 counts short-pulse inputs to input I 0 .
Note: When catch inputs M290 through M297 are used as pulse inputs to a counter, the repeat cycle periods of the pulse inputs must be more than 2 scan times.

\section*{Example: Maintaining Catch Inpu}

When a catch input is received, a special internal relay assigned to the catch input is turned on for only one scan. This example demonstrates a program to maintain a catch input status for more than one scan.


Input I 0 is assigned to catch input special internal relay M290
When input I 0 is turned on, M290 is turned on, and M0 is maintained in the self-holding circuit
When NC input I 1 is turned on, the self-holding circuit is unlatched, and M 0 is turned off M0 is used as an input condition for the subsequent program instructions.

\section*{Input Filter Function}

MICRO \(^{3}\) features the input filter function to select the input pulse widths to read inputs I0 through I7. The input filter ignores pulse inputs shorter than the selected value to prevent malfunction caused by noises.

Input filters are available in hard filter and soft filter. Both filters are selected using FUN7. High-speed counters and catch inputs can use only the hard filter. Normal inputs I0 through 17 can use both hard and soft filters.

\section*{Filter Circuit Schematic}


When hard filter is set at default value of 10 , catch input and high-speed counter input values are shown below.
Minimum pulse width to accept catch input (ON pulse): Input \(\mathrm{I} 0=28 \mu \mathrm{sec}\), Inputs I1 to \(\mathrm{I} 7=37 \mu \mathrm{sec}\) Minimum pulse width to accept catch input (OFF pulse): Input I \(0=30 \mu \mathrm{sec}\), Inputs II to \(\mathrm{I} 7=120 \mu \mathrm{sec}\) High-speed counter input frequency: 10 kHz (HSC0 and HSC3), 5 kHz (HSC1 and HSC2)

Inputs I10 through I15 and all inputs I20 through I35 at the expansion station cannot use the hard filter and soft filter. Input signals to these inputs are filtered by fixed filter of 3.0 msec . Short-pulse inputs and noises shorter than 3.0 msec are ignored. Note: Normal inputs I0 through I35 require 1 scan time in addition to the applicable hard, soft, or fixed filter value to accept input signals.

\section*{Setting Input Filte}

Use FUN7 on the program loader to set the hard filter and soft filter values. See page 5-6
Hard filter: 0 through 255 (default value is 10 )
Input I0 ON pulse \(=4\) to \(616 \mu \mathrm{sec}\), Input I0 OFF pulse \(=6\) to \(618 \mu \mathrm{sec}\)
Inputs I1 to I7 ON pulse \(=20\) to \(625 \mu \mathrm{sec}\), Inputs I1 to I7 OFF pulse \(=120\) to \(618 \mu \mathrm{sec}\)
Soft filter: \(\quad 0,3,7\), or 10 msec (default value is 3 msec )

\section*{Filtering Operation}

Depending on the selected values, the hard and soft filters have three response areas to receive or ignore input signals
Input reject area: Input signals are ignored and not received definitely
Input indefinite area: Input signals may be received or ignored.
Input accept area: Input signals are received definitely

\section*{Hard Filte}

Three input response areas are calculated for preset value N from the following formula. Use these values for reference only.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Input Signal} & Input Accept Area \(\alpha\) & Input Reject Area \(\beta\) \\
\hline 10 & ON Pulse & \(\alpha>2.4 \mathrm{~N}+4\) (Equation A) & \[
\begin{aligned}
& \mathrm{N} \leq 1: \beta<1 \\
& \mathrm{~N}>1: \beta<0.8 \mathrm{~N}-1 \text { (Equation } \mathrm{B} \text { ) }
\end{aligned}
\] \\
\hline 11 to 17 & ON Pulse & \[
\begin{aligned}
& \mathrm{N} \leq 2: \alpha>20 \\
& \mathrm{~N}>2: \alpha>2.4 \mathrm{~N}+13
\end{aligned}
\] & \[
\begin{aligned}
& N \leq 138: \beta<8 \\
& N>138: \beta<0.8 N-103
\end{aligned}
\] \\
\hline 10 & OFF Pulse & \(\alpha>2.4 \mathrm{~N}+6\) & \[
\begin{aligned}
& N \leq 2: \beta<1 \\
& N>2: \beta<0.8 N-1
\end{aligned}
\] \\
\hline 11 to 17 & OFF Pulse & \[
\begin{aligned}
& \mathrm{N} \leq 47: \alpha>120 \\
& \mathrm{~N}>47: \alpha>2.4 \mathrm{~N}+6
\end{aligned}
\] & \(\beta<0.8 \mathrm{~N}+40\) \\
\hline
\end{tabular}


Input response areas vary with input signals and hard filter preset values as listed below


If the hard filter is set to a value smaller than required, \(\mathrm{MICRO}^{3}\) becomes susceptible to noises and malfunctions may occur frequenly. As the hard fiter is set to a larger value, he maxi. relationship between the hard filter setting and maximum operat ing frequency is shown on the right. When high-speed response is required in an environment where noise exists, use shielded wires for input signal lines.


\section*{xample: Receiving Minimum Pulse Width of \(\mathbf{1 5 0} \boldsymbol{\mu s}\)}

When input I 0 is required to receive short pulses of 150 usec minimum using the catch input function, the preset value N for the hard filter is calculated as follows. From Equation A on page 4-4,
\[
150=2.4 \mathrm{~N}+4
\]
\[
\mathrm{N}=60.8
\]

Set the hard filter preset value N to 60 or less to catch short input ON pulses of \(150 \mu\) sec

\section*{Example: Eliminating Input Signals of \(\mathbf{1 5 0} \boldsymbol{\mu s e c}\)}

When input I 0 is required to eliminate noise signals of \(150 \mu \mathrm{sec}\) or less using the catch input function, the preset value N for the hard filter is calculated as follows. From Equation B on page 4-4,
\[
150=0.8 \mathrm{~N}-1
\]
\[
\mathrm{N}=188.75
\]

Set the hard filter preset value N to 189 or more to eliminate input pulses of \(150 \mu \mathrm{sec}\). When N is set to 189 , the minimum input signal width that can be received is calculated as follows. From Equation A on page 4-4,
\[
2.4 \times 189+4=457.6 \mu \mathrm{se}
\]

\section*{Soft Filter}

The soft filter can be set to \(0 \mathrm{msec}, 3 \mathrm{msec}, 7 \mathrm{msec}\), or 10 msec for normal inputs 10 through 17 in four groups, using FUN7 on the program loader. See page 5-6.

When the soft filter is set to 0 msec , the filtering function depends on the hard filter.
When the soft filter is set to \(3 \mathrm{msec}, 7 \mathrm{msec}\), or 10 msec , the soft filter is enabled to filter input signals. The input accept or reject areas for each setting are shown below.


Normal inputs require pulse widths of the above value plus 1 scan time to read the input signal
The soft filter can be set in four groups of inputs.
\begin{tabular}{|c|l|}
\hline Soft Group & Input Number \\
\hline G1 & 10 \\
\hline G2 & 11 \\
\hline G3 & 12,13 \\
\hline G4 & \(14,15,16,17\) \\
\hline
\end{tabular}

On the \(10-\mathrm{I} / \mathrm{O}\) type \(\mathrm{MICRO}^{3}\) base unit, only inputs I4 and I5 are available for group G4

\section*{Pulse Output Function}

MICRO \(^{3}\) features a pulse output function which can be used for illumination control and pulse-driven machines such as machine tools and conveyors. For details, see the PULS (pulse output) instruction on page 16-1 and PWM (pulse width modulation) instruction on page 16-3

\section*{High-speed Counter Function}

MICRO \({ }^{3}\) features high-speed counter functions which can be used for position control by counting high-speed pulses or for simple motor control in combination with the pulse output. For details, see page 17-1

\section*{Expansion Link Function}

I/O points can be expanded by connecting another \(\mathrm{MICRO}^{3}\) base unit using a shielded 2 -core twisted cable. Only one unit can be added to expand I/O points from 10,16 , or 20 points up to 48 points. The expansion link function cannot be used with the data link function or in the high-speed processing mode.

\section*{Expansion Link System Setup}

To set up an expansion link system, connect the data link terminals of both units using an expansion cable FC2A-KE1 ( 250 mm or 9.84 " long) or a shielded twisted pair cable with a minimum core wire diameter of \(0.9 \mathrm{~mm}\left(0.035^{\prime \prime}\right)\) as shown below. The cable for the expansion link system can be extended up to 200 meters ( 656 feet)
Set the function selector switch to 0 at the base station and to 7 at the expansion station.


200 meters ( 656 feet) long maximum
Core wire diameter \(0.9 \mathrm{~mm}\left(0.035^{\prime \prime}\right)\) minimum

\section*{Operating Procedure for Expansion Link System}

Power up both MICRO \({ }^{3}\) base units at the same time or power up the expansion station first. If the expansion station is powered up later than the base station, the base station does not recognize the expansion station. To recognize the expansion station in this case, execute FUN27 Link Formatting Sequence at the base station (see page 5-1) or turn on M307 Link Communication Initialize Flag at the master station (see page 6-3)
The scan time is extended by approximately 10 msec in the expansion link system.
If any communication error occurs in the expansion link system, communication error codes can be set to control data register D94. For details of link communication error codes, see page 18-5. To enable the control data register, use FUN10 Control Data Register Setting. See page 5-8. If a communication error occurs, the data is resent three times. If the error still exists after three attempts, the error code is set to data register D94.
The program loader can be connected to the base station only. If the program loader is connected to the expansion station, an error will result and error message "Expansion Unit" is displayed on the program loader.
The RUN indicator on the expansion station remains off whether the base station is running or stopped.

\section*{O Allocation Numbers for Expansion Link System}

Input and output allocation numbers do not continue from the base station to the expansion station. At the expansion station, inputs start at I20 and outputs start at Q20. Inputs and outputs are allocated depending on the MICRO \({ }^{3}\) base units used in the expansion link system as shown below:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{1/0 Points} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{MICRO \({ }^{3}\) Base Station I/O Allocation Numbers}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{MICRO \({ }^{3}\) Expansion Station I/O Allocation Numbers}} \\
\hline Total & IN/OUT & & & & \\
\hline \multirow[t]{2}{*}{10} & \multirow[b]{2}{*}{6/4} & \multicolumn{2}{|c|}{10-1/0 Type} & \multicolumn{2}{|c|}{\multirow[t]{2}{*}{-}} \\
\hline & & 10-15 & Q0 - Q3 & & \\
\hline \multirow[b]{2}{*}{16} & \multirow[b]{2}{*}{9/7} & \multicolumn{2}{|l|}{16-1/O Type or AC input Type} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{-}} \\
\hline & & \[
\begin{gathered}
10-17 \\
110
\end{gathered}
\] & Q0-Q6 & & \\
\hline \multirow[t]{2}{*}{20} & \multirow[b]{2}{*}{12/8} & \multicolumn{2}{|c|}{10-1/O Type} & \multicolumn{2}{|c|}{10-1/O Type} \\
\hline & & 10-15 & Q0 - Q3 & 120-125 & Q20-Q23 \\
\hline \multirow[b]{2}{*}{24} & \multirow[b]{2}{*}{14/10} & \multicolumn{2}{|c|}{24-1/O Type} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{-}} \\
\hline & & \[
\begin{gathered}
10-17 \\
110-115
\end{gathered}
\] & \[
\begin{gathered}
\text { Q0 - Q7 } \\
\text { Q10 - Q11 }
\end{gathered}
\] & & \\
\hline \multirow{4}{*}{26} & \multirow{4}{*}{15/11} & \multicolumn{2}{|c|}{10-I/O Type} & \multicolumn{2}{|l|}{16-1/O Type or AC input Type} \\
\hline & & 10-15 & Q0- Q3 & \[
\begin{gathered}
120-127 \\
130
\end{gathered}
\] & Q20- Q26 \\
\hline & & \multicolumn{2}{|l|}{16-1/O Type or AC input Type} & \multicolumn{2}{|c|}{10-1/O Type} \\
\hline & & \[
\begin{gathered}
10-17 \\
110
\end{gathered}
\] & Q0-Q6 & 120-125 & Q20-Q23 \\
\hline \multirow[b]{2}{*}{32} & \multirow[b]{2}{*}{18/14} & \multicolumn{2}{|l|}{16-1/O Type or AC input Type} & \multicolumn{2}{|l|}{16-1/O Type or AC input Type} \\
\hline & & \[
\begin{gathered}
10-17 \\
110
\end{gathered}
\] & Q0-Q6 & \[
\begin{gathered}
120-127 \\
130
\end{gathered}
\] & Q20- Q26 \\
\hline \multirow{4}{*}{34} & \multirow{4}{*}{20/14} & \multicolumn{2}{|c|}{10-//O Type} & \multicolumn{2}{|c|}{24-1/O Type} \\
\hline & & 10-15 & Q0 - Q3 & \[
\begin{aligned}
& 120-127 \\
& 130-135
\end{aligned}
\] & \[
\begin{aligned}
& \text { Q20 - Q27 } \\
& \text { Q30 - Q31 }
\end{aligned}
\] \\
\hline & & \multicolumn{2}{|c|}{24-1/O Type} & \multicolumn{2}{|c|}{10-1/O Type} \\
\hline & & \[
\begin{gathered}
10-17 \\
110-115
\end{gathered}
\] & \[
\begin{gathered}
\text { Q0 - Q7 } \\
\text { Q10 - Q11 }
\end{gathered}
\] & 120-125 & Q20- Q23 \\
\hline \multirow{4}{*}{40} & \multirow{4}{*}{23/17} & \multicolumn{2}{|l|}{16-1/O Type or AC input Type} & \multicolumn{2}{|c|}{24-1/O Type} \\
\hline & & \[
\begin{gathered}
10-17 \\
110
\end{gathered}
\] & Q0- Q6 & \[
\begin{aligned}
& 120-127 \\
& 130-135
\end{aligned}
\] & \[
\begin{aligned}
& \text { Q20 - Q27 } \\
& \text { Q30 - Q31 }
\end{aligned}
\] \\
\hline & & \multicolumn{2}{|c|}{24-1/O Type} & \multicolumn{2}{|l|}{16-1/O Type or AC input Type} \\
\hline & & \[
\begin{gathered}
10-17 \\
110-115
\end{gathered}
\] & \[
\begin{gathered}
\text { Q0 - Q7 } \\
\text { Q10 - Q11 }
\end{gathered}
\] & \[
\begin{gathered}
120-127 \\
130
\end{gathered}
\] & Q20-Q26 \\
\hline \multirow[b]{2}{*}{48} & \multirow[b]{2}{*}{28/20} & \multicolumn{2}{|c|}{24-1/0 Type} & \multicolumn{2}{|c|}{24-1/0 Type} \\
\hline & & \[
\begin{gathered}
10-17 \\
110-115
\end{gathered}
\] & \[
\begin{gathered}
\text { Q0 - Q7 } \\
\text { Q10 - Q11 }
\end{gathered}
\] & \[
\begin{aligned}
& 120-127 \\
& 130-135
\end{aligned}
\] & \[
\begin{aligned}
& \text { Q20 - Q27 } \\
& \text { Q30 - Q31 }
\end{aligned}
\] \\
\hline
\end{tabular}
page 6-1.

\section*{Data Link Function}

MICRO \(^{3}\) features the data link function to set up a distributed control system. A maximum of six slave stations can be connected to the master station. Data of inputs, outputs, internal relays, timers, counters, shift registers, and data registers are communicated between the master and slave stations. The master station has five data registers assigned for each slave station. Each slave station has five data registers assigned for communication with the master station. When data is set in a ta save tation When da is set in a data register at the slave station assigned for data link communication the dat ent to the corrending data register th the master station. Therefore, any particular program is not required for sending sent to the corresponding data register at the master station. Therefore, any particular program is not required for sending

The data link function cannot be used with the expansion link function or in the high-speed processing mode. When a slave station performs communication at 19,200 bps through the loader port, multi-stage comparison instruction HSC1 cannot be used at the slave station.
MICRO \({ }^{3}\) can also be connected to FA-3S series serial interface module PF3S-SIF4 mounted with high-performance CPU module PF3S-CP12 or PF3S-CP13. Since two serial interface modules can be mounted with one CPU, a maximum of 12 MICRO \(^{3}\) base units can be connected to the FA-3S master station in the data link system. For details, see page 4-13.

\section*{Data Link System Setup}

To set up a data link system, connect the data link terminals of every unit using a shielded twisted pair cable as shown below. The total length of the cable for the data link system can be extended up to 200 meters ( 656 feet).


Set the function selector switch to a unique
number at the master and slave stations. Slave station numbers need not be consecutive.
\begin{tabular}{|c|c|}
\hline Station & \begin{tabular}{c} 
Function Selector \\
Switch
\end{tabular} \\
\hline Master & 0 \\
\hline SSave 1 & 1 \\
\hline SSave 2 & 2 \\
\hline SSave 3 & 3 \\
\hline SSave 4 & 4 \\
\hline SSave 5 & 5 \\
\hline Slave 6 & 6 \\
\hline
\end{tabular}

\section*{Data Link Specifications}

Electric Specifications
Baud Rate
Maximum Cable Length
Maximum Slave Stations

Compliance with EIA-RS485
19200 bps (fixed)
200m ( 656 feet) total
6 slave stations

\section*{Communication Sequence}

Only one slave station can communicate with the master station in one scan. When a slave station receives a command from the master station, the slave station returns a response of processing results. When six slave stations are connected six scans are required to communicate with all slave stations.


\section*{Data Register Allocation for Data Link System}


If any slave stations are not connected, master station data registers which are assigned to the vacant slave stations can be used as ordinary data registers

\section*{Operating Procedure for Data Link System}

To set up and use a data link system, complete the following steps
First determine the assignments for the master station and slave stations.
Connect \(\mathrm{MICRO}^{3}\) base units at the master station and all slave stations as illustrated on page 4-8.
Set the function selector switch to 0 on the MICRO \({ }^{3}\) base unit at the master station and to 1 through 6 at slave stations. Create user programs for the master and slave stations. Different programs are used for the master and slave stations. Power up every \(\mathrm{MICRO}^{3}\) base unit at the same time, and transfer the user programs to the master and slave stations. Monitor the data registers used for data link at the master and slave stations.
Note: To enable data link communication, power up every MICRO \(^{3}\) base unit at the same time, or power up slave stations first. If a slave station is powered up later than the master station, the master station does not recognize the slave station. To recognize the slave station in this case, execute FUN27 Link Formatting Sequence at the master station (see page 5-11) or turn on M307 Link Communication Initialize Flag at the master station (see page 6-3).
The scan time is extended by approximately 12 msec in the data link system.
If any communication error occurs in the data link system, link communication error codes are set to data register D85 at the slave station and to a corresponding data register for link communication error at the master station. For details of link communication error codes, see page 18-5. To enable control data register D94 for link communication error code, use FUN10 Control Data Register Setting. See page 5-8. If a communication error occurs, the data is resent three times. If the error still exists after three attempts, then the error code is set to the data registers for link communication error. Since the or in ividually.

\section*{Data Link Example 1: Data Transmission from Master Station}

This example demonstrates data communication from the master station to two slave stations. Data of inputs Io through 17 This example demonstrates data communication from the master station to two slave stations. Data of inputs 10 through I7
and I10 through I17 are set to data registers D61 (transmission data H for slave station 1) and D66 (transmission data H for slave station 2) at the master station. D61 data is sent to D88 (receive data H) of slave station 1, and D66 data is sent to D88 (receive data H ) of slave station 2 .

\section*{Master Station Slave Stations}

10 through I7 \(\longrightarrow\) D61 (Trans. H) \(\longrightarrow\) D88 (Receive H) \(\longrightarrow\) Q0 through Q7, Q10 through Q17 (Slave Station 1) 110 through I17 \(\lrcorner\) D66 (Trans. H) \(\longrightarrow\) D88 (Receive H) \(\longrightarrow\) Q0 through Q7, Q10 through Q17 (Slave Station 2)

\section*{Function selector switch setting}

Master station: 0
Slave station 1: 1
Slave station 2: 2
Master station program
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(\underset{\text { M } 317}{ }\)} & MOV & S1 & D1 & REP \\
\hline & MOV & \(\underset{\text { S1 }}{10}\) & \[
\begin{gathered}
\text { D1 }
\end{gathered}
\] & REP \\
\hline
\end{tabular}

M317 is the in-operation output special internal relay which remains on dur ing operation.
The first MOV (move) instruction sets 16 inputs I0 through I7 and I10 through I17 to data register D61 (transmission data H for slave station 1),
The second MOV (move) instruction sets 16 inputs I0 through I7 and I10 through I17 to data register D66 (transmission data H for slave station 2).

\section*{Slave station program}

The same program is used for slave stations 1 and 2 in this example.


Note: The MOV (move) instruction moves 16-bit word data from the source operand to the destination operand. Although Note: The
16 -bit word data is processed internally, data cannot be read from or written to non-existent terminals When using the 24 I/ O type MICRO \({ }^{3}\) base unit which has 14 input terminals and 10 output terminals, data of only 14 input points I0 through IIS Data of data register D88 can be taken out from only lower 10 output points Q0 through Q11 at the slave stations and the pper 6 outputs Q12 through Q17 cannot be taken out.

\section*{Data Link Example 2: Data Transmission from Slave Station}

This sample program demonstrates data communication from slave station 1 to the master station, then to slave station 2 Data of inputs I0 through I7 and I10 through I17 are set to data register D86 (transmission data H) at slave station 1. The 86 data is sent dater dan. At he master stai 1 , D63 (receive data H) of slave station 2 , where the D88 data is set to outputs Q0 through Q7 and Q10 through Q17.
Master Station
Slave Stations

D63 (Receive H) \(\longleftarrow\) \(\qquad\) D86 (Trans. H) \(\longleftarrow\) I0 through I7, I10 through I17 (Slave Station 1) \(\longrightarrow\) D66 (Trans. H) \(\longrightarrow\) D88 (Receive H) \(\longrightarrow\) Q0 through Q7, Q10 through Q17 (Slave Station 2)

Function selector switch setting
Master station: 0
Slave station 1: 1
Slave station 2: 2

\section*{Master station program}


M317 is the in-operation output special internal relay which remains on during operation.
The MOV (move) instruction sets the data of data register D63 (receive data H for slave station 1) to data register D66 (transmission data H for slave station 2).

\section*{Slave station 1 program}
\begin{tabular}{|c|c|c|c|c|}
\hline \(\underset{\text { M }}{1}\) & MOV & S1
I0 & \[
\begin{gathered}
\text { D1 } \\
\text { D86 }
\end{gathered}
\] & \(\underset{* *}{\text { REP }}\) \\
\hline
\end{tabular}

M317 is the in-operation output special internal relay which remains on during operation.
The MOV (move) instruction sets 16 inputs I0 through I7 and I10 through I17 to data register D86 (transmission data H).

\section*{Slave station 2 program}


M317 is the in-operation output special internal relay which remains on during operation.
The MOV (move) instruction sets the data of data register D88 (receive data H) to 16 outputs Q0 through Q7 and Q10 through Q17.

\section*{Data Link Example 3: Input and Counter Data Transmission}

This sample program demonstrates a data link system to transmit input and counter data between the master station and 6 slave stations. At every slave station, data of inputs I0 through I7 and I10 through I17 are set to data register D86 (transmission data H ). The D86 data from slave station 1 is sent to data register D63 (receive data H for slave station 1) of the master station. At the master station, the D63 data is moved to data register D61 (transmission data H for slave station 1). The D61 data is sent to data register D88 (receive data H) of slave station 1, where the D88 data is set to outputs Q0 through Q7 and Q10 through Q17.
In addition, counter C2 current value is set to data register D87 (transmission data L) at every slave station. The D87 data from slave station 1 is sent to data register D64 (transmission data L for slave station 1). At the master station, the D64 data is moved to data register D62 (transmission data L for slave station 1). The D62 data is sent to data register D89 (receive data L ) of slave station 1.
Similarly, slave stations 2 through 6 also transmit and receive the same data to and from the corresponding data registers at the master station.

\section*{Data Link Example 3: Input and Counter Data Transmission, continued}
\begin{tabular}{|c|c|c|}
\hline Master Station & Slave Station 1 & \\
\hline D60 (Error Code) & D85 (Error Code) & \\
\hline \begin{tabular}{l}
D61 (Trans. H) \\
D62 (Trans. L) \\
D63 (Receive H) \\
D64 (Receive L)
\end{tabular} & \begin{tabular}{l}
D86 (Trans. H) \\
D87 (Trans. L) \\
D88 (Receive H) \\
D89 (Receive L)
\end{tabular} & \begin{tabular}{l}
I0 through I7, I10 through I17 \\
Counter C2 current value \\
Q0 through Q7, Q10 through Q17
\end{tabular} \\
\hline
\end{tabular}

\section*{Function selector switch setting}

Master station: \(0 \quad\) Slave station 1: \(1 \quad\) Slave station 2: \(2 \quad\) Slave station 3:
\(\begin{array}{llllll}\text { Master station: } & 0 & \text { Slave station 1: } & 1 & & \text { Slave station 2: } \\ \text { Slave station 4: } & 4 & \text { Slave station 5: } & 5 & \text { Slave station 6: } & 6\end{array}\)

\section*{Master station program}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{6}{*}{\[
\underset{\text { M3 }}{1} \stackrel{-}{17}
\]} & MOV & S1R
D63 & D1R & REP
2 \\
\hline & MOV & ( \({ }_{\text {S1R }}^{\text {D }}\) & \[
\begin{gathered}
\text { D1R } \\
\text { D66 }
\end{gathered}
\] & \[
\underset{2}{\text { REP }}
\] \\
\hline & MOV & & \[
\begin{aligned}
& \text { D1R } \\
& \text { D71 } \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\text { REP } \\
2
\end{gathered}
\] \\
\hline & MOV & & \[
\begin{gathered}
\text { D1R } \\
\text { D76 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { REP } \\
2
\end{gathered}
\] \\
\hline & MOV & (12R & \[
\begin{aligned}
& \hline \text { D1R } \\
& \text { D81 } \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\text { REP } \\
\hline
\end{gathered}
\] \\
\hline & MOV & \[
\begin{gathered}
\hline \text { S1R } \\
\text { D88 }
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { D1R } \\
\text { D86 }
\end{gathered}
\] & \[
\underset{2}{\mathrm{REP}}
\] \\
\hline
\end{tabular}

M317 is the in-operation output special internal relay which remains on during operation.
The first MOV (move) instruction with 2 repeat cycles sets the data of data registers D63 and D64 (receive data H and L for slave station 1) to data regtively.
Similarly, next 5 MOV instructions set data of 2 receive data registers to 2 transmission data registers for slave stations 2 through 6.
D63 and D64 \(\rightarrow\) D61 and D62
D68 and D69 \(\rightarrow\) D66 and D67
D73 and D74 \(\rightarrow\) D71 and D72
D78 and D79 \(\rightarrow\) D76 and D7
D83 and D84 \(\rightarrow\) D81 and D82
D88 and D89 \(\rightarrow\) D86 and D8

\section*{Slave station program}

The same program is used for slave stations 1 through 6 in this example.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|r|}{Reset} & \multirow{4}{*}{C2} \\
\hline \multirow[t]{2}{*}{\[
\stackrel{c}{\text { M301 }} \underset{\mathrm{HI}}{ }{ }^{2}
\]} & \multicolumn{3}{|r|}{\multirow[b]{3}{*}{Pulse}} & \\
\hline & & & & \\
\hline & & & & \\
\hline \multirow[t]{5}{*}{\[
\underset{\text { M } 317}{\prime}
\]} & & & & \\
\hline & MOV & \[
\begin{aligned}
& \text { S1 } \\
& \text { I0 }
\end{aligned}
\] & \[
\begin{gathered}
\text { D16 } \\
\text { D86 }
\end{gathered}
\] & \[
\underset{* *}{\text { REP }}
\] \\
\hline & MOV & S1 & D1 & REP \\
\hline & & C2 & D87 & ** \\
\hline & MOV & \[
\begin{aligned}
& \hline \hline \text { D81 } \\
& \text { D8 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { D1 } \\
& \mathrm{Q} 0
\end{aligned}
\] & \[
\underset{\substack{\text { REP }}}{ }
\] \\
\hline
\end{tabular}

M301 is the initialize pulse special internal relay to reset counter C 2 when starting operation.
Adding counter C 2 counts input signals to input I 0 and is reset when input I 1 is turned on.

M317 is the in-operation output special internal relay which remains on during operation.
The first MOV (move) instruction sets 16 inputs I0 through I17 to data register D86 (transmission data H).
The second MOV instruction sets the counter C2 current value to data register D87 (transmission data L)
The last MOV instruction sets data of data register D88 (receive data H ) to 16 outputs Q0 through Q17.

\section*{Data Link Example 4: Data Transmission through FA-3S Serial Interface Module}

This sample program demonstrates data communication between the \(\mathrm{FA}-3 \mathrm{~S}\) master station and \(\mathrm{MICRO}^{3}\) slave stations This sample program demonstrates data communication between the FA-3S master station and
using the PF3S-SIF4 serial interface module. FA-3S series high-performance CPU module PF3S-CP12 or PF3S-CP13 is using the PF3S-SIF4 serial interface module. FA-3S series high-performance CPU module PF3S-CP12 or PFIS-CPT is
used for the master station. The serial interface module mounted at the master station is set to operate in the IS-NET communication mode and the FA-3S series CPU module at the master station uses a universal mode master station program. Six \(\mathrm{MICRO}^{3}\) slave stations can be connected to one serial interface module. Since two serial interface modules can be mounted with one FA-3S high-performance CPU, a maximum of \(12 \mathrm{MICRO}^{3}\) base units can be connected to the FA-3S.

\section*{System Setup}


\section*{Data Link Example 4: Data Transmission through FA-3S Serial Interface, continued}

\section*{Data movement and ICOPR (local operand)}
\(\mathrm{MICRO}^{3}\) has two data registers for transmission and two data registers for receiving in the data link system. So, each MICRO \(^{3}\) slave station can communicate four words of data with the FA-3S master station. Since the quantity of data registers assigned to MICRO \({ }^{3}\) is fixed, using the universal mode program is easier for the master station rather than using the individual mode program. \(\mathrm{MICRO}^{3}\) slave stations do not require any particular program for communication.

Using this sample program, data of data registers D86 and D87 (transmission data H and L) at slave station 1 is sent to data registers D50 and D51 at the master station. Data of the same data registers at slave station 2 is sent to the next two dat registers at the master station, and so on. From the master station, data of D62 and D63 is sent to data registers D88 and D89 (receive data H and L ) at slave station 1. Data of next two data registers is sent to the same data registers at slave station 2 , and so on.


LCOPR (local operands) for the FNTWW instruction used at the master station are allocated as shown below:


Note: At the master station, the first three data registers store communication status codes. At slave stations, data register D85 stores link communication error codes when any communication error occurs during data link communication. The data in these data registers are not communicated between the master and slave stations.

\section*{Data Link Example 4: Data Transmission through FA-3S Serial Interface, continued} Master station program for FA-3S high-performance CPU (IS-NET communication universal mode)
\begin{tabular}{|ccccccccc} 
\\
\hline
\end{tabular}

Using this sample program, the FA-3S master station issues the formatting sequence 1 second after starting operation and confirms with which slave stations the master station can communicate. If any slave station is not powered up, then the slave station cannot be recognized. So, power up all slave stations at least 1 second before the master station starts to run. After slave stations are recognized, data is communicated between the master station and slave stations.

\section*{Computer Link Function}

A personal computer can be connected to one MICRO \({ }^{3}\) base unit in a peer-to-peer configuration ( \(1: 1\) communication) or to a maximum of 32 MICRO \(^{3}\) base units in a network configuration ( \(1: \mathrm{N}\) communication).
Using the optional software CUBIQ (FC9Y-LP1E314) on an IBM PC or compatible, user programs can be edited on the computer and transferred between the computer and MICRO \({ }^{3}\). It is also possible to monitor from the computer the operation of the MICRO \({ }^{3}\) system, current values of timers and counters, the data in data registers, and the statuses of inputs and outputs. \(\mathrm{MICRO}^{3}\) can be started or stopped from the computer. Preset values for timers and counters, and data in data registers can also be changed. Ladder diagrams, mnemonic lists, FUN tables, and labels can be printed out from the computer on a printer.

\section*{Computer Link 1:1 Communication}

To set up a \(1: 1\) computer link system, connect a computer to MICRO \(^{3}\) using computer link cable FC2A-KC2.


Use FUN8 Loader Port Communication Mode Setting to make sure that the communication parameters for the MICRO \({ }^{3}\) loader port are the same as the computer connected. For FUN8, see page 5-7.

\section*{Communication between the program loader and computer}

The program loader can also be connected to an IBM PC or compatible using computer link cable FC2A-KC2 for communication. An AC adapter is required to power the program loader. Connect the computer link cable to the loader cable connection port on the program loader. Plug the jack converter into the converter box on the computer link cable and plug the AC adapter into the jack converter. For specifications of an applicable AC adapter, see page A-4.

idee

\section*{Computer Link 1:N Communication}

To set up a 1:N computer link system, connect a computer to RS232C/RS485 converter using RS232C cable HD9Z-C52. Connect the RS232C/RS485 converter to computer link interface units FC2A-LC1 using shielded twisted pair cables. Connect MICRO \({ }^{3}\) to each computer link interface unit using computer link interface cable FC2A-KC3 Supply power to the RS232C/RS485 converter by connecting a 24 V DC source to terminals 6 and 7 or by plugging an AC adapter to the DC IN jack. For specifications of the AC adapter, see page A-4
\(\bullet\) For the MICRO \({ }^{3}\) c, see the MICRO \({ }^{3}\) c User's Manual. \(\downarrow\)

RS232C/RS485 Converter FC2A-MD \(132 \mathrm{H} \times 10 \mathrm{~W} \times 34 \mathrm{D} \mathrm{mm}\)
\(\left(5.917^{\prime \prime} \mathrm{H} \times 4.331^{\prime W} \times 1.339^{\prime \prime} \mathrm{D}\right)\)

Shielded twisted pair cable 200 meters ( 656 feet) maximum Core wire diameter \(0.9 \mathrm{~mm}\left(0.035^{\prime \prime}\right)\) minimum

\[
\begin{aligned}
& \text { Computer Link Interface Cable } \\
& \text { FC2A-KC3 } \\
& 100 \mathrm{~mm}\left(3.9377^{\prime \prime}\right) \text { long }
\end{aligned}
\]
Computer Link Interface Unit
FC2A-LC1
(2.736"H \(\times 2.165^{\prime \prime} \mathrm{W} \times 1.398\) "

\section*{Nth Unit ( \(\mathrm{N} \leq\) 32)}


Use FUN8 Loader Port Communication Mode Setting to make sure that the communication parameters for the MICRO \({ }^{3}\) loader port are the same as the computer connected. For FUN8, see page 5-7.
Select a unique PLC address number from 0 through 31 for each MICRO \({ }^{3}\) using FUN9 PLC Address for Network Communication on the program loader and transfer the user program to MICRO \({ }^{3}\). For FUN9, see page 5-7.
ider

\section*{External Analog Timer}

Analog timer unit PFA-1U11 can be connected to \(\mathrm{MICRO}^{3}\) to be used as an external analog timer and the preset value can be adjusted in very small increments from the panel front.

\section*{Analog Timer Unit PFA-1U11}

The analog timer unit generates output pulses of approximately 80 msec and the interval can be changed between 20 msec and 2 sec using the knob on the analog timer unit.


\section*{Measuring Analog Timer OFF Duration}

Connect the output of the analog timer unit to an input terminal of MICRO \(^{3}\) and measure the OFF duration of the analog timer output using a timer instruction. The OFF duration can be varied using the knob on the analog timer unit. The resolution of the timer preset value depends on the first timer instruction TIM ( \(100-\mathrm{msec}\) timer), TMH ( \(10-\mathrm{msec}\) timer), or TMS (1-msec timer) used for measuring the OFF duration. Use the measured OFF duration as a preset value of another timer instruction.


I1: Pulse output from the external analog timer unit
Tm: Current value of timer TMHm
Dn: Preset value for the analog timer Tn
The preset value of the timer instruction for measuring the OFF duration must be the same as operand S1 of the SUB (sub traction) instruction. The first line and the second line of the program above must be in this order. If reversed, the measured duration cannot be set to the preset value for the analog timer Tn correctly.
The value of Dn is set to the preset value of the analog timer approximately 2 seconds after the program is started or the knob setting on the analog timer unit is changed.
Preset value Dn for the analog timer depends on the resolution of the timer instruction used for measuring the OFF duration. The maximum preset value also varies with the input filter preset value of MICRO \({ }^{3}\) and ambient temperature.
Depending on the combination of timer instructions used for measuring the OFF duration and for time-delay operation, available time delay ranges are shown below.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Timer instruction for measuring OFF duration} & \multirow[t]{2}{*}{Measurement resolution} & \multirow[t]{2}{*}{Preset value Dn for analog timer} & \multicolumn{3}{|c|}{Time delay range of analog timer} \\
\hline & & & тIM & TMH & TMS \\
\hline TIM & 100 msec & 1 to 20 (Note) & 0.1 to 2 sec & 10 to 200 msec & 1 to 20 msec \\
\hline TMH & 10 msec & 2 to 200 & 0.2 to 20 sec & 20 msec to 2 sec & 2 to 200 msec \\
\hline TMS & 1 msec & 20 to 2000 & 2 to 200 sec & 0.2 to 20 sec & 20 msec to 2 sec \\
\hline
\end{tabular}

Note: When the TIM ( \(100-\mathrm{msec}\) timer) instruction is used for measuring the OFF duration, do not set the control knob of Note: When the TIM ( \(100-\mathrm{msec}\) timer) instruction is used for measuring the OFF duration, do not set the control knob msec. Set the control knob to make sure that the TIM instruction can measure the output pulse OFF duration.

\section*{xample: ON-delay Analog Timer}

This example demonstrates a program to vary the timer preset value for the TIM instruction between 0.2 and 20 sec using the TMH instruction for measuring the output pulse OFF duration of the external analog timer unit.


Star input for TIM1
Q0. Pulse output from
\(\begin{array}{ll}\text { Q0: } & \text { Timer output } \\ \text { D10: } & \text { Preset value for TIM1 }\end{array}\)
TMH0: \(10-\mathrm{msec}\) timer used for measuring the OFF duration H0: 10 -msec timer used for measuring the OFF duration
of the pulse output from the external analog timer unit TIM1: \(100-\mathrm{msec}\) instruction used for time-delay

\section*{Ladder Diagram}


When the output pulse of the analog timer unit is turned on, the timer TMH0 current value is subtracted from 9999, and the result is set to data register D10, which is used as a preset value for \(100-\mathrm{msec}\) timer TIM1.
When the output pulse is off, \(10-\mathrm{msec}\) timer TMH0 time down from 9999 to measure the OFF duration of the external analog timer unit output.
When I0 is turned on timer TIM1 starts to time down from preset value D10. When TIM1 times out, Q0 is turned on.

\section*{Wiring Diagram}
- When using with NPN-output sensors

- When using with PNP-output sensors

* When using analog timer in an environment subject to noise or when using long wires for connecting the analog timer, connect a capacitor of \(1 \mu \mathrm{~F} / 50 \mathrm{~V}\) between the DC IN COM terminal and the input terminal connected to the analog timer output.
Analog Timer Unit and Accessories
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type No. } & \multicolumn{1}{c|}{ Remarks } \\
\hline Analog Timer Unit & PFA-1U11 & For changing the preset value of timer instructions \\
\hline DIN Rail Mount Socket & SR2P-06U & With screw terminals \\
\hline \multirow{2}{*}{ Panel Mount Socket } & SR2P-511 & With solder terminals \\
\cline { 2 - 3 } & SR2P-70 & With wire wrap terminals \\
\hline Panel Mount Adapter & RTB-C01 & Bluish gray \\
\hline \multirow{2}{*}{ Wiring Socket Adapter } & SR6P-S08 & With solder terminals \\
\cline { 2 - 3 } & SR6P-M08G & With screw terminals \\
\hline \multirow{2}{*}{ Hold-down Spring } & SFA-202 & For SR2P-06U \\
\cline { 2 - 3 } & SFA-402 & For SR2P-511 and SR2P-70 \\
\hline \multirow{3}{*}{ DIN Rail } & BAA1000 & 35 mm -wide DIN rail, 1m long, made of aluminum \\
\cline { 2 - 3 } & BAP1000 & 35 mm -wide DIN rail, 1m long, made of steel \\
\cline { 2 - 3 } & BADA1000 & 35 mm -wide DIN rail, 1m long, made of aluminum \\
\hline
\end{tabular}


\section*{Analog Input Function}

The A/D converter unit is used with MICRO \({ }^{3}\) to perform an 8 -bit A/D conversion. The A/D converter unit reads analog input signals from an analog output device such as an analog distance sensor. The output from the \(\mathrm{A} / \mathrm{D}\) converter unit is entered to MICRO \({ }^{3}\) input IO and converted into a digital value 0 through 249 using the \(\mathrm{A} / \mathrm{D}\) (analog/digital conversion) instruction. If the input to the \(A / D\) converter unit exceeds the input range, an overflow occurs and 250 is set the destina tion operand of the \(\mathrm{A} / \mathrm{D}\) instruction. Only one \(\mathrm{A} / \mathrm{D}\) converter unit can be connected to the \(\mathrm{MICRO}^{3}\) base unit.
Note: When the A/D converter unit is connected to \(\mathrm{MICRO}^{3}\), the HSC (high-speed counter) function cannot be used.

\section*{A/D Converter Unit}

Depending on the input signals, five A/D converter units are available:
\begin{tabular}{|c|c|c|}
\hline Type No. & Input Signal Range & Remarks \\
\hline FC2A-AD1 & 0 to 5 V DC & \\
\hline FC2A-AD2 & 0 to 10 V DC & \\
\hline FC2A-AD3 & -5 to 5 V DC & \\
\hline FC2A-AD4 & 4 to 20 mA DC & Input resistance 250 \(\Omega\) \\
\hline FC2A-AD5 & -10 to +10 V DC & \\
\hline
\end{tabular}

\section*{Parts Description}


Connect power supply 24V DC

FG Terminal
Connect to the ground. (Grounding resistance \(100 \Omega\) maximum)


Power Indicator
Turns on when power is supplied.

\section*{Output Selector Switch}

Select the sink or source output depending on the MICRO \({ }^{3}\) input. Set to SINK when connecting the output to the source MICRO \({ }^{3}\) input.


Output Terminal
Connect to the input 0 terminal on the MICRO \({ }^{3}\)

Analog Input Terminals
Connect analog input signal

\section*{Internal Circuit}

\begin{tabular}{|c|c|c|}
\hline \multirow{10}{*}{Power Supply} & Rated Power Voltage & 24 V DC \\
\hline & Allowable Voltage Range & 19 to 30V DC (including ripple) \\
\hline & Dielectric Strength & \begin{tabular}{ll} 
Between input and output terminals: & 500 VAC \\
Between I/O terminal and FG: & 1500 VAC \\
Between power and output terminals: & Not isolated
\end{tabular} \\
\hline & Insulation Resistance (500V DC megger) & \begin{tabular}{lll} 
Between input and output terminals: & \(10 \mathrm{M} \Omega\) minimum \\
Between I/O terminal and FG: & \(10 \mathrm{M} \Omega\) minimum \\
Between power and output terminals: & Not isolated
\end{tabular} \\
\hline & Power Consumption & Approx. 2.5W (24V DC) \\
\hline & Allowable Momentary Power Interruption & 25 msec minimum ( 24 V DC ) \\
\hline & Power Inrush Current & 10A maximum \\
\hline & Ground & Grounding resistance: \(100 \Omega\) maximum \\
\hline & Protective Ground Allowable Current & 10A maximum, 10 sec \\
\hline & Grounding Wire & \(1.25 \mathrm{~mm}^{2}\) (AWG16) \\
\hline \multirow[t]{3}{*}{Effect of Improper Power Supply Connection} & Reverse Polarity & No operation, no damage \\
\hline & Improper Voltage Level & Permanent damage may be caused \\
\hline & Improper Lead Connection & Connection failure may be caused \\
\hline \multicolumn{2}{|l|}{Power Up/Down Order} & \begin{tabular}{l}
Power up the \(\mathrm{A} / \mathrm{D}\) converter unit and \(\mathrm{MICRO}^{3}\) at the same time, or power up the MICRO \({ }^{3}\) first. \\
Power down the \(\mathrm{A} / \mathrm{D}\) converter unit and \(\mathrm{MICRO}^{3}\) at the same time, or power down the A/D converter first.
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Operating Temperature} & 0 to \(60^{\circ} \mathrm{C}\) \\
\hline \multicolumn{2}{|l|}{Storage Temperature} & -25 to \(+70^{\circ} \mathrm{C}\) \\
\hline \multicolumn{2}{|l|}{Relative Humidity} & Relative humidity severity level RH1, 30 to \(95 \%\) (non-condensing) \\
\hline \multicolumn{2}{|l|}{Pollution Degree} & 2 (IEC 664) \\
\hline \multicolumn{2}{|l|}{Corrosion Immunity} & Free from corrosive gases \\
\hline \multicolumn{2}{|l|}{Altitude} & \(\begin{array}{ll}\text { Operation: } 0 \text { to } 2,000 \mathrm{~m}(0 \text { to } 6,565 \text { feet) } \\ \text { Transport: } & 0 \text { to } 3,000 \mathrm{~m} \text { (0 to } 9,840 \text { feet) }\end{array}\) \\
\hline \multicolumn{2}{|l|}{Vibration Resistance (IEC 68-2-6)} & 5 to \(55 \mathrm{~Hz}, 60 \mathrm{~m} / \mathrm{sec}^{2}, 2\) hours each in 3 axes \\
\hline \multicolumn{2}{|l|}{Shock Resistance (IEC 62-2-7)} & \(300 \mathrm{~m} / \mathrm{sec}^{2}, 11 \mathrm{msec}, 3\) shocks each in 3 axes \\
\hline \multicolumn{2}{|l|}{Wiring} & Core wire 0.75 to \(1.25 \mathrm{~mm}^{2}\) (AWG18 to AWG16) Input lines must be separated from power, output, and motor lines. M3 screw terminal with finger protection cover \\
\hline \multicolumn{2}{|l|}{Input Wiring Length} & 50 m (164 feet) maximum using 2-core shielded wire \\
\hline \multicolumn{2}{|l|}{Output Wiring Length} & 2 m ( 6.56 feet) maximum using shielded wire \\
\hline \multicolumn{2}{|l|}{Dimensions} & \(45 \mathrm{~W} \times 80 \mathrm{H} \times 70 \mathrm{D} \mathrm{mm}\) (1.772"W \(\times 3.150\) " \(\mathrm{P} \times 2.756\) "D) \\
\hline \multicolumn{2}{|l|}{Weight} & Approx. 120g \\
\hline \multicolumn{2}{|l|}{Standards} & \begin{tabular}{l}
EN61131-1, EN61131-2, EN60204-1 PrEN50082-2, EN55011 \\
UL 508, CSA C22.2 No. 142
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Certification File No.} & ```
TÜV Product Service E9 950913332313
UL E102542
CSA LR66809
``` \\
\hline \multicolumn{2}{|l|}{Others (IEC 1131-2 Information)} & \begin{tabular}{l}
IEC1131-2 3.4.1.2.3 6) No common point because of 1 channel input \\
IEC1131-2 3.4.1.2.4 2) No crosstalk because of 1 channel input IEC1131-2 3.4.1.2.4 5) No electromagnetic relay used
\end{tabular} \\
\hline
\end{tabular}

\section*{Function Specifications (A/D Converter Unit)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Load Impedance in Signal Range} & \multicolumn{5}{|l|}{\begin{tabular}{ll}
Voltage input unit: & \(1 \mathrm{M} \Omega\) minimum \\
Current input unit: & \(250 \Omega\)
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Analog Input Error} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Maximum error at \(25^{\circ} \mathrm{C}\) : \(\pm 0.6 \%\) of full scale \\
Temperature coefficient: \(\quad+0.012 \%\) of full scale \(/{ }^{\circ} \mathrm{C}\) (typ.)
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Maximum Error over Full Temperature Range} & \multicolumn{5}{|l|}{\(\pm 1 \%\) of full scale} \\
\hline \multicolumn{2}{|l|}{Digital Resolution} & \multicolumn{5}{|l|}{250 increments} \\
\hline \multicolumn{2}{|l|}{Data Format Returned to User Program} & \multicolumn{5}{|l|}{BCD (0 to 249, 250: overflow)} \\
\hline \multicolumn{2}{|l|}{Input Value of LSB (Least Significant Bit)} & \[
\begin{aligned}
& \text { FC2A-AD1 } \\
& 40 \mathrm{mV}
\end{aligned}
\] & \[
\begin{aligned}
& \text { FC2A-AD2 } \\
& 64 \mu \mathrm{~A}
\end{aligned}
\] & \[
\begin{aligned}
& \text { FC2A-AD3 } \\
& 20 \mathrm{mV}
\end{aligned}
\] & \[
\begin{aligned}
& \text { FC2A-AD4 } \\
& 40 \mathrm{mV}
\end{aligned}
\] & \[
\begin{aligned}
& \text { FC2A-AD5 } \\
& 80 \mathrm{mV}
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{Maximum Permanent Allowed Overload (No Damage)} & \multicolumn{5}{|l|}{\(\pm 16 \mathrm{~V} \quad \pm 64 \mathrm{~mA} \quad \pm 16 \mathrm{~V} \quad \pm 16 \mathrm{~V} \quad \pm 16 \mathrm{~V}\)} \\
\hline \multicolumn{2}{|l|}{Digital Output Reading at Overload} & \multicolumn{5}{|l|}{250} \\
\hline \multicolumn{2}{|l|}{Type of Input} & \multicolumn{5}{|l|}{Differential input} \\
\hline \multicolumn{2}{|l|}{Common Mode Reject Ratio} & \multicolumn{5}{|l|}{\(-50 \mathrm{~dB}\)} \\
\hline \multicolumn{2}{|l|}{Common Mode Voltage} & \multicolumn{5}{|l|}{16V DC} \\
\hline \multicolumn{2}{|l|}{Other Inputs} & \multicolumn{5}{|l|}{None} \\
\hline \multicolumn{2}{|l|}{Total Input System Transfer Time} & \multicolumn{5}{|l|}{1 msec maximum} \\
\hline \multicolumn{2}{|l|}{Sample Duration Time} & \multicolumn{5}{|l|}{125 msec} \\
\hline \multicolumn{2}{|l|}{Sample Repetition Time} & \multicolumn{5}{|l|}{1 msec maximum} \\
\hline \multicolumn{2}{|l|}{Input Filter Characteristics} & \multicolumn{5}{|l|}{None} \\
\hline \multicolumn{2}{|l|}{Maximum Temporary Deviation during Electrical Noise Tests and Test Conditions} & \multicolumn{5}{|l|}{\(3 \%\) maximum of full scale at impulse test 500 V} \\
\hline \multicolumn{2}{|l|}{Conversion Method} & \multicolumn{5}{|l|}{V-F conversion} \\
\hline \multicolumn{2}{|l|}{Operating Mode} & \multicolumn{5}{|l|}{Self-scan} \\
\hline \multicolumn{2}{|l|}{Type of Protection} & \multicolumn{5}{|l|}{Resistor, diode, photocoupler} \\
\hline \multicolumn{2}{|l|}{Output Short-circuit} & \multicolumn{5}{|l|}{Damage will be caused} \\
\hline \multicolumn{2}{|l|}{Maximum Allowed Output Voltage} & \multicolumn{5}{|l|}{Voltage at the +24 V DC terminal +0.3 V or -0.3 V (between GND and OUTPUT)} \\
\hline \multicolumn{2}{|l|}{Maximum Allowed Input Voltage} & \multicolumn{5}{|l|}{Maximum permanent allowed overload (no damage)} \\
\hline \multirow{4}{*}{\begin{tabular}{l}
External \\
Power \\
Supply \\
Data
\end{tabular}} & Rated Power Voltage & \multicolumn{5}{|l|}{24V DC} \\
\hline & Power Voltage Range & \multicolumn{5}{|l|}{19 to 30V DC} \\
\hline & Resetting Method & \multicolumn{5}{|l|}{Use a power supply of self-reset type or with an overcurrent protection against 10A inrush current into the A/D converter unit} \\
\hline & Output Power & 2.5 W minim & & & & \\
\hline \multicolumn{2}{|l|}{Calibration or Verification to Maintain Rated Accuracy} & \multicolumn{5}{|l|}{Once every 6 months (recommended value)} \\
\hline \multicolumn{2}{|l|}{Effect of Improper Input Terminal Connection} & \multicolumn{5}{|l|}{If a signal over the maximum permanent allowed overload (no damage) is applied, permanent damage may be caused.} \\
\hline \multicolumn{2}{|l|}{Monotonicity} & \multicolumn{5}{|l|}{Yes} \\
\hline \multicolumn{2}{|l|}{Non-linearity} & \multicolumn{5}{|l|}{0.2\% maximum of full scale} \\
\hline \multicolumn{2}{|l|}{Repeatability after Stabilization Time} & \multicolumn{5}{|l|}{\(0.5 \%\) maximum of full scale (more than 30 minutes after power up)} \\
\hline \multicolumn{2}{|l|}{Life Time of Electromagnetic Relay Multiplexers} & \multicolumn{5}{|l|}{None} \\
\hline \multicolumn{2}{|l|}{MICRO \({ }^{3}\) Setting} & \multicolumn{5}{|l|}{Set hard filter value to 10 (default) using FUN7
Factory setting: 10 (default)} \\
\hline
\end{tabular}

\section*{Power Supply Timing Chart}

Power up the A/D converter unit and MICRO at the same time, or power up the MICRO \(^{3}\) first.
Power down the A/D converter unit and \(\mathrm{MICRO}^{3}\) at the same time, or power down the A/D converter first.

\section*{Digital Resolution}
\begin{tabular}{lll}
A/D Converted Value & \begin{tabular}{l}
If the input signal changes within the conversion \\
time of 125 msec , an error in the converted value \\
will result.
\end{tabular} \\
\begin{tabular}{l}
If the input to the \(\mathrm{A} / \mathrm{D}\) converter unit is below the \\
minimum input, 0 is set to the destination operand \\
of the A/D instruction.
\end{tabular} \\
Input
\end{tabular} \begin{tabular}{l}
If the input to the \(\mathrm{A} / \mathrm{D}\) converter unit is over the \\
maximum input, an overflow occurs and 250 is set \\
to the destination operand of the \(\mathrm{A} / \mathrm{D}\) instruction.
\end{tabular}

A/D Converted Value \(=\frac{\text { Analog Input Value }- \text { Minimum Input Value }}{\text { Maximum Input Value }- \text { Minimum Input Value }} \times 249\)

\section*{Type of Protection}
- Input Circuit

- Output Circuit

Open collector
The output selector switch is used to select sink or source output

MICRO

\section*{Wiring Diagram}
- Source Input to MICRO \({ }^{3}\)

- Sink Input to MICRO \({ }^{3}\)

ider

\section*{Example: A/D Conversion}

The following example demonstrates a program to perform ON/OFF control on a heater using the A/D converter unit (4 to 20 mA). The temperature sensor generates an analog output of 4 through 20 mA while the temperature changes from \(0^{\circ} \mathrm{C}\) through \(100^{\circ} \mathrm{C}\). The output from the temperature sensor is connected to the \(\mathrm{A} / \mathrm{D}\) converter unit. The output from the \(\mathrm{A} / \mathrm{D}\) converter unit is connected to input I 0 of \(\mathrm{MICRO}{ }^{3}\). When the temperature is \(50^{\circ} \mathrm{C}\) or less, output Q 0 is turned on to turn the heater on. When the temperature is above \(50^{\circ} \mathrm{C}\), output Q 0 is turned off to turn the heater off. The temperature is also displayed on digital display units.
\begin{tabular}{cccc}
Temperature \(\left({ }^{\circ} \mathbf{C}\right.\)) & Sensor Output (mA) & A/D Converted Value & Heater \\
\hline 0 & 4 & 0 & ON \\
50 & 12 & 124 & ON \\
51 & 12.064 & 125 & OFF \\
100 & 20 & 249 & OFF
\end{tabular}

\section*{Ladder Diagram}

M317 is the in-operation output special internal relay.
The analog data from the \(\mathrm{A} / \mathrm{D}\) converter unit is 8 -bit converted to a digital value 0 through 249 and set to data register D0 When the D0 value is less than or equal to 124 , internal relay M100 is turned on.
The D0 value is multiplied by 10 , and the result is set to data register D10.
The D10 value is divided by 25 , and the result is set to data register D11.
The 4-digit D11 value is displayed on display units connected to outputs Q20 through Q27.
When M100 is on, output Q0 is turned on

\section*{1/0 Wiring Diagram}

This wiring example shows a source-input, sink-output connection for the MICRO \({ }^{3}\) base unit. Digital display units are connected to outputs Q20 through Q27 at the expansion station (not shown).

MICRO

\section*{Analog Output Function}

The D/A converter unit is used with the transistor output type MICRO \({ }^{3}\) base unit to perform an 8-bit D/A conversion. The PWM (pulse width modulation) instruction is used to convert the digital value to a pulse output signal. The output from \(\mathrm{MICRO}^{3}\) output Q 0 is entered to the D/A converter unit to generate an analog current or voltage output to control an inverter. Only one D/A converter unit can be connected to the \(\mathrm{MICRO}^{3}\) base unit.

\section*{D/A Converter Unit}

Depending on the output signals, five D/A converter units are available:
\begin{tabular}{|c|c|c|}
\hline Type No. & Output Signal Range & Remarks \\
\hline FC2A-DA1 & 0 to 5 V DC & \\
\hline FC2A-DA2 & 0 to 10 V DC & \\
\hline FC2A-DA3 & -5 to +5 V DC & \\
\hline FC2A-DA4 & 4 to 20 mA DC & Load resistance \(300 \Omega\) maximum \\
\hline FC2A-DA5 & -10 to +10 V DC & \\
\hline
\end{tabular}

\section*{Parts Description}

\begin{tabular}{|c|c|c|}
\hline \multirow{10}{*}{Power Supply} & Rated Power Voltage & 24V DC \\
\hline & Allowable Voltage Range & 19 to 30V DC (including ripple) \\
\hline & Dielectric Strength & \begin{tabular}{ll}
Between input and output terminals: & 500 V AC \\
Between I/O terminal and FG: & 1500 V AC \\
Between power and output terminals: & Not isolated
\end{tabular} \\
\hline & Insulation Resistance (500V DC megger) & \begin{tabular}{ll}
Between input and output terminals: & \(10 \mathrm{M} \Omega\) minimum \\
Between I/O terminal and FG: & \(10 \mathrm{M} \Omega\) minimum \\
Between power and output terminals: & Not isolated \\
\hline
\end{tabular} \\
\hline & Power Consumption & Approx. 2.5W (24V DC) \\
\hline & Allowable Momentary Power Interruption & 25 msec minimum (24 V DC) \\
\hline & Power Inrush Current & 10A maximum \\
\hline & Ground & Grounding resistance: \(100 \Omega\) maximum \\
\hline & Protective Ground Allowable Current & 10A maximum, 10 sec \\
\hline & Grounding Wire & \(1.25 \mathrm{~mm}^{2}\) (AWG16) \\
\hline \multirow[t]{3}{*}{Effect of Improper Power Supply Connection} & Reverse Polarity & No operation, no damage \\
\hline & Improper Voltage Level & Permanent damage may be caused \\
\hline & Improper Lead Connection & Connection failure may be caused \\
\hline \multicolumn{2}{|l|}{Power Up/Down Order} & \begin{tabular}{l}
Power up the D/A converter unit and MICRO \({ }^{3}\) at the same time, or power up the MICRO \({ }^{3}\) first. \\
Power down the \(\mathrm{D} / \mathrm{A}\) converter unit and \(\mathrm{MICRO}^{3}\) at the same time, or power down the D/A converter first.
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Operating Temperature} & 0 to \(60^{\circ} \mathrm{C}\) \\
\hline \multicolumn{2}{|l|}{Storage Temperature} & -25 to \(+70^{\circ} \mathrm{C}\) \\
\hline \multicolumn{2}{|l|}{Relative Humidity} & Relative humidity severity level RH1, 30 to \(95 \%\) (non-condensing) \\
\hline \multicolumn{2}{|l|}{Pollution Degree} & 2 (IEC 664) \\
\hline \multicolumn{2}{|l|}{Corrosion Immunity} & Free from corrosive gases \\
\hline \multicolumn{2}{|l|}{Altitude} & \begin{tabular}{l}
Operation: 0 to \(2,000 \mathrm{~m}\) (0 to 6,565 feet) \\
Transport: 0 to \(3,000 \mathrm{~m}\) (0 to 9,840 feet)
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Vibration Resistance (IEC 68-2-6)} & 5 to \(55 \mathrm{~Hz}, 60 \mathrm{~m} / \mathrm{sec}^{2}, 2\) hours each in 3 axes \\
\hline \multicolumn{2}{|l|}{Shock Resistance (IEC 62-2-7)} & \(300 \mathrm{~m} / \mathrm{sec}^{2}, 11 \mathrm{msec}, 3\) shocks each in 3 axes \\
\hline \multicolumn{2}{|l|}{Wiring} & Core wire 0.75 to \(1.25 \mathrm{~mm}^{2}\) (AWG18 to AWG16) Input lines must be separated from power, output, and motor lines. M3 screw terminal with finger protection cover \\
\hline \multicolumn{2}{|l|}{Input Wiring Length} & 2 m (6.56 feet) maximum using shielded wire \\
\hline \multicolumn{2}{|l|}{Output Wiring Length} & 50 m (164 feet) maximum using 2 -core shielded wire \\
\hline \multicolumn{2}{|l|}{Dimensions} & \(45 \mathrm{~W} \times 80 \mathrm{H} \times 70 \mathrm{Dmm}(1.772 \mathrm{~W} \times 3.150 \mathrm{H} \times 2.756 \mathrm{CD})\) \\
\hline \multicolumn{2}{|l|}{Weight} & Approx. 120g \\
\hline \multicolumn{2}{|l|}{Standards} & \begin{tabular}{l}
EN61131-1, EN61131-2, EN60204-1 PrEN50082-2, EN55011 \\
UL 508, CSA C22.2 No. 142
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Certification File No.} & TÜV Product Service E9 950913332313 UL E102542 CSA LR66809 \\
\hline \multicolumn{2}{|l|}{Others (IEC 1131-2 Information)} & IEC1131-2 3.4.2.2.3 8) No common point because of 1 channel input \\
\hline
\end{tabular}

\section*{Function Specifications (D/A Converter Unit)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Load Impedance in Signal Range} & \multicolumn{5}{|l|}{\begin{tabular}{ll}
Voltage output unit: & \(5 \mathrm{k} \Omega\) minimum \\
Current output unit: & \(250 \Omega\) (\(300 \Omega\) maximum)
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Analog Output Error} & \multicolumn{5}{|l|}{\begin{tabular}{lll}
Maximum error at \(25^{\circ} \mathrm{C}:\) & \(\pm 0.7 \%\) of full scale \\
Temperature coefficient: & \(-0.005 \%\) of full scale \(/{ }^{\circ} \mathrm{C}\) (typ.)
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Maximum Error over Full Temperature Range} & \multicolumn{5}{|l|}{\(\pm 1 \%\) of full scale} \\
\hline \multicolumn{2}{|l|}{Digital Resolution} & \multicolumn{5}{|l|}{245 increments} \\
\hline \multicolumn{2}{|l|}{Data Format in User Program} & \multicolumn{5}{|l|}{BCD (0 to 249)} \\
\hline \multicolumn{2}{|l|}{Value of LSB (Least Significant Bit)} & \multicolumn{2}{|l|}{\begin{tabular}{ll}
FC2A-DA1 & FC2A-DA2 \\
41 mV & \(65 \mu \mathrm{~A}\)
\end{tabular}} & \[
\begin{aligned}
& \text { FC2A-DA3 } \\
& 20 \mathrm{mV}
\end{aligned}
\] & FC2A-DA4
\[
41 \mathrm{mV}
\] & FC2A-DA5
\[
82 \mathrm{mV}
\] \\
\hline \multicolumn{2}{|l|}{Total Output System Transfer Time} & \multicolumn{5}{|l|}{1 msec maximum} \\
\hline \multicolumn{2}{|l|}{Settling Time after Maximum Range Change} & \multicolumn{5}{|l|}{0.5 sec maximum after changing from 0\% to 95\%} \\
\hline \multicolumn{2}{|l|}{Overshoot} & \multicolumn{5}{|l|}{0\%} \\
\hline \multicolumn{2}{|l|}{Maximum Temporary Deviation during Electrical Noise Tests and Test Conditions} & \multicolumn{5}{|l|}{\(3 \%\) maximum of full scale at impulse test 500 V} \\
\hline \multicolumn{2}{|l|}{Output Short-circuit} & \multicolumn{5}{|l|}{No damage (between OUTPUT + and -)} \\
\hline \multicolumn{2}{|l|}{Maximum Allowed Output Voltage} & \multicolumn{5}{|l|}{Voltage output type: \(\pm 12 \mathrm{~V}\) DC (between OUTPUT + and -) Current output type: +12 or -0.6 V DC (between OUTPUT + and -)} \\
\hline \multicolumn{2}{|l|}{Maximum Allowed Input Voltage} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Between INPUT and GND: +30 V DC \\
Between INPUT and +24V: -30V DC
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Output Voltage Drop} & \multicolumn{5}{|l|}{\(1 \%\) maximum of full scale} \\
\hline \multirow{5}{*}{External Power Supply Data} & Rated Power Voltage & \multicolumn{5}{|l|}{24V DC} \\
\hline & Power Voltage Range & \multicolumn{5}{|l|}{19 to 30V DC} \\
\hline & Resetting Method & \multicolumn{5}{|l|}{Use a power supply of self-reset type or with an overcurrent protection against 10A inrush current into the D/A converter unit} \\
\hline & Inrush Current & \multicolumn{5}{|l|}{10A} \\
\hline & Output Power & 2.5W mini & & & & \\
\hline \multicolumn{2}{|l|}{Calibration or Verification to Maintain Rated Accuracy} & \multicolumn{5}{|l|}{Once every 6 months (recommended value)} \\
\hline \multicolumn{2}{|l|}{Type of Applicable Load} & \multicolumn{5}{|l|}{Resistive load (\(5 \mathrm{k} \Omega\) minimum, voltage output type)} \\
\hline \multicolumn{2}{|l|}{Effect of Improper Output Terminal Connection} & \multicolumn{5}{|l|}{Permanent damage may be caused} \\
\hline \multicolumn{2}{|l|}{Monotonicity} & \multicolumn{5}{|l|}{Yes} \\
\hline \multicolumn{2}{|l|}{Crosstalk} & \multicolumn{5}{|l|}{No crosstalk because of 1 channel output} \\
\hline \multicolumn{2}{|l|}{Non-linearity} & \multicolumn{5}{|l|}{0.2\% maximum of full scale} \\
\hline \multicolumn{2}{|l|}{Repeatability after Stabilization Time} & \multicolumn{5}{|l|}{\(0.5 \%\) maximum of full scale (more than 30 minutes after power up)} \\
\hline \multicolumn{2}{|l|}{Output Ripple} & \multicolumn{5}{|l|}{1\% maximum of full scale} \\
\hline \multicolumn{2}{|l|}{MICR0 \({ }^{3}\) Setting} & \multicolumn{5}{|l|}{PWM MODE3} \\
\hline
\end{tabular}

\section*{Power Supply Timing Chart}

Power up the D/A converter unit and MICRO at the same time, or power up the MICRO \(^{3}\) first.
Power down the D/A converter unit and \(\mathrm{MICRO}^{3}\) at the same time, or power down the D/A converter first.

\section*{Output Response at Power Up and Down}

D/A converter units FC2A-DA3 and FC2A-DA5 generate a momentary voltage output when the \(\mathrm{MICRO}^{3}\) or the D/A converter unit is powered up or when the MICRO \({ }^{3}\) is started or stopped.
- FC2A-DA3: -5V DC
- FC2A-DA5: -10V DC

When the analog voltage output from the FC2A-DA3 or FC2A-DA5 is used to control motor and a trouble may occur, use a relay to ensure a delay between the RUN/STOP signal and the analog output as shown below.

When the value of the data register designated as perand S1 (pulse width coefficient) for the PWM (pulse width modulation) instruction is between 0 nd \(4, S 1\) is designated as 5 , and the minimum out put is generated.

Do not designate constant 0 through 4 as S1. If a constant value between 0 and 4 is designated as \(S 1\), the output is not generated correctly.

Analog Output Value \(=(\) Maximum Output - Minimum Output \() \times \frac{\mathrm{S} 1-5}{244}+\) Minimum Output

Type of Protection
- Input Circuit

The input selector switch is used to select sink or source input.

\section*{- Output Circuit}

\section*{Wiring Diagram}
- Transistor Sink Output from MICRO \({ }^{3}\)

- Transistor Protect Source Output from MICRO \({ }^{3}\)

\section*{Example: D/A Conversion}

The following example demonstrates a program to control motor speed using the D/A converter unit. Analog potentiometer 0 on the MICRO \({ }^{3}\) base unit is used to change the digital value for operand S1 (pulse width coefficient) of the PWM (pulse width modulation) instruction. The PWM output from output Q 0 is converted to an analog value by the D/A con verter unit and the output from the D/A converter unit is entered to the inverter to control the motor speed.

\section*{Ladder Diagram}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \text { ANR0 } \\
\hline \text { D0 } \\
\hline
\end{array}
\]}} \\
\hline & \\
\hline & \\
\hline
\end{tabular}

M317 is the in-operation output special internal relay.
The ANR0 \((\operatorname{analog}\) read 0\()\) instruction reads the analog potentiometer 0 setting and sets digital value 0 through 249 to data register D0.
The PWM (pulse width modulation) instruction converts the D0 value to a pulse output signal of variable pulse widths.
Note: When using the D/A converter unit, the MODE in the PWM instruction must be set to MODE3 to make sure of correct output from the D/A converter unit. When the value of the data register designated as S1 is between 0 and 4 , the PWM instruction sets operand S 1 to 5 , and the minimum output is generated by the \(\mathrm{D} / \mathrm{A}\) converter unit. If the value of the data register designated as S 1 exceeds 249 during operation, a user program execution error will occur, then error indicator ERR1 on the MICRO \({ }^{3}\) base unit is lit, and special internal relay M304 is also turned on. Do not designate constant 0 through 4 as \(S 1\). If a constant value between 0 and 4 is designated as \(S 1\), then the output is not generated correctly.

\section*{I/O Wiring Diagram}

This wiring example shows a sink-output connection for the \(\mathrm{MICRO}^{3}\) base unit.

\(\bullet\) For dimensions of \(A / D\) and \(D / A\) converter units, see page 1-24. \(\downarrow\)

\section*{Introduction}

This chapter describes setting the FUN (function) table.
FUN1 through FUN11 are used to configure the user program and these settings must be designated before attempting to transfer the user program to the \(\mathrm{MICRO}^{3}\) base unit.
FUN20 through FUN28 are used to check the MICRO \({ }^{3}\) base unit status and data
FUN29 is used to read user communication status to the program loader (MICRO \({ }^{3} \mathrm{C}\) only).
FUN30 through FUN36 are used to set the operation modes of the program loader.
FUN40 through FUN43 are used for the memory card installed in the program loader.
FUN50 is used to monitor user communication data on the program loader (MICRO \({ }^{3} \mathrm{C}\) only)

\section*{FUN Settings (FUN1 through FUN11)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline For & Number & Name & Function & Option & Default \\
\hline \multirow{11}{*}{} & FUN1 & Stop input number selection & Selects any input terminal as a stop input. & 0 to 15 & None \\
\hline & FUN2 & Reset input number selection & Selects any input terminal as a reset input. & 0 to 15 & None \\
\hline & FUN3 & Internal relay "keep" designation & Designates a range of internal relays as keep type. & \[
\begin{aligned}
& \hline \text { Standard processing: } \\
& 0 \text { to } 287 \\
& \text { High-sped processing: } \\
& 0 \text { to } 47
\end{aligned}
\] & All clear types \\
\hline & FUN4 & Shift register "keep" designation & Designates a range of shift register bits as keep type. & \[
\begin{aligned}
& \hline \text { Standard processing: } \\
& 0 \text { to } 63 \\
& \text { High-sped processing: } \\
& 0 \text { to } 31
\end{aligned}
\] & All clear types \\
\hline & FUN5 & Processing mode selection & Selects standard or high-speed processing mode. & Standard or high-speed processing mode & Standard \\
\hline & FUN6 & Rising or falling edge selection for catch inputs & Selects rising (ON pulse) or falling edge (OFF pulse) to receive catch inputs. & Up or down & Up \\
\hline & FUN7 & Input filter time selection & Selects the input filter time. & \begin{tabular}{l}
Hard filter: 0 to 255 \\
Soft filter: 0, 3, 7, 10
\end{tabular} & Hard: 10 Soft: 3 \\
\hline & FUN8 & Loader port communication mode setting & Sets the communication format for MICRO \(^{3}\) connected to computer or modem. & \begin{tabular}{l}
Baud rate \\
Terminator code \\
Data bits \\
Parity check \\
Stop bits \\
Mode selection input \\
Receive timeout
\end{tabular} & 9600 bps
OD (CR)
7 bits
Even
1 bit
None
500 msec \\
\hline & FUN9 & PLC address for network communication & Sets the communication device number of \(\mathrm{MICRO}^{3}\) in \(1: \mathrm{N}\) computer link. & 0 to 31 & 0 \\
\hline & FUN10 & Control data register setting & Enables or disables control data register function. & Enable or disable & All disabled \\
\hline & FUN11 & Program capacity and PLC type selection & Selects the program capacity to write into the program loader and selects the PLC type. & Capacity: 244, 500, 1 K PLC: \(\mathrm{MICRO}^{3}, \mathrm{MICRO}^{3} \mathrm{C}\) & 1 K (initial) MICRO \(^{3}\) \\
\hline
\end{tabular}

Note: Since FUN1 through FUN11 settings relate to the user program, the user program must be transferred to the MICRO \(^{3}\) after changing any of these settings. When the user program is cleared using the DEL, END, and \(\boldsymbol{\downarrow}\) keys, FUN1 through FUN10 settings are also reset to the default values. The FUN11 value is not changed by deleting the entire user program.

\section*{FUN Settings (FUN20 through FUN50)}
\begin{tabular}{|c|c|c|c|}
\hline For & Number & Name & Function \\
\hline \multirow{10}{*}{\[
\begin{gathered}
\mathrm{MICRO}^{3} \\
\text { Status }
\end{gathered}
\]} & FUN20 & PLC error data readout and reset & Displays the error code and data of the \(\mathrm{MICRO}^{3}\), and clears the error data. \\
\hline & FUN21 & Timer/counter preset value readout and restore & Reads changed timer/counter preset values from MICRO \({ }^{3}\). Restores the original timer/counter preset values. \\
\hline & FUN22 & User program protection & Protects the user program in the MICRO \({ }^{3}\) from reading and/or writing. Cancels the user program protection. \\
\hline & FUN23 & PLC system program version readout & Displays the MICRO \({ }^{3}\) system program version. \\
\hline & FUN24 & PLC operating status readout & Displays the run/stop status of MICRO\({ }^{3}\). \\
\hline & FUN25 & Scan time readout & Displays the current and maximum scan time values of the user program in operation. \\
\hline & FUN26 & Operand data clear & Clears all or selected operand data of the user program. \\
\hline & FUN27 & Link formatting sequence & Updates the data link terminal connection data. \\
\hline & FUN28 & Calendar/clock data readout and setting & Displays and changes the calendar/clock data in MICRO \({ }^{3}\). \\
\hline & FUN29 & User communication status readout & Displays user communication error data, execution of transmit/ receive instructions, and communication parameters. \\
\hline \multirow{7}{*}{Program Loader} & FUN30 & Program check & Checks the user program in the program loader and displays program errors, if any. \\
\hline & FUN31 & Program loader version readout/hardware check & Displays the program loader version. Checks the display and internal RAM of the program loader. \\
\hline & FUN32 & Sequential monitoring & Enables or disables sequential monitoring in the editor mode. \\
\hline & FUN33 & Monitor screen holding & Enables or disables to hold monitor data when the program loader is turned off or when the monitor mode is exited. \\
\hline & FUN34 & Program loader beep sound & Turns on or off the program loader beep sound. \\
\hline & FUN35 & Display language selection & Selects the display language from English or Japanese. \\
\hline & FUN36 & Display data type selection & Selects decimal or hexadecimal notation of constant values during editing and monitoring. \\
\hline \multirow{4}{*}{\[
\begin{aligned}
& \text { Memory } \\
& \text { Card }
\end{aligned}
\]} & FUN40 & Memory card identification & Displays the memory card battery status, card name, and stored user program names. \\
\hline & FUN41 & Memory card formatting & Formats the memory card to store user programs. \\
\hline & FUN42 & Program loader system program installation & Installs another system program from the memory card into the program loader. \\
\hline & FUN43 & Program loader system program restore & Erases the additional system program from the program loader. \\
\hline Communication Monitor & FUN50 & User communication data monitor & Monitors transmit and receive data of user communication between the MICRO \({ }^{3} \mathrm{C}\) and RS 232 C equipment. \\
\hline
\end{tabular}

Note 1: FUN32 through FUN36 settings are held when the program loader is turned off
Note 2: FUN29 and FUN50 can be used on the MICRO \({ }^{3} \mathrm{C}\) only.

\section*{Key Operation}

Each FUN setting screen can be called directly or from a FUN menu.
To directly call an individual FUN setting screen, press the FUN key, then enter a FUN number, and press the \(\boldsymbol{\nabla}\) key as described in detail in the following sections.
To call a FUN menu, press the FUN key, followed by the \(\boldsymbol{\nabla}\) key. To display the next or previous page of the FUN menu, press the \(\boldsymbol{\nabla}\) or \(\mathbf{\Delta}\) key.

When the required FUN number is displayed, enter the number, and pres the \(\boldsymbol{d}\) key.
Individual FUN setting screens for FUN1 through FUN11 and for FUN32 through FUN36 are called successively by pressing the or \(\measuredangle\) key.

\section*{FUN1: Stop Input Number Selection}

There are several ways to start and stop the MICRO \({ }^{3}\) base unit. See page 2-1 for detailed information on starting and stopping operations. One method for stopping the \(\mathrm{MICRO}^{3}\) operation is to designate an input number as the stop terminal When this input is turned on, the MICRO \({ }^{3}\) operation is stopped:

Applicable stop input numbers: I0 through I15
Applicable stop input
Default: No stop input
Input numbers at the expansion station cannot be designated as a stop input
Input numbers at the expansion station cannot be designated as a stop input.
To cancel the stop input number selection, move the cursor down to the colon, and press the DEL and \(\boldsymbol{\downarrow}\) keys.
To return to the editor mode, press the CLR key.
ider

\section*{FUN2: Reset Input Number Selection}

FUN2 is provided to designate an input number as a reset terminal. When this input is turned on, MICRO \({ }^{3}\) stops operation and resets all statuses. See page 2-2 for detailed information on system status during reset. To set FUN2

Applicable reset input numbers: I0 through I15
Default: No reset input
Input numbers at the expansion station cannot be designated as a reset input.
To cancel the reset input number selection, move the cursor to the colon, and press the DEL and \(\boldsymbol{\downarrow}\) keys.
To return to the editor mode, press the CLR key.

\section*{FUN3: Internal Relay "Keep" Designation}

The status of any internal relay from M0 through M287 is normally cleared during a power failure. It is possible to maintain the status of an internal relay by using FUN3 to designate the internal relay as a "keep" type.
The "keep" designation can only be specified for a block of consecutive internal relay numbers, starting with M0. When FUN3 is set to specify an internal relay between M0 and M287, all those numbers M0 through the specified one will be designated as "keep" type. All internal relays above the specified number will be cleared

FUN 3 M-KEEP Keep Area
: M200 (M0-M200)

Applicable "keep" designation internal relay numbers: M0 through M287 in the standard processing mode M0 through M47 in the high-speed processing mode
Default: All "clear" type internal relay
To cancel the internal relay "keep" designation, move the cursor down to the colon, and press the DEL and \(\boldsymbol{\sim}\) keys. To return to the editor mode, press the CLR key
When M200 is assigned as shown above, internal relays M0 through M200 become "keep" type internal relays and M201 through M287, "clear" types.
Special internal relays M290 through M297 assigned for catch inputs are always "clear" types
For the status of special internal relays M300 through M317, see page 6-2.

\section*{UN4: Shift Register "Keep" Designation}

The status of any shift register bit from R0 through R63 is normally cleared during a power failure. It is possible to maintain the status of a shift register bit by using FUN4 to designate the shift register bit as a "keep" type.
The "keep" designation can only be specified for a block of consecutive shift register bits, starting with R0. When FUN4 is set to specify a shift register bit between R0 and R63, all those numbers R0 through the specified one will be designated as "keep" type. All shift register bits above the specified number will be cleared.

```

FUN` 4 R-KEEP
Keep Area
:R (R ——)

```

FUN• 4 R-KEEP
Keep Area
:R 20 (R0-R 20)

Applicable "keep" designation shift register bit numbers: R0 through R63 in the standard processing mode
R0 through R31 in the high-speed processing mode
To cancel the shift register "keep" designation, move the cursor down to the colon, and press the DEL and \(\boldsymbol{\checkmark}\) keys. To return to the editor mode, press the CLR key.
When R20 is assigned as shown above, shift register bits R0 through R20 become "keep" type shift register bits and R2 through R63, "clear" types.

\section*{FUN5: Processing Mode Selection}

FUN5 is provided to select the standard or high-speed processing mode. The high-speed processing mode has average scan time of \(400 \mu\) sec per 100 steps and can be used as a sensor controller in combination with the catch input function. For details of the high-speed processing mode, see page 4-1
To select the high-speed processing mode, press the keys:

Pressing the REP key toggles NORMAL and SPEED to select the standard or high-speed processing mode The default selection is the standard operation mode
To return to the editor mode press the CLR key
In the high-speed operation mode, the I/O expansion function and data link function cannot be used, and available oper ands are limited. The program capacity is approximately 100 steps. For available operands, see page 6-1.
User communication transmit (TXD) and receive (RXD) instructions for the MICRO \({ }^{3} \mathrm{C}\) cannot be used in the high-speed processing mode.

\section*{FUN6: Rising or Falling Edge Selection for Catch Inputs}

FUN6 is provided to select whether catch inputs are accepted at the rising (ON pulse) or falling edge (OFF pulse). The catch input signals entered to inputs I0 through I7 are stored to special internal relays M290 through M297. See page 4-2. The edge selection is done in 4 groups of catch inputs:
\begin{tabular}{|c|c|c|c|c|}
\hline Catch Group & G1 & G2 & G3 & G4 \\
\hline Input Number & 10 & 11 & 12 and 13 & 14 through 17 (16- and 24-I/O MICRO \(^{3}\) base units) 14 and 15 (10-I/O MICRO \(^{3}\) base unit) \\
\hline
\end{tabular}

Pressing the REP key toggles UP and DOWN to select the rising edge or the falling edge.
To move from a group to another, press the \(\boldsymbol{\nabla}\) or \(\boldsymbol{\Delta}\) key.
The default selection is the rising edge for all groups.
To return to the editor mode, press the CLR key.

\section*{FUN7: Input Filter Time Selection}

FUN7 is provided to select the input filter time to accept short-pulse inputs or to eliminate noise pulses. When catch input special internal relays M290 through M297 are not included in the user program, set the input filter time to a small value to make sure of receiving short-pulse input signals.
The input filter time for catch inputs and high-speed counter inputs can be selected using the hard filter setting. The hard filter is set to the same value for inputs IO through I7. The hard filter preset value can be between 0 and 255 . For details of the hard filter time calculated from the preset value, see page 4-4.
The soft filter can be selected from \(0,3,7\), and 10 msec and the selection is done in 4 groups of inputs:
\begin{tabular}{|c|c|c|c|c|}
\hline Soft Group & G1 & G2 & G3 & G4 \\
\hline Input Number & 10 & 11 & 12 and 13 & \begin{tabular}{l}
14 through \(17\left(16-\right.\) and \(24-1 / \mathrm{O} \mathrm{MICRO}^{3}\) base units) \\
14 and \(15\left(10-1 / \mathrm{O} \mathrm{MICRO}^{3}\right.\) base unit \()\)
\end{tabular} \\
\hline
\end{tabular}
REP

While the cursor is at G1 through G4, pressing the REP key toggles \(0 \mathrm{~ms}, 3 \mathrm{~ms}, 7 \mathrm{~ms}\), and 10 ms to select the soft filter preset value.
To move from a group to another, press the \(\mathbf{\nabla}\) or \(\mathbf{\Delta}\) key.
The default selection of the hard filter is 10 .
The default selection of soft filter is 3 msec for all four groups.
To return to the editor mode, press the CLR key.

\section*{UN8: Loader Port Communication Mode Setting}

The MICRO \({ }^{3}\) or \(\mathrm{MICRO}^{3} \mathrm{C}\) base unit can communicate with a personal computer or modem through the RS485 loader port (\(\mathrm{MICRO}^{3}\)) or the RS232C loader port (\(\mathrm{MICRO}^{3} \mathrm{C}\)). For this, the communication format can be selected from the standard or optional mode. When the mode selection input selected by FUN8 is turned on, the optional communication mode is enabled. When using the program loader to communicate with the \(\mathrm{MICRO}^{3}\) or \(\mathrm{MICRO}^{3} \mathrm{C}\) base unit, use the standard con munication mode of all default values.

8
Mcs \(/\) RFUN 8 COM-FORM * 9600bps *OD *7bit*EVEN*stop1 (:I__ : 500ms)
REP
- FUN 8 COM-FOR *19200bps *OD *7bit*EVEN*stop 1 (:I__ : 500 ms)

Pressing the REP key toggles the options for each parameter. To move the cursor from a parameter to another, press the \(\boldsymbol{\nabla}\) or \(\mathbf{\Delta}\) key.
To restore the default value, move the cursor to the parameter, and press the DEL key
Pressing the DEL key with the cursor placed at the mode input selection on the bottom line, the input selection is cleared, and the optional communication mode is canceled.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Communication Parameter } & \multicolumn{1}{c|}{ Option } & Default (Standard Mode) \\
\hline Baud Rate & \(1200,2400,4800,9600,19200 \mathrm{bps}\) & 9600 bps \\
\hline Terminator Code & \(0 \mathrm{D}(\mathrm{CR}), 0 \mathrm{DAA}(\mathrm{CR} \mathrm{LF})\) & \(0 \mathrm{D}(\mathrm{CR})\) \\
\hline Data Bits & 7,8 bits & 7 bits \\
\hline Parity Check & None, Even, Odd & Even \\
\hline Stop Bits & 1,2 bits & 1 bit \\
\hline Mode Selection Input (Note 1) & 10 to I15 & None \\
\hline Receive Timeout (Note 2) & 10 to 2550 (10-msec increments) & 500 msec \\
\hline
\end{tabular}

To return to the editor mode, press the CLR key.
Note 1: When the protocol selector switch is set to 1 or 3 to select user protocol for the loader port on the \(\mathrm{MICRO}^{3} \mathrm{C}\), the mode selection input is not used and need not be specified to enable the FUN8 value.
Note 2: When 2550 is selected, receive timeout is disabled in the user communication of the \(\mathrm{MICRO}^{3} \mathrm{C}\).

\section*{FUN9: PLC Address for Network Communication}

The MICRO \({ }^{3}\) or MICRO \({ }^{3} \mathrm{C}\) base unit can be connected to a personal computer through the RS485 loader port (MICRO \({ }^{3}\)) or the RS485 data link terminals (\(\mathrm{MICRO}^{3} \mathrm{C}\)) for a \(1: \mathrm{N}\) communication computer link network. When used in a network, the PC must have addresses to differentiate various MICRO \({ }^{3}\) or \(\mathrm{MICRO}^{3} \mathrm{C}\) base units that it communicates with.
Each MICRO \({ }^{3}\) or \(\mathrm{MICRO}^{3} \mathrm{C}\) in a network can be allocated to a unique number from 0 through 31, using FUN9. A PC will communicate with the \(\mathrm{MICRO}^{3}\) or \(\mathrm{MICRO}^{3} \mathrm{C}\) base units in a network, addressing to the values that have been allocated in FUN9:

1
BPS \(\square\) FUN 9 NUMBER Device Number
1

The key sequence above will allocate address 1 to the \(\mathrm{MICRO}^{3}\) or \(\mathrm{MICRO}^{3} \mathrm{C}\) base unit being programmed.
The default selection is device number 0 .
To return to the editor mode, press the CLR key

\section*{FUN10: Control Data Register Setting}

FUN10 is used to select whether data registers D90 through D99 are enabled as a control data register or not. When the control data register function is enabled, the data register stores various data as shown below. Control data registers are for readout only and can be used in the user program or for monitoring.

The control data register function can be used in the standard processing mode only and cannot be used in the high-speed processing mode
When the control data register function is disabled, the data register can be used as an ordinary data register.

Control data registers D90 through D99 correspond to 0 through 9 on the right of SERV-. Press the 1 or 0 key to enable or disable the control data register function.
1: \(\quad\) Enables the control data register function.
DEL: Sets 1 at all positions to enable all control data registers.
CLR: Clears all changes and restores the previous settings.
or 4: Moves the cursor
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { SERV } \\
& \text { Number }
\end{aligned}
\] & Data Register & Function & Data in Control Data Register \\
\hline 0 & D90 & Base Unit System Code & \begin{tabular}{l}
MICRO \(^{3}\) base unit system code \\
1: 24-I/O type \\
2: 16-I/O type \\
4: 10-I/O type \\
8: AC input type \\
16: Protect source output type
\end{tabular} \\
\hline 1 & D91 & Base Unit Processing Mode Code & \begin{tabular}{l}
\(\mathrm{MICRO}^{3}\) base unit processing mode code 0 : Standard processing mode \\
1: High-speed processing mode
\end{tabular} \\
\hline 2 & D92 & General Error Code & See General Error Code on page 18-2 \\
\hline 3 & D93 & User Program Execution Error Code & See User Program Execution Error on page 18-5 \\
\hline 4 & D94 & Link Communication Error Code & See Link Communication Error on page 18-5 \\
\hline 5 & D95 (Note) & Day of Week (Calendar) & \begin{tabular}{l}
0: Sunday, 1: Monday, 2: Tuesday, 3: Wednesday, \\
4: Thursday, 5: Friday, 6: Saturday
\end{tabular} \\
\hline 6 & D96 (Note) & Hour (Clock) & 0 to 23 \\
\hline 7 & D97 (Note) & Minute (Clock) & 0 to 59 \\
\hline 8 & D98 (Note) & Second (Clock) & 0 to 59 \\
\hline 9 & D99 & Scan Time (Current Value) & Current scan time in msec See FUN25 on page page 5-11 \\
\hline
\end{tabular}

\section*{The default setting is to disable all control data register functions.}

Note: Since the \(10-\mathrm{I} / \mathrm{O}\) type \(\mathrm{MICRO}^{3}\) base unit does not have the real-time calendar/clock function, data registers D95 through D98 cannot be designated as control data registers and are always used as ordinary data registers. Only 16-I/O and 24-I/O type \(\mathrm{MICRO}^{3}\) base units can designate D95 through D98 as control data registers
To return to the editor mode, press the CLR key.

\section*{FUN11: Program Capacity and PLC Type Selection}

The user program capacity can be selected from 244,500 , or 1 K steps using FUN11:
FUN \begin{tabular}{c}
1 \\
BPS
\end{tabular} \begin{tabular}{c}
1 \\
BPS
\end{tabular}\(\nabla\)

``` Program capacity (must be set to 244,500 , or 1 K )
```


FUND11 SIZE Program Capacity * 244 (step)	
	: 1

1: $\mathrm{MICRO}^{3} \mathrm{C}$

Pressing the REP key changes the program capacity from 1 K to $4 \mathrm{~K}, 8 \mathrm{~K}, 244,500$, and back to 1 K . Do not select 4 K and Pressing the REP key changes the program capacity fromiK to $4 \mathrm{~K}, 8 \mathrm{~K}, 244,500$, and back to 1 K . Do not select 4 K and
8 K because MICRO ${ }^{3}$ and MICRO $^{3} \mathrm{C}$ can run user programs of 244,500 , and 1 K steps only. The initial setting is 1 K steps. The fourth line in the FUN11 screen shows the PLC type code. Do not select other than 0 and 1 . When the PLC type code is set to 0 to select MICRO ${ }^{3}$, data registers D100 through D499 cannot be programmed.
To return to the editor mode, press the CLR key.

FUN20: PLC Error Data Readout and Reset

The error data stored in the MICRO ${ }^{3}$ base unit can be read out and reset using FUN20:

When no error is detected, "Nothing" is displayed as shown above. If there is an error, then the error code and error message are shown as on the right above. For details of error messages, see page 18-1. To clear the error display:
DEL FUN>20 ERROR 401 Delete?
FUN 20 ERROR
Nothing

To return to the editor mode, press the CLR key.

FUN21: Timer/Counter Preset Value Readout and Restore

Timer and counter preset values in the MICRO ${ }^{3}$ base unit can be changed from the monitor mode without changing the entire program. See page 3-14. FUN21 can be used to see if T/C preset values have been changed. When preset values are entire program. See page 3-14. FUN21 can be used to see if T/C preset values have been changed. When preset values are
not changed, "Nothing" is displayed. When timer and counter preset values have been changed, the changed values can be read from the MICRO ${ }^{3}$ base unit RAM to the program loader using FUN21. The changed preset values in the MICRO ${ }^{3}$ base unit RAM can also be cleared to restore the original preset values using FUN21:
FUN $\left.\begin{array}{c}2 \\ \text { BRD }\end{array} \begin{array}{c}1 \\ \text { BPS }\end{array}\right] \quad$ FUN $>21 \quad$ T/C CHG
CHG data of T / C *READ OK?

FUN 21 T/C CHg
CHG data of T / C -READ OK?

Press the REP key to select "READ OK?" or "CLR OK?"
READ: Reads the changed timer/counter preset values from the MICRO ${ }^{3}$ base unit RAM to the program loader. CLR: Clears the changed preset values and restores the original preset values in the MICRO ${ }^{3}$ base unit RAM
To execute the command, press the $\boldsymbol{\downarrow}$ key.
To return to the editor mode, press the CLR key.

FUN22: User Program Protectio

The user program in the MICRO ${ }^{3}$ base unit can be protected from reading, writing, or both using FUN22.
\} Warning - When proceeding with the following steps, make sure to note the password, which is needed to protected, then the user program cannot be changed without the password.

To protect a user program, first transfer the user program from the program loader to the MICRO 3 base unit (see page 3-9) and send a password to the MICRO ${ }^{3}$ base unit by pressing the keys:

Enter a password of 1 through 4 digits using the 0 through 9 and A through F keys:

$$
0 \text { through } \begin{gathered}
9 \\
\text { JMP/E }
\end{gathered} \quad \begin{gathered}
A / 2 \\
\text { NOT }
\end{gathered} \text { through } \frac{\text { FRST }}{\frac{\text { RST }}{}}
$$

Move down the cursor to the asterisk, and press the REP key repeatedly to select a protection mode from read, write, or read/write protection.

R/: Read protect
/W: Write protect
R/W: Read and write protect
Pass Word : 91AF
(Mode $>\mathrm{R} /$) OK?
To execute the protect command, press the $\boldsymbol{\alpha}$ key. When the program protection is completed, "END" is displayed. To cancel the program protection in the MICRO ${ }^{3}$ base unit, first read FUN22 and move down the cursor:

Enter the password correctly and press the $\boldsymbol{\downarrow}$ key. When the program protection is canceled successfully, "END" is displayed. If the password is incorrect, "Pass Word NG" is displayed, and the protection is not canceled.
To return to the editor mode, press the CLR key.

FUN23: PLC System Program Version Readout

The system program version in the MICRO ${ }^{3}$ base unit be read using FUN23. The system version is displayed in 4 digits.

To return to the editor mode, press the CLR key.

FUN24: PLC Operating Status Readout

MICRO 3 operating status can be read using FUN24. Run: MICRO ${ }^{3}$ is running
Stop: MICRO ${ }^{3}$ is stopped
To return to the editor mode, press the CLR key.

UN25: Scan Time Readout

The scan time of the user program in the MICRO ${ }^{3}$ base unit can be read using FUN25
The current value of the scan time is displayed in units of msec and updated periodically. The maximum value of the scan time is shown in parentheses on the bottom line. The current and maximum values of the scan time are displayed in the decimal notation for the integer and in the octa notation for the fraction. In the example on the right, the mum value is $1+0.5 \times 1.25=1.625 \mathrm{msec}$.

To return to the editor mode, press the CLR key
The current value of the scan time is stored in control data register D99, if enabled using FUN10. See page 5-8.

FUN26: Operand Data Clear

The data of all or selected operand can be cleared using FUN26.
To clear the data of all operands, press the $\boldsymbol{\downarrow}$ key.
To select an operand, move the cursor down, and press the REP key. Press the $\boldsymbol{\downarrow}$ key to clear the data

FUN ${ }^{26}$ DATA-CLR

*ALL Operand CLR OK?

When the data is cleared, "END" is displayed.
When this command is executed the following data is cleared.

Selection	Operand	Data Cleared
ALL	All operands (Q, M, R, C, T, D)	All data shown below are cleared.
Q	Output	All outputs are turned off.
M	Internal relay	All internal relays are turned off.
R	Shift register	All shift register bits are turned off.
\mathbf{C}	Counter	CNTO and 1: Current values are cleared to the preset value. CNT2 to 31: Current values are cleared to zero.
T	Timer	All timer current values are cleared.
D	Data register	Data of all data registers are cleared to zero.

To return to the editor mode, press the CLR key.

FUN27: Link Formatting Sequence

 hanged, execute the link formatting sequence from the master station using FUN27 to initialize the link
communication line.
To initialize the link communication line, press the $\boldsymbol{\downarrow}$ key.
The MICRO ${ }^{3}$ base unit with the function selector switch set to zero is used for the base station in the expansion link system or the master station in the data link system. When the base or master station is powered up, the base or master station ends the link formatting sequence to confirm whether the expansion station or slave stations can be communicated with. the expansion station or any slave station is not powered up, the expansion or slave station is not recognized. To enable , tion to initialize the link communication line

To return to the editor mode, press the CLR key.

FUN28: Calendar/Clock Data Readout and Setting

The calendar/clock data in the 16- and 24-I/O type
MICRO 3 base units can be read and changed using FUN28.
\mathbf{Y} : Year (the last 2 digits)
M: Month (1 through 12 correspond to January through December)
D: Day (1 through 31)
D: Day (1 through 31)
H: Hours (0 through 23)
M: Minutes (0 through 59)
\mathbf{S} : Seconds (0 through 59)
Day of week in parentheses
To change the calendar/clock data, press the $\boldsymbol{\nabla}$ key to move the cursor and enter new data using the 0 through 9 keys. To To change the calendar/clock data, press the key to move the cursor and enter new data using the 0 through 9 keys.
change the day of week, move the cursor to the asterisk, and press the REP key repeatedly to display the required day.
To update the calendar/clock data, press the $\boldsymbol{\downarrow}$ key. When completed, "END" is displayed.
To return to the editor mode, press the CLR key

FUN29: User Communication Status Readout

- MICRO $^{3} \mathrm{C}$ Only

User communication error data, execution of transmit/receive instructions, and communication parameters can be read using FUN29 on the program loader. For details on FUN29, see the MICRO ${ }^{3}$ C User's Manual.

FUN30: Program Check

The user program in the program loader memory can be checked using FUN30. When the user program is correct, Program OK" is displayed. When any program error is found, an error message and its address is displayed.

When more than 3 errors are found, scroll the display using the $\boldsymbol{\nabla}$ and $\mathbf{\Delta}$ keys.
To return to the editor mode, press the CLR key.
When executing FUN30, the following error message may be displayed, followed by the address where the error is found.

Error Message	Error Details
BPS Error + Address	BPS instruction is not followed by BPP instruction.
BPS Over ? + Address	More than 8 BPS instructions are programmed continuously, overflowing the bit stack registers.
BPP Error + Address	BPP instruction is not preceded by BPS instruction.
BRD Error + Address	BRD instruction is not preceded by BPS instruction.
END Error	END instruction is not found.
FUN Error + Number	Invalid FUN setting. The incorrect FUN number is displayed.
JEND Error + Address	JEND instruction is not preceded by JMP instruction.
JMP Error + Address	JMP instruction is not followed by JEND instruction. (Note)
MCR Error + Address	MCR instruction is not preceded by MCS instruction.
MCS Error + Address	MCS instruction is not followed by MCR instruction. (Note)
No Program	END instructions exist at all addresses.
OP. Error + Address	Invalid operand number.
PRG. Error + Address	User program is broken.

When any error was found, correct the program, and execute FUN30 again to make sure of no program error.
Note: These messages are displayed for warning only. The JMP or MCS instruction can also be used with the END instruction, instead of JEND or MCR. User programs run correctly even if the JEND or MCR is not programmed.

UN31: Program Loader Version Readout/Hardware Check

At the beginning of the hardware check, using FUN31, the version of the program loader system program is displayed. Next, the program loader display is tested, and the internal memory is checked by testing the readout and writing functions of the entire RAM of the program loader. If all functions are normal, the message on the right below is displayed.

To abort the program loader hardware check and return to the editor mode, press the CLR key.

FUN32: Sequential Monitoring

When sequential monitoring is set to ON using
FUN32, the ON/OFF statuses of operands can be
monitored in the editor mode. Sequential monitoring monitored in the editor mode. Sequential monitor
is possible at addresses of LOD, LODN, AND, ANDN, OR, ORN, OUT, OUTN, SET, RST, TIM and CNT instructions.
The ON/OFF status of the operand is displayed at the right end of the line
The statuses of inputs, outputs, internal relays, and
shift register bits are shown as follows:
■: ON
The statuses of timers and counters are shown as follows: : ON (timed out or counted out)
\square : OFF (during timing or counting)

FUN	3 BPP	(2	∇	FUN•32 MONITOR Sequential Monitoring *OFF
	∇	B/REP	ل	```FUN`32 MONITOR Sequential Monitoring *ON```
ws:			$\begin{array}{\|c\|} \hline \text { CLR } \\ \text { 8888888 } \\ \hline \end{array}$	5 LOD I $1 \square$ 6 LODN M $10 \square$ 7 OR LOD 8 TIM 1 $10 \square$

At addresses where the NOT instruction is programmed, the ON/OFF display is reversed.

FUN33: Monitor Screen Holding

Once the monitor operands are selected in the moni
or mode the monitor screen is useledly in the monireturning from another mode. The monitor screen can also be set to be cleared when returning from another mode using FUN33.
KEEP: Retains the monitor screen selections CLR: Clears the monitor screen selections. To return to the editor mode, press the CLR key.

FUN33 MON-KEEP Monitor Setting *KEEP *KEEP

Monitor Setting

FUN34: Program Loader Beep Sound

The program loader usually beeps to acknowledge each key input and signal an error. The buzzer can also be silenced using FUN34.	FUN	3 3	4	∇	FUN ${ }^{\text {3 }}$	BUZZER
ON : Buzzer beeps OFF : Buzzer silenced						
To return to the editor mode, press the CLR key.		∇	REP	J	FUN ${ }^{\text {3 }}$ 4	BUZZER
					Buzzer	*OFF

FUN35: Display Language Selection

The program loader usually displays messages in
English. The messages can also be displayed in Japa-
nese using FUN35.
ENG.: English
JPN.: Japanese
To return to the editor mode, press the CLR key.

FUN36: Display Data Type Selection

High-speed counter preset and current values can be displayed either in decimal or hexadecimal notation in the editor and monitor screens. Data of data registers can also be displayed in either decimal or hexadecimal notation in the monitor mode. The selection
can be made using FUN36.
DEC: Decimal
HEX: Hexadecimal
To return to the editor mode, press the CLR key.

FUN 36 DEC/HEX Numerical
Representation
Select *DEC
FUN 36 DEC/HEX
Numerical
Representation

UUN40: Memory Card Identification

The memory card installed in the program loader can be identified using FUN40.

the memory card
OK: Battery works normally.
LOW: Replacing the battery is recommended
NG: Data cannot be kept. Replace the battery
The memory in the FC2A-MC1 memory card is backed up for approximately 4 years.

FUN >40 CARD
Battery OK
Name (IDEC
Free

The bottom line shows the available memory capacity of the user program memory card or the type of the memory card.
Free (): The card is a user program memory card. Available memory capacity is shown in parentheses $\begin{array}{lll}\text { Free (} \\ \text { Unformat Card: } & \text { The card is a not formatted. Format the card using FUN41. }\end{array}$
System Card: The card is not formatted. Format the card using FUN41. .
Unrecognized One: Not a MICRO ${ }^{3}$ memory card
When a user program memory card is inserted, pressing the $\boldsymbol{\nabla}$ key shows the capacities, addresses, and names of user programs stored in the memory card. To scroll the pages, press the $\boldsymbol{\nabla}$ and $\boldsymbol{\triangle}$ keys.
To return to the editor mode, press the CLR key

FUN41: Memory Card Formatting

A new memory card must be formatted using FUN41 to store user programs.
Install a new memory card into the program loader. If the memory card stores user programs, formatting deletes all programs from the card

After calling the FUN41 screen, move down the cursor to the colon and enter a card name of 8 characters maximum.
Applicable characters are A through Z, 0 through 9 and a space.
After entering the card name, press the \boldsymbol{d} key to start After entering the card name, press the
formatting. If no card name is entered, formatting is not started.

When formatting is complete, "END" is displayed.

To return to the editor mode, press the CLR key.

FUN42: Program Loader System Program Installation

A new system program can be installed into a sepa- FUN 4 F $2 \boldsymbol{r}$ FUN 42 SYS-SET ate memory area in the program loader using
 BRD

Extension
 System Read

 OK?Install a system program card into the program loader.

When the program loader is powered up again, the new system program is booted.
To use the original system program, depress and hold the CLR key, and power up the program loader
To return to the editor mode, press the CLR key
Note: If the program loader is connected to the MICRO 3 when installing a new system program, stop MICRO 3 operation; otherwise, the program cannot be installed because of insufficient power supplied from the MICRO ${ }^{3}$.

FUN43: Program Loader System Program Restore

The new system program installed using FUN42 can be cleared, and the original system program of the program loader can be restored using FUN43.	FUN	4	3 BPP		FUN 143 SYS-CLR Extension
After calling the FUN43 screen, press the $\boldsymbol{\downarrow}$ key to					System Clear OK?

OK?
To return to the editor mode, press the CLR key.
Note: If the program loader is connected to the MICRO ${ }^{3}$ when clearing the new system program, stop MICRO ${ }^{3}$ operation; otherwise, the program cannot be cleared because of insufficient power supplied from the MICRO ${ }^{3}$.

FUN50: User Communication Data Monitor

While the MICRO ${ }^{3} \mathrm{C}$ is communicating through the loader port using the user protocol, the transmit and receive data of user communication between the MICRO ${ }^{3} \mathrm{C}$ and RS232C equipment can be monitored using FUN50 on the program loader connected to the data link terminals. The communication monitor functions are useful for debugging user communication programs.
For details on FUN50, see the MICRO ${ }^{3} \mathrm{C}$ User's Manual.

Introduction

- For the MICRO ${ }^{3}$ c, see the MICRO 3 c User's Manual.

This chapter describes allocation numbers available for the MICRO^{3} base unit to program basic and advanced instructions. Special internal relays are also described.

The MICRO ${ }^{3}$ programmable controller is programmed using operands such as inputs, outputs, internal relays, timers, counters, shift registers, and data registers.
Inputs (I) are relays to receive input signals through the input terminals.
Outputs (Q) are relays to send the processed results of the user program to the output terminals. Internal relays (M) are relays used in MICRO^{3} and cannot be outputted to the output terminals.
Special internal relays (M) are internal relays dedicated to specific functions.
limers (T) are relays used in the user program, available in $100-\mathrm{msec}, 10-\mathrm{msec}$, and $1-\mathrm{msec}$ timers.
Counters (C) are relays used in the user program, available in reversible counters and adding counters.
Dingiters (R) are registers to shift the data bits according to pulse inputs.
Data registers (D) are registers used to store numerical data. Some of the data registers are dedicated to special functions.

Allocation Numbers

Available I/O numbers depend on the type and combination of the MICRO ${ }^{3}$ base units used in the expansion link system. For details of available I/O numbers in the expansion link system, see page 4-7.

Operand	Processing Mode	Allocation Number			Maximum Points
Input	Standard and High-speed	10-17 110-115			14 points (Base) $+$ 14 points (Expansion)
	Standard only	120-127	130-135		
Output	Standard and High-speed	Q0- Q7	Q10- Q11		10 points (Base) $+$ 10 points (Expansion)
	Standard only	Q20-Q27	Q30-Q31		
Internal Relay	Standard and High-speed	$\begin{aligned} & \text { MO - M7 } \\ & \text { M30 - M37 } \end{aligned}$	$\begin{aligned} & \text { M10 - M17 } \\ & \text { M40 - M47 } \end{aligned}$	M20-M27	232 points (40 points)
	Standard only	M50-M57 M80 - M87 M110-M117 M140-M147 M170-M177 M200-M207 M230 - M237 M260-M267	M60-M67 M90 - M97 M120-M127 M150-M157 M180-M187 M240-M217 M270-M277	M70 - M77 M100 - M107 M130 - M137 M160-M167 M190 - M197 M220 - M227 M250 - M257 M280 - M287	
Catch Input Relay	Standard and High-speed	M290- M297			8 points (8 points)
Special Internal Relay	Standard and High-speed	M300-M307	M310-M317		16 points (16 points)
Timer	Standard and High-speed	T0-T15			32 points total (16 points total)
	Standard only	T16-T31			
Counter	Standard and High-speed	C0-C15			
	Standard only	C16-C31			
Shift Register	Standard and High-speed	R0-R31			64 points (32 points)
	Standard only	R32-R63			
Data Register	Standard and High-speed	D0-D31			100 points (32 points)
	Standard only	D32-D99			

Input and output allocation numbers for the expansion station start with I20 and Q20. Note that input and output allocation numbers are not continuous between the base station and expansion station in the expansion link system.
The maximum points shown in () are values for the high-speed processing mode.
The same number cannot be used for a counter and a timer in a user program.

Special Internal Relays

Internal relays M290 through M317 are special internal relays with the following functions:

Allocation Number	Description		CPU Stopped	Power OFF
M290	Catch Input Status Set (See Note below)	Input 10	Operating	Cleared
M291		Input I1	Operating	Cleared
M292		Input 12	Operating	Cleared
M293		Input 13	Operating	Cleared
M294		Input 14	Operating	Cleared
M295		Input 15	Operating	Cleared
M296		Input 16	Operating	Cleared
M297		Input 17	Operating	Cleared
M300	Start Control		Maintained	Maintained
M301	Initialize Pulse (See Note below)		Cleared	Cleared
M302	All Outputs OFF		Cleared	Cleared
M303	Carry (Cy) or Borrow (Bw)		Cleared	Cleared
M304	User Program Execution Error		Cleared	Cleared
M305	Link Communication Error (Expansion mode and data link mode)		Maintained	Cleared
M306	Link Communication Prohibit Flag (Expansion mode and data link mode)		Maintained	Maintained
$\begin{gathered} \text { M307 } \\ \text { (Ver. } 6 \text { or later) } \end{gathered}$	Link Communication Initialize Flag (Master Station) (Expansion mode and data link mode)		Cleared	Cear
	Link Communication Stop Flag (Slave Station) (Data link mode)		Cleared	Cleared
$\begin{gathered} \text { M307 } \\ \text { (Ver. } 5 \text { or earlier) } \end{gathered}$	Link Communication Stop Flag (Slave Station) (Data link mode)		Cleared	Cleared
M310	1-sec Clock Reset		Cleared	Cleared
M311	1-sec Clock		Operating	Cleared
M312	100-msec Clock		Operating	Cleared
M313	10-msec Clock		Operating	Cleared
M314	Timer/Counter Preset Value Changed		Maintained	Maintained
M315	High-speed Counter Soft Reset		Maintained	Cleared
M316	High-speed Counter (HSC3) Overflow		Cleared	Cleared
M317	In-operation Output		Cleared	Cleared

Note: M290 through M297 and M301 are used only for reading in the user program, but can be directly set or reset using the program loader or optional software CUBIQ on a computer.

M290 to M297 Catch Input Status Set

When a rising or falling input edge is detected during a scan, the input statuses of inputs $I 0$ through $I 7$ at the moment ar set to M290 through M297 without regard to the scan status. Only one edge is detected in one scan. For the catch input
function, see page 4-2. function, see page 4-2

M300 Start Control

MICRO ${ }^{3}$ starts operation when M300 is turned on and stops operation when M300 is turned off. M300 can be turned on or MICRO ${ }^{3}$ starts operation when M300 is turned on and stops operation when M300 is turned off. M300 can be turned on or
off using the RUN/STOP switch on the program loader. When a stop or reset input is designated, M300 must remain on to control the MICRO ${ }^{3}$ operation using the stop or reset input. For the start and stop operation, see page 2-1.

M301 Initialize Pulse

When MICRO ${ }^{3}$ starts operation, M301 turns on for a period of one scan.

M302 All Outputs OFF

M301

When M302 is turned on, all outputs (Q0 through Q31) go off until M302 is turned off. Self-maintained circuits using outputs also go off and are not restored when M302 is turned off.

M303 Carry (Cy) and Borrow (Bw)

When a carry or borrow results from executing an addition or subtraction instruction, M303 turns on. M303 is also used for the bit shift and rotate instructions. See pages 11-1 and 13-1

M304 User Program Execution Error

When an error occurs during executing a user program, M304 turns on. The cause of the user program execution error can be checked using FUN20 on the program loader. See page 18-5.

M305 Link Communication Erro

When an error occurs during communication in the expansion link or data link system, M305 turns on. The M305 status is maintained when the error is cleared and remains on until M305 is reset using the program loader or until MICRO ${ }^{3}$ is turned off. The cause of the link communication error can be checked using FUN20 on the program loader. See page 18-5.

M306 Link Communication Prohibit Flag

When M306 at the base or master station is turned on in the expansion link or data link system, communication is stopped. The M306 status is maintained when MICRO 3 is turned off and remains on until M306 is reset using the program loader.

M307 Link Communication Initialize Flag (Master Station)/Link Communication Stop Flag (Slave Station)

Special internal relay M307 has different functions depending on the PLC system program version. With version 6 or later, M307 can be used at the base station in the expansion link system or at the master station in the data link system. With version 5 or earlier, M307 cannot be used at the base or master station. With either version of the system program, M307 has the same function at the slave station in the data link system and has no effect at the expansion station in the expansion link system. To check the PLC system program version, see FUN23 PLC System Program Version Readout on page 5-11

Base or master station: Link communication initialize flag (Ver. 6 or later only)

When M307 at the base or master station is turned on during operation, the link configuration is checked to initialize the expansion or data link system. When an expansion station or slave station is powered up after the base or master station, turn M307 on to initialize the link system. After an expansion link or data link setup is changed, M307 must also be turned on to ensure correct communication.

Slave station: Link communication stop flag

When a slave station does not receive communication data from the master station for 800 msec or more in the data link system, M307 turns on. When the slave station receives correct communication data, M307 turns off
In the expansion station, M307 has no effect and cannot be monitored using the program loader.

M310 1-sec Clock Reset

When M310 is on, M311 (1 -sec clock) is reset to zero

M311 1-sec Clock

When M310 is off, M311 generates clock pulses in 1 -sec increments, with a duty ratio of 1:1 (500 msec on and 500 msec off),

H312 100-msec Clock

M312 always generates clock pulses in $100-\mathrm{msec}$ increments, whether M310 is on or off, with a duty ratio of $1: 1(50 \mathrm{msec}$ on and 50 msec off).
M311

M312

M313 10-msec Clock

M313 always generates clock pulses in $10-\mathrm{msec}$ increments,
whether M310 is on or off, with a duty ratio of $1: 1$ (5 msec on and 5 msec off).

M314 Timer/Counter Preset Value Changed

When timer or counter preset values are changed in the MICRO ${ }^{3}$ base unit RAM using the program loader, M314 turns on. When a user program is transferred to MICRO^{3} from the program loader or when the changed timer/counter preset value is cleared using FUN21, M314 turns off.

M315 High-speed Counter Soft Rese

When M315 is turned on while a high-speed counter (HSC0, HSC1, HSC2, or HSC3) is used, the high-speed counter current value is reset to zero. When M315 is turned off, the high-speed counter restarts to count.

M316 High-speed Counter (HSC3) Overflow
When the current value of high-speed counter HSC3 exceeds the maximum value of 65535 , M316 is turned on. M316 is turned off when the high-speed counter is reset using the hard or soft reset input.

M317 In-operation Output

M317 remains on while MICRO ${ }^{3}$ is running.

Data Register Allocation Numbers

- For the MICRO${ }^{3}$ c, see the MICRO ${ }^{3}$ C User's Manual. \downarrow

Available data registers are limited in the high-speed processing mode or in the data link system configuration. Some data

Data Register Number	Standard Processing Mode			High-speed Processing Mode
	Other than Data Link	Data Link (Master Station)	Data Link (Slave Station)	
DO to D31	Available	Available	Available	Available
D32 to D59				Not available
D60 to D84		For data link		
D85 to D89			For data link	
D90 to D99	Can be designated as control data registers using FUN10. See page 5-8.			

ntroduction

This chapter describes programming of the basic instructions, available operands, and sample programs.

Basic Instruction List

Symbol	Name	Function	Addresses Required
AND	And	Series connection of NO contact	1
AND LOD	And Load	Series connection of circuit blocks	1
ANDN	And Not	Series connection of NC contact	1
BPP	Bit Pop	Restores the result of bit logical operation which was saved temporarily	1
BPS	Bit Push	Saves the result of bit logical operation temporarily	1
BRD	Bit Read	Reads the result of bit logical operation which was saved temporarily	1
cC=	Counter Comparison (=)	Equal to comparison of counter current value	2
CC \geq	Counter Comparison (\geq)	Greater than or equal to comparison of counter current value	2
CNT	Counter	Adding or reversible counter (0 to 9999)	2
END	End	Ends a program	1
JEND	Jump End	Ends a jump instruction	1
JMP	Jump	Jumps a designated program area	1
LOD	Load	Stores intermediate results, and reads contact status	1
LODN	Load Not	Stores intermediate results, and reads inverted contact status	1
MCS	Master Control Set	Starts a master control	1
MCR	Master Control Reset	Ends a master control	1
NOT	Not	Inversion	-
OR	Or	Parallel connection of NO contacts	1
OR LOD	Or Load	Parallel connection of circuit blocks	1
ORN	Or Not	Parallel connection of NC contacts	1
OUT	Output	Outputs the result of bit logical operation	1
OUTN	Output Not	Outputs the inverted result of bit logical operation	1
RST	Reset	Resets output, internal relay, or shift register bit	1
SET	Set	Sets output, internal relay, or shift register bit	1
SFR	Shift Register	Forward shift register	2
SFRN	Shift Register Not	Reverse shift register	2
SOTD	Single Output	Falling-dge differentiation output	1
SOTU		Rising-edge differentiation output	1
TIM	Timer	Subtracting 100-msec timer (0.1 to 999.9 sec)	2
TMH		Subtracting 10-msec timer (0.01 to 99.99 sec)	2
TMS		Subtracting 1-msec timer (0.001 to 9.999 sec)	2

LOD (Load) and LODN (Load Not)

The LOD or LODN instruction is used before an operand starting at the left bus of the ladder diagram. The LOD instruc tion starts the logical operation with an NO (normally open) contact. The LODN instruction starts the logical operation with an NC (normally closed) contact. Eight LOD and LODN instructions can be used consecutively
Ladder Diagram

LOD 10	SET	0	-
LOD 10	NOT	SET	1 BPS

Vaild Operands (Standard Processing)

Instraction	\mathbf{Q}	\mathbf{M}	\mathbf{T}	\mathbf{C}	\mathbf{R}	
LOD	$0-35$	$0-31$	$0-317$	$0-31$	$0-31$	$0-63$
LO	0.35	0.31	0.31	0.31	0.31	0.63

| LODN | $0-35$ | $0-31$ | $0-317$ | $0-31$ | $0-31$ | $0-63$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

When using in the high-speed processing mode, operands are limited. See page 6-1.

OUT (Output) and OUTN (Output Not)

The OUT instruction outputs the result of bit logical operation to the specified operand. The OUTN instruction outputs the inverted result of bit logical operation to the specified operand.

Ladder Diagram	Key Operation			
${\underset{\mathrm{H}}{2}}^{(}{ }_{\mathrm{Q} 0} \mathrm{H}^{-1}$	LOD 10	SET 1	2 BRD	-
	OUT 16 10	F/RST	0	-
-1/1	LOD 10	NOT	SET 1	$\begin{gathered} 3 \\ \text { BPP } \end{gathered}$
	OUT 16	NOT	F/RST	$\begin{gathered} 1 \\ \text { BPS } \end{gathered}$

operands are limited. See page 6-1.

Multiple OUT and OUTN

There is no limit to the number of OUT and OUTN instructions that can be programmed into one rung.

Programming multiple outputs of the same output number is not recommended. However hen doing so, it is good practice to separate the outputs with the JMP/JEND set of instru tions, or the MCS/MCR set of instructions. These instructions are detailed later in this chapter.
When the same output address is programmed more than once with one scan, the output nearest to the END instruction is given prior ity for outputting. In the example on the right, output Q0 is off.

Key Operation

Ladder Diagram

USER's MANual

7

xamples: LOD (Load), NOT, and OUT (Output)

Timing Chart

Key Operation

$\begin{array}{\|c\|} \hline \text { LOD } \\ \hline 10 \\ \hline \end{array}$	SET	0	-
OUT 16	$\begin{gathered} \mathrm{F} / \mathrm{RST} \\ \mathrm{Q} \\ \hline \end{gathered}$	0	-
LOD	A/ NOT	SET	1 BPS
OUT 16	NOT	F/RST	$\begin{gathered} 1 \\ \text { BPS } \end{gathered}$

Key Operation			
$\begin{array}{\|r\|} \hline \text { LOD } \\ \hline 10 \\ \hline \end{array}$	$\frac{\mathrm{C}}{\text { SOT }}$	2 BRD	
OUT	F/RST Q	0	

Key Operation				
$\begin{array}{\|c\|} \hline \text { LOD } \\ \hline 10 \\ \hline \end{array}$	NOT	CNT C	1 BPS	-
OUT 16	F/RST	1 BPS	0	

AND and ANDN (And Not

The AND instruction is used for programming an NO contact in series. The ANDN instruction is used for programming an NC contact in series. The AND or ANDN instruction is entered after the first set of contacts.

Timing Chart

Instruction	\mathbf{I}	\mathbf{Q}	\mathbf{M}	\mathbf{T}	\mathbf{C}	\mathbf{R}
AND	$0-35$	$0-31$	$0-317$	$0-31$	$0-31$	$0-63$
ANDN	$0-35$	$0-31$	$0-317$	$0-31$	$0-31$	$0-63$

When using in the high-speed processing mode, When using in the high-speed proce
operands are limited. See page $6-1$.

Key Operation			
LOD 10	SET	0	\downarrow
AND	SET 1	1 BPS	\square
OUT 16	F/RST	0	\checkmark
LOD 10	SET 1	0	\square
AND	NOT	SET	1 BPS
OUT 16	[F/RST Q	1 BPS	-

When both inputs I0 and I1 are on, output Q0 is on. When either input I0 or I1 is off, output Q0 is off. When input 10 is on and input II is off, output Q1 is on. When either
input IO is off or input I1 is on, output Q1 is off.

OR and ORN (Or Not)

The OR instruction is used for programming an NO contact in parallel. The ORN instruction is used for programming an NC contact in parallel. The OR or ORN instruction is entered after the first set of contacts.

 Program List

Valid Operands (Standard Processing)
Instruction \mathbf{I} Q \mathbf{M} \mathbf{T} C R OR $0-35$ $0-31$ $0-317$ $0-31$ $0-31$ $0-63$ ORN $0-35$ $0-31$ $0-317$ $0-31$ $0-31$ $0-63$

operands are limited See page 6-1
When either input IO or II is on, output Q 0 is on. When both inputs 10 and I1 are off, output Q0 is off. When either input 10 is on or input I1 is off, output Q1 is on. When input I0 is off and input II is on output Q1 is off.

MICRG
7: Basic Instructions

AND LOD (Load)

The AND LOD instruction is used to connect, in series, two or more circuits starting with the LOD instruction. The AND LOD instruction is the equivalent of a "node" on a ladder diagram. The AND LOD instruction is keyed after entering those circuits to be connected.

Program List

Timing Chart

When input IO is on and either input I 2 or I 3 is on, output Q 0 is on.
When input I0 is off or both inputs I2 and I3 are off, output Q0 is off.

The AND LOD (load) instruction reads programs stored in the stack register by the LOD or LODN instruction and then AND's them.

Example: AND LOD (Load)

For the following circuit, the AND LOD instruction can be used in two ways.
Ladder Diagram First, the AND LOD instruction can be keyed following each of the sets of circuits that
 re to be conne instruct

Second, the AND LOD instruction can be entered twice at the end, after all the circuits to be connected in series have been keyed.
In either way, there is a relationship between the quantity of LOD instructions and the quantity of AND LOD instructions:

Quantity of AND LOD instructions = Quantity of LOD instructions - 1
Program List 1

Prgm Adrs	Instruction	Data
0	LOD	I1
1	OR	I2
2	LOD	I3
3	OR	I4
4	AND LOD	
5	LOD	I5
6	OR	I6
7	AND LOD	

The program represented by Block A is stored beginning with the LOD I1 instruc tion, and Block B is stored with LOD I3. tion, and Block B is stored with LOD I3.
Then, these two programs are read by the Then, these two programs are read by the
AND LOD instruction which is entered next, forming a circuit connected in series. The program represented by Block C is stored The program represented by Block C is stored beginning with the LOD I5 instruction. This is that it is connected in series with the two grams connected previously. grams connected previously.

Program List 2

Program List 2

Prgm Adrs	Instruction	Data
0	LOD	I1
1	OR	I2
2	LOD	I3
3	OR	I4
4	LOD	I5
5	OR	I6
6	AND LOD	
7	AND LOD	

The program represented by Block A is stored beginning with the LOD I1 instruction, Block B is stored with LOD I3, and Block C is stored with LOD I5.

Then, the AND LOD instruction is entered twice consecutively, connecting the blocks in series, sequentially. In this case, the number of stored circuits and read operations are increased.

MICRO

OR LOD (Load)

The OR LOD instruction is used to connect, in parallel, two or more circuits starting with the LOD instruction. The OR LOD instruction is the equivalent of a "node" on a ladder diagram. The OR LOD instruction is keyed after entering those circuits to be connected.

Timing Chart

When both inputs I 0 and I 1 are on or both inputs I 2 and I 3 are on, output Q 0 is on
When either input I0 or I1 is off and either input I2 or I3 is off, output Q 0 is off.

The OR LOD (load) instruction reads programs stored in the stack register by the LOD or LODN instruction and then OR's them.

Example: OR LOD (Load)

For the following circuit, the OR LOD instruction can be used in two ways.
Ladder Diagram First, the OR LOD instruction can be keyed following each of the sets of circuits that

are to be connected in parallel.
Second, the OR LOD instruction can be entered twice at the end, after all the circuits o be connected in parallel have been keyed.
In either way, there is a relationship between the quantity of LOD instructions and the quantity of OR LOD instructions:

Quantity of OR LOD instructions = Quantity of LOD instructions - 1
Program List 1

Prgm Adrs	Instruction	Data
0	LOD	II
1	AND	I2
2	LOD	I3
3	AND	I4
4	OR LOD	
5	LOD	I5
6	AND	I6
7	OR LOD	

The program represented by Block A is stored beginning with the LOD I1 instruc stored beginning with the LOD II instruc
tion, and Block B is stored with LOD I3. Then, these two programs are read by the OR LOD instruction which is entered next, forming a circuit connected in parallel.
The program represented by Block C is stored beginning with the LOD I5 instruction This is beginning with the LOD I5 instruction. This is read by heced in prallel with the two so that it connected previously

Program List 2

Program List 2

Prgm Adrs	Instruction	Data
0	LOD	I1
1	AND	I2
2	LOD	I3
3	AND	I4
4	LOD	I5
5	AND	I6
6	OR LOD	
7	OR LOD	

The program represented by Block A is stored beginning with the LOD I1 instruc tion, Block B is stored with LOD I3, and Block C is stored with LOD I5.

Then, the OR LOD instruction is entered twice consecutively, connecting the blocks in parallel, sequentially
this case, the number of stored circuits and read operations are increased.

BPS (Bit Push), BRD (Bit Read), and BPP (Bit Pop)

The BPS (bit push) instruction is used to save the result of bit logical operation temporarily
The BRD (bit read) instruction is used to read the result of bit logical operation which was saved temporarily.
The BPP (bit pop) instruction is used to restore the result of bit logical operation which was saved temporarily

Timing Chart

When both inputs I 0 and I 1 are on, output Q 1 is turned on. When both inputs I0 and I2 are on, output Q2 is turned on. When both inputs I0 and I3 are on, output Q3 is turned on.

BPS (Bit Push), BRD (Bit Read), and BPP (Bit Pop), continued

Data Movement in Operation Register and Bit Stack Register

When the BPS (bit push) instruction is used, the program in the operation register is stored in the first bit stack register.
When the BPS instruction is used again, the program in the first stack register is stored in the second bit stack register and When the BPS instruction is used again, the program in the first stack register is stored in the second bit stack register and
the program in the operation register is stored in the first stack register. Each time the BPS instruction is used, the program is moved to the next bit stack register. Program blocks can be stored in a maximum of eight bit stack registers.
When the BRD (bit read) instruction is used, the program in the first bit stack register is read to the operation register. All program blocks stored in bit stack registers are not moved.
When the BPP (bit push) instruction is used, all program blocks in bit stack registers are shifted back by one place. The program in the first bit stack register is moved to the operation register.

MICRC

Example: Using One-bit Stack Register

Program List

Prgm Adrs	Instruction	Data

Prgm Adrs	Instruction	Data
0	LOD	I0
1	BPS	
2	AND	I1
3	OUT	Q1
4	BRD	
5	AND	I2
6	OUT	Q2
7	BRD	
8	AND	I3
9	OUT	Q3
10	BPP	
11	AND	I4
12	OUT	Q4

Example: Using Two-bit Stack Registers

Program List

Prgm Adrs	Instruction	Data
0	LOD	I0
1	BPS	
2	AND	I1
3	BPS	
4	AND	I2
5	OUT	Q0
6	BPP	
7	AND	I3
8	OUT	Q1
9	BPP	
10	AND	I4
11	BPS	
12	AND	I5
13	OUT	Q2
14	BPP	I6
15	AND	I6
16	OUT	Q3

Equivalent to above - not using BPS and BPP

Program List

Prgm Adrs	Instruction	Data
0	LOD	I0
1	AND	I1
2	AND	I2
3	OUT	Q0
4	LOD	IO
5	AND	I1
6	AND	I3
7	OUT	Q1
8	LOD	I0
9	AND	I4
10	AND	I5
11	OUT	Q2
12	LOD	IO
13	AND	I4
14	AND	I6
15	OUT	Q3

Example: Using Four-bit Stack Registers

Program List

Prgm Adrs	Instruction	Data
0	LOD	I0
1	BPS	
2	AND	I1
3	BPS	
4	BND	I2
5	ANS	
6	BND	I3
7	BND	
8	AND	I4
9	OUT	Q0
10	BPP	
11	AND	I5
12	OUT	Q1
13	BPP	
14	AND	I6
15	OUT	Q2
16	BPP	
17	AND	I7
18	OUT	Q3
19	BPP	
20	AND	I10
21	OUT	Q4

Equivalent to above - not using BPS and BPP

Program List

Prgm Adrs	Instruction	Data
0	LOD	I0
1	AND	I1
2	AND	I2
3	AND	I3
4	AND	I4
5	OUT	Q0
6	LOD	I0
7	AND	I1
8	AND	I2
9	AND	I3
10	AND	I5
11	OUT	Q1
12	LOD	I0
13	AND	I1
14	AND	I2
15	AND	I6
16	OUT	Q2
17	LOD	I0
18	AND	I1
19	AND	I7
20	OUT	Q3
21	LOD	I0
22	AND	I10
23	OUT	Q4

Example: BPS, BRD, and BPP with AND LOD and OR LOD

Program List

Prgm Adrs	Instruction	Data
	Do	

Prgm Adrs	Instruction	Data
0	LOD	I0
1	BPS	
2	LOD	I1
3	OR	I2
4	AND LOD	
5	OUT	Q0
6	BRD	
7	LOD	I3
8	AND	I4
9	LOD	I5
10	AND	I6
11	OR LOD	
12	AND LOD	
13	OUT	Q1
14	BPP	
15	AND	I7
16	OUT	Q2

Program List

Prgm Adrs	Instruction	Data

Prgm Adrs	Instruction	Data
0	LOD	I0
1	LOD	I1
2	OR	I2
3	AND LOD	
4	OUT	Q0
5	LOD	I0
6	LOD	I3
7	AND	I4
8	LOD	I5
9	AND	I6
10	OR LOD	
11	AND LOD	
12	OUT	Q1
13	LOD	I0
14	AND	I7
15	OUT	Q2

TIM, TMH, and TMS (Timer)

Three types of timers are available; $100-\mathrm{msec}$ timedown timer TIM, $10-\mathrm{msec}$ timedown timer TMH, and 1 -msec timedown timer TMS. A total of 32 timers and counters can be programmed in the standard processing mode. Each timer must be allocated to a unique number 0 through 31, and the same number cannot be used for counters. In the high-speed processing mode, timer numbers 0 through 15 are available

Timer	Allocation Number	Range	Increments	Preset Value
TIM (100-msec timer)	TIMO to TIM31	0 to 999.9 sec	100 msec	Constant: 0 to 9999
TMH (10-msec timer)	TMHO to TMH31	0 to 99.99 sec	10 msec	Data registers:
DO to D99 (standard mode)				
TMS (1-msec timer)	TMSO to TMS31	0 to 9.999 sec	1 msec	DO to D31 (high-speed mode)

The preset value can be 0 through 9999 and designated using a decimal constant or data register. Although a data register can hold a value up to 65535, a timer preset value can be 0 through 9999. If the data register designated as a timer preset alue holds a value over 9999 a user program execution error will result the ERR 1 is lit and special inter nal relay M304 turns on. Data registers D0 through D99 are available in the standard processing mode and D0 through D31 in the high-speed processing mode.

TIM (100-msec Timer)

Ladder Diagram (TIM)	Program List		
$\bigcirc \mathrm{TO}^{\text {T }}$	Prgm Adrs	Instruction	Data
100	0	LOD	I0
	1	TIM	${ }_{100}^{0}$
$\mathrm{I} 10^{\mathrm{T} 0}$	3	LOD	I1
	4	AND	T0
	5	OUT	Q0

Timing Chart

Key Operation			
$\begin{array}{\|c\|} \hline \text { LOD } \\ \hline 10 \\ \hline \end{array}$	SET 1	0	-
TIM	0		
LOD 10	1 BPs	0	0
LOD 10	SET 1	1 BPs	\square
AND	TIM T	0	-
$\begin{array}{\|c} \hline \text { OUT } \\ \hline 16 \\ \hline \end{array}$	F/RST Q	0	-

TMH (10-msec Timer)

Ladder Diagram (TMH)	Program List		
TH1	Prgm Adrs	Instruction	Data
12×100	0	LOD	12
	1	TMH	1 100 1
$\mathrm{I} 3^{\mathrm{T} 1}$	3	LOD	100 13
	4	${ }_{\text {AND }}$	${ }_{\text {T1 }}$
	5	OUT	Q1

Timing Chart

Note: To enter a decimal constant as a preset value press the LOD/10 key, fol-
 Pressing the TIM key on the program loader programs the TIM, TMH, or TMS instruction alternately.

MICRO
7: BASIC Instructions

TIM, TMH, and TMS (Timer), continued
TMS (1-msec Timer)

Timing Chart

Timer Circuit

The preset value 0 through 9999 can be designated using a data register D0 through D99 in the standard processing mode or D0 through D31 in the high-speed processing mode; then the data of the data register becomes the preset value. Directly after the TIM, TMH, or TMS instruction with two required addresses, the OUT (output) instruction can be keyed

Ladder Diagram	Program List		
T5	Prgm Adrs	Instruction	Data
$1 \mathrm{D}^{\text {D10 }}$ Q0	0	LOD	I1
	1	TIM	5 D10
	3	OUT	Q0

- Timedown from the preset value is initiated when the operation result directly before the timer input is on.
- The timer output turns on when the timed value reaches zero.

- The timed value returns to the preset value when the timer input is off.
- The same timer or counter number cannot be programmed more than once. If an attempt is made to do so, then an error message will result.
- Timer preset values can be changed without transferring the entire program to the MICRO ${ }^{3}$ base unit again. See page 3 -14. If the timer preset value is changed during timedown, then the timer remains unchanged for that cycle. The 3-14. If the timer preset value is changed during
- If the timer preset value is changed to zero, then the timer stops operation, and the timer output is turned on immediately

imer Accuracy

Timer accuracy due to software configuration depends on three factors: timer input error, timer counting error, and timeout output error. These errors are not constant but vary with the user program and other causes.

Timer Input Error

The input status is read at the END processing and stored to the input RAM. So, an error occurs depending on the timing when the timer input turns on in a scan cycle. The same error occurs on the normal input and the catch input. The timer input error shown below does not include input delay caused by the hardware.

When the input turns on immediately before the
END processing, Tie is almost zero. Then the timer input error is only Tet (behind error) and at its minimum.

Tie: Time from input turning on to the END processing
Tet: Time from the END processing to the timer instruction execution

Timer Counting Error

Every timer instruction operation is individually based on asynchronous 16-bit reference timers. Therefore, an error occurs depending on the status of the asynchronous 16 -bit timer when the timer instruction is executed.

Error		TIM (100-msec timer)	TMH (10-msec timer)	TMS (1-msec timer)
Minimum	Advance error	0 msec	0 msec	0 msec
	Behind error	0 msec	0 msec	0 msec
Maximum	Advance error	100 msec	10 msec	1 msec
	Behind error	1 scan time	1 scan time	1 scan time

Timeout Output Error

The output RAM status is set to the actual output when the END instruction is processed. So, an error occurs depending on the timing when the timeout output turns on in a scan cycle. The timeout output error shown on the right does not include output delay caused by the hardware
Timeout output error is equal to Tte (behind error) and can be between zero and one scan time
$0<\mathrm{Tte}<1$ scan time

MICRO

Timer Accuracy, continued

Maximum and Minimum of Individual Errors

Error		$\begin{gathered} \text { Timer } \\ \text { Input Error } \end{gathered}$	Timer Counting Error	Timeout Output Error	Remarks
Minimum	Advance error	0 (Note)	0	0 (Note)	Note: Advance error does not occur at the timer input and timeout output. Increment is $100 \mathrm{msec}(\mathrm{TIM}), 10 \mathrm{msec}$ (TMH), or 1 msec (TMS).
	Behind error	Tet	0	Tte	
Maximum	Advance error	0 (Note)	Increment	0 (Note)	
	Behind error	$\begin{gathered} 1 \text { scan time } \\ + \text { Tet } \end{gathered}$	1 scan time	Tte	

Maximum and Minimum of Total Error

Error Total Error Remarks Minimum Advance error 0 Behind error 0 Maximum Advance error Increment - (Tet + Tte) The maximum advance error is: Increment -1 scan time Behind error 2 scan times + (Tet + Tte) The maximum behind error is: 3 scan times

Power Failure Memory Protection

Timers TIM, TMH, and TMS do not have power failure protection. A timer with this protection can be devised using a counter instruction and special internal relay M311 (1-sec clock), M312 (100 -msec clock), or M313 (10-msec clock).

Timing Chart

Note: Counters CNT2 through CNT31 are adding counters, and all counter current values are maintained during a power failure

CNT (Counter)

Three types of counters are available; dual-pulse reversible counter CNT0, up/down selection reversible counter CNT1, and adding (up) counters CNT2 through CNT31. A total of 32 timers and counters can be programmed in the standard processing mode. Each counter must be allocated to a unique number 0 through 31, and the same number cannot be used for timers. In the high-speed processing mode, counter numbers 0 through 15 are available. For the high-speed processing mode, see page 4-1.

Counter	Allocation Number	Preset Value
Dual-pulse reversible counter	CNTO	Constant: 0 to 9999
Up/down selection reversible counter	CNT1	Data registers:
Adding (up) counter	CNT2 to CNT31 (standard mode) CNT2 to CNT15 (high-speed mode)	D0 to D99 (standard mode)
D0 to D31 (high-speed mode)		

Dual-Pulse Reversible Counter CNTO

The dual-pulse reversible counter CNT0 has up and down pulse inputs, so that three inputs are required. The circuit for a dual-pulse reversible counter must be programmed in the following order: preset input, up-pulse input, down-pulse input, and the CNT0 instruction, followed by the counter preset value from 0 to 9999 .
The preset value can be designated using a decimal constant or a data register. When a data register is used, the data of the data register becomes the preset value. If the data register designated as a counter preset value holds a value over 9999 , a user program execution error will result, then the error indicator, ERR1, is lit, and the special internal relay, M304, turns on. Dat mode.

The same counter or timer number cannot be programmed more than once.
et input must be turned on inithe preset value.

- The preset input must be turned off before counting may begin.
- When the up pulse and down pulse are on simultaneously, no pulse is counted. - The counter output is on only when the counted value is zero.
- After the counted value reaches zero (counting down) it changes to 9999 on the next count down.
- After the counted value reaches 9999 (counting up), it changes to zero on the next count up.
- When power is off, the counter's counted value is held.
- Counter preset values can be changed without transferring the entire program to the MICRO ${ }^{3}$ base unit (see page 3-14)
- When the preset value is changed during counter operation, the change becomes effective immediately

Up/Down Selection Reversible Counter CNT1

The up/down selection reversible counter CNT1 has selection input to switch the up/down gate, so that three inputs are required. The circuit for an up/down selection reversible counter must be programmed in the following order: preset input, required. The circuit for an up/down selection reversible counter must be programmed in the following order: preset
pulse input, up/down selection input, and the CNT1 instruction, followed by the counter preset value from 0 to 9999

The preset value can be designated using a decimal constant or a data register. When a data register is used, the data of the data register becomes the preset value. If the data register designated as a counter preset value holds a value over 9999, a program execution error will result, then the error indicator, ERR1, is lit, and the special internal relay, M304, turns on. Data registers D0 through D99 are available in the standard processing mode and D0 through D31 in the high-speed processing mode.
Ladder Diagram (CNT1)
Program List

- The same counter or timer number cannot

Prgm Adrs	Instruction	Data	c	BPS	10	
0	LOD	10				
1 2	LOD LOD	${ }_{\text {I2 }} 1$	5 cc	0	0	
3	CNT	$\stackrel{1}{500}$	OUT	F/RST	0	
5	out	Q0	16	Q		

Note: To enter a decimal constant as a preset value, press the preset value.
Timing Chart

LOD	SET 1	0	
LOD 10	SET	1 BPS	
LOD 10	SET	(2	
CNT	1 BPS	LOD 10	
5 cc=	0	0	
$\begin{array}{\|c\|} \hline \text { OUT } \\ \hline 16 \\ \hline \end{array}$	F/RST	0	
Note: To enter a decimal constant as a preset value, press the LOD/10 key followed by the preset value.			

be programmed more than once.

- The preset input must be turned on initially so that the counted value returns to the preset value.
- The preset input must be turned off before counting may begin.
- The up mode is selected when the up down selection input is on.
- The down mode is selected when the up/ down selection input is off.
- The counter output is on only when the counted value is zero
- After the counted value reaches zero (counting down), it changes to 9999 on the next count down.
- After the counted value reaches 9999 counting up), it changes to zero on the next count up.
- When power is off, the counter's counted value is held.
- Counter preset values can be changed without transferring the entire program to the MICRO ${ }^{3}$ base unit (see page 3-14).
- When the preset value is changed during ounter operation, the change becomes effective immediately.

Adding (Up) Counters CNT2 through CNT31

Standard counter circuits, using the CNT instruction, feature an adding (UP) counter. There are 30 adding counters CNT2 through CNT31 in the standard processing mode or 14 adding counters CNT2 through CNT15 in the high-speed processing mode.

When counter instructions are programmed, two addresses are required. The circuit for an adding (UP) counter must be programmed in the following order: reset input, pulse input, the CNT instruction, a counter number 2 through 31, followed by the counter preset value from 0 to 9999 .
The preset value can be designated using a decimal constant or a data register. When a data register is used, the data of the data register becomes the preset value. If the data register designated as a counter preset value holds a value over 9999, a prothrough D99 are available in the standard processing mode and D0 through D31 in the high-speed processing mode.

Adding (Up) Counters CNT2 through CNT31, continued

Program List

Prgm Adrs	Instruction	Data
0	LOD	I 0
1	LOD	I1
2	CNT	2
4	LOD	5
4	I2	
5	AND	C 2
6	OUT	Q 0

LOD		0	-
LOD	SET	1	
10	1	BPS	
CNT	2		
C	BRD		
LOD	5	-	
10	CC=		
LOD	SET	2	
10	1	BRD	
D/AND	CNT	2	
	c	BRD	
OUT	F/RST	0	-
16	Q		

Note: To enter a decimal constant as a preset value, press the LOD/10 key followed by the preset value.

Timing Chart

- The same counter or timer number cannot be programmed more than once.
- While the reset input is off, the counter counts the leading edges of pulse inputs and compares them with the preset value
- When the counted value reaches the preset value, the counter turns output on. The output stays on until the reset input is turned on.
- When the reset input changes from off to on, the counted value is reset.
- When the reset input is on, all pulse inputs are ignored.
- The reset input must be turned off before counting may begin.
- When power is off, the counter's counted value is held.
- Counter preset values can be changed without transferring the entire program to the MICRO ${ }^{3}$ base unit (see page 3-14).
- When the preset value is changed during counter operation, the change becomes effective immediately
- The reset input has priority over the pulse input. One scan after the reset input has input. One scan after the reset input has
changed from on to off, the counter start counting the pulse inputs as they change from off to on.

$\underset{\text { More than one scan }}{\text { time is required. }} \rightarrow: \leftarrow$
- When MICRO ${ }^{3}$ is turned off, counter cur rent values are maintained. When resetting he counter current values is required at start up, include initialize pulse special the reset input.

ider

$C=$ and $C \mathbf{C}>$ (Counter Comparison)

The $\mathrm{CC}=$ instruction is an equivalent comparison instruction for counted values. This instruction will constantly compare counted values to the value that has been programmed in. When the counter value equals the given value, the desired output will be initiated.

The $\mathrm{CC} \geq$ instruction is an equal to or greater than comparison instruction for counted values. This instruction will constantly compare counted values to the value that has been programmed in. When the counter value is equal to or greater than the given value, the desired output will be initiated.
When a counter comparison instruction is programmed, two addresses are required. The circuit for a counter comparison instruction must be programmed in the following order: the $\mathrm{CC}=$ or $\mathrm{CC} \geq$ instruction, a counter number 1 through 31 , followed by the preset value to compare from 0 to 9999 .
The preset value can be designated using a decimal constant or a data register. When a data register is used, the data of the data register becomes the preset value. If the data register designated as a counter comparison preset value holds a value over 9999 a progre turns on. Data registers D0 through D99 are available in the standard processing mode and D0 through D31 in the highspeed processing mode.

Ladder Diagram ($\mathbf{C C} \geq$)

Key Operation

- The $\mathrm{CC}=$ and $\mathrm{CC} \geq$ instructions can be used repeatedly for different preset values.
- The comparison instructions only compare the counted value. The status of the counter does not affect this function.
- The comparison instructions also serve as an implicit LOD instruction.
- The comparison instructions can be used with internal relays, which are AND'ed or OR'ed at a separate program address.
- Like the LOD instruction, the comparison instructions can be followed by the AND and OR instructions.
- Another way to accomplish the above is to use comparison instructions which are then followed by the AND LOD or OR LOD instructions.

Program List

Prgm Adrs	Instruction	Data
0	CC=	5
2	OUT	10
3	M0	
3	LOD	I0
4	AND	M0
5	OUT	Q0

Ladder Diagram

Program List

Prgm Adrs	Instruction	Data
0	CC=	5
2		10
3	AND	I0
OUT	Q0	

Program List

Prgm Adrs	Instruction	Data
0	LOD	I0
1	CC=	5
3	AND LOD	10
4	OUT	Q0

Examples: CC= and $\mathbf{C C} \geq$ (Counter Comparison)

Ladder Diagram 1	Program List		
Reset	Prgm Adrs	Instruction	Data
C2	0	LOD	${ }^{10}$
Pulse 10	1	LOD	I1
	2	CNT	${ }^{2}$
	4	$\mathrm{CC}=$	2
			5
Q0	6	out	Q0
	7	CC \geq	2
$\left[\begin{array}{c}\text { 3 } \\ \end{array}\right.$	9	OUT	${ }_{\text {Q1 }}$

Program List

Program List

Prgm Adrs	Instruction	Data
0	LOD	I5
1	LOD	I6
2	CNT	20
4	CC	500
	20	
6	OUT	150
7	CC 2	Q2
9	AND NOT	100
10	Q2	
10	OUT	Q3

Timing Chart

Timing Chart

Output Q1 is turned on when counter C31 current value reaches 350 and remain on until counter C 31 is reset.

SFR and SFRN (Forward and Reverse Shift Register)

The shift register consists of a total of 64 bits which are allocated to R0 through R63 in the standard processing mode. In the high-speed processing mode, 32 bits are available for the shift register allocated to 00 through R31. Any number available bits can be selected to form a train of bits which store on or off status. The on/off data of constituent bits is shifted in the fo
is turned on.

Forward Shift Register (SFR)

When SFR instructions are programmed, two addresses are always required. The SFR instruction is keyed, followed by a shift register number selected from appropriate operand numbers. The shift register number corresponds to the first, or bad bit The number of bits is the second required address after the SFR instruction

The SFR instruction requires three inputs. The forward shift register circuit must be programmed in the following order reset input, pulse input, data input, and the SFR instruction, followed by two required addresses.

First Bit: 0 to 63 (standard processing mode) 0 to 31 (high-speed processing mode)
\# of Bits: 1 to 64 (standard processing mode) to 32 (high-speed processing mode)

Program List

Prgm Adrs	Instruction	Data
0	LOD	I 0
1	LOD	I1
2	LOD	I2
3	SFR	0
		4

 press the LOD/10 key followed by the number of bits.

Reset Input

The reset input will cause the value of each bit of the shift register to return to zero. Initialize pulse special internal relay M301, may be used to initialize the shift register at start-up.

ulse Input

The pulse input triggers the data to shift. The shift is in the forward direction for a forward shift register and in reverse for a reverse shift register. A data shift will occur upon the leading edge of a pulse; that is, when the pulse turns on. If the pulse has been on and stays on, no data shift will occur.

Data Input

The data input is the information which is shifted into the first bit when a forward data shift occurs, or into the last bit when a reverse data shift occurs.
Note: When power is turned off, the statuses of all shift register bits are normally cleared. It is also possible to maintain the statuses of shift register bits by setting FUN4 as required. See page 5-5.

Setting and Resetting Shift Register Bits

(SE) (SET)

- Any shift register bit can be turned on using the SET instruction.
- Any shift register bit can be turned off using the RST instruction
- The SET or RST instruction is actuated by any input condition.

Forward Shift Register (SFR), continued

Program List | Prgm Adrs | Instruction | Data |
| :---: | :--- | :--- |
| 0 | LOD | |

- The last bit status output can be programmed directly after the SFR instruction with two required addresses is keyed. In this example, the status of bit R3 is read to output Q3.
- Each bit can be loaded using the LOD SFR R\# instructions.

Reverse Shift Register (SFRN)

For reverse shifting, use the SFR instruction followed by the NOT instruction. When SFRN instructions are programmed, two addresses are always required. The SFR and NOT instructions are keyed, followed by a shift register number selected vo addresses are always required. The SFR and NOT instructions are keyed, followed by a shift register number selected of bits is the second required address after the SFR NOT instructions.

The SFRN instruction requires three inputs. The reverse shift register circuit must be programmed in the following order. reset input, pulse input, data input, and the SFR and NOT instructions, followed by two required addresses.

- The last bit status output ca be programmed directly after the SFRN instruction with two required addresse is keyed. In this example the status of bit R20 is read to output Q0.
- Each bit can be loaded using the LOD SFR R\# instruc tions.
- For details of reset, pulse,

Structural Diagram

Last Bit:
0 to 63 (standard processing mode) 0 to 31 (high-speed processing mode)
\# of Bits:
\# of Bits:
1 to 64 (standard processing mode) 1 to 32 (high-speed processing mode)
Program List

Prgm Adrs	Instruction	Data
0	LOD	I0
1	LOD	I1
2	LOD	I2
3	SFR NOT	20
5		7
6	OUT	Q 0
7	LOD	R21
7	OUT	Q1
9	LOD	R23
9	OUT	Q2
10	LOD	R25
11	OUT	Q 3

LOD	SET	0	-
LOD	SET	1	-
10	1	BPS	
LOD	SET	2	-
10	I	BRD	
SFR	A/ NOT	2	0
R		BRD	
LOD	7	-	
10	END		
OUT	F/RST	0	-
16	Q		
LOD	SFR	2	1
10	R	BRD	BPS
OUT	F/RST	1	J
16	Q	BPS	
LOD	SFR	2	3
10	R	BRD	BPP
OUT	F/RST	2	J
16	Q	BRD	
LOD	SFR	2	5
10	R	BRD	cc=
OUT	F/RST	3	-
16	Q	BPP	
Note: To enter a decimal constant as the number of bits, press the LOD/10 key			

Note: Output is initiated only for those bits highlighted in bold print.
Note: When power is turned off, the statuses of all shift register bits are normally cleared. It is also possible to maintain the statuses of shift register bits by setting FUN4 as required. See page 5-5.

Bidirectional Shift Register

A bidirectional shift register can be created by first keying in the SFR instruction, complete with two addresses, as detailed in the Forward Shift Register section on page 7-23. Next, the SFR and NOT instructions are keyed in, complete with two in the Forward Shift Register section on page 7-23. Next, the SFR and NOT

Note: Output is initiated only for those bits highlighted in bold print.

SOTU and SOTD (Single Output Up and Down)

The SOTU instruction "looks for" the transition of a given input from off to on. The SOTD instruction looks for the transition of a given input from on to off. When this transition occurs, the desired output will turn on for one scan. The SOTU or SOTD instruction converts an input signal to a "one-shot" pulse signal. The SOTU or SOTD instruction is followed by one address.

SOTU and SOTD instructions can be used repeatedly.
If operation is started while the given input is already on, the SOTU output will not turn on. The transition from off to on is what triggers the SOTU instruction.
When a relay of the relay output type MICRO^{3} base unit is defined as the SOTU or SOTD output, it may not operate if the scan time is not compatible with relay requirements.

Ladder Diagram	Program List		
$1-5$	Prgm Adrs	Instruction	Data
Q0	0	LOD	10
1 SOTD	1	SOTU	
$\mathrm{I} 0 \sim$ Q1	3	LOD	I0
	4	SOTD OUT	Q1

Timing Chart

Note: "T" equals one scan time (one-shot pulse).

There is a special case when the SOTU and SOTD instructions are used between the MCS and MCR instructions (which are detailed on page 7-28). If input 12 to the SOTU instruction turns on while input 11 to the MCS instruction is on, the the SOTU output turns on. If input I2 to the SOTD instruction turns off while input I1 is on, then the SOTD output turns on. If input I1 turns on while input I2 is on, then the SOTU output turns on. However, if input I1 turns off while input I2 is on, then the SOTD output does not turn on as shown below.

Ladder Diagram

MCS and MCR (Master Control Set and Reset)

The MCS (master control set) instruction is usually used in combination with the MCR (master control reset) instruction. The MCS instruction can also be used with the END instruction, instead of the MCR instruction.
When the input preceding the MCS instruction is off, the MCS is executed so that all inputs to the portion between the MCS and the MCR are forced off. When the input preceding the MCS instruction is on, the MCS is not executed so that the program following it is executed according to the actual input statuses.
When the input condition to the MCS instruction is off and the MCS is executed, other instructions between the MCS and MCR are executed as follows:

Instruction	Status
SOTU	Rising edges (ON pulses) are not detected.
SOTD	Falling edges (OFF pulses) are not detected.
OUT	All are turned off.
OUTN	All are turned on.
SET and RST	All are held in current status.
TIM, TMH, and TMS	Current values are reset to zero. Timeout statuses are turned off.
CNT	Current values are held. Pulse inputs are turned off. Countout statuses are turned off.
SFR	Shift register bit statuses are held. Pulse inputs are turned off. The output from the last bit is turned off.

Input conditions cannot be set for the MCR instruction.
More than one MCS instruction can be set by one MCR instruction.
Corresponding MCS/MCR instructions cannot be nested within another pair of corresponding MCS/MCR instructions.

Timing Chart

Note: Pressing the MCS/R key on the program loader programs the MCS or MCR instruction alternately.
ately.

When input 10 is off, MCS is executed so that the subsequent input is forced off.

When input 10 is on, MCS is not executed so that the following program is executed according to the actual input statuses.

MICRO
7: BASIC Instructions

MCS and MCR (Master Control Set and Reset), continued

Multiple Usage of MCS instructions

When I1 is on and I 3 is off, the second MCS is executed so that subsequent inputs I4 through I6 are forced off.
When both I1 and I3 are on, the first and second MCS's are not executed so that the following program is executed according to the actual input statuses of I4 through I6.

Counter and Shift Register in Master Control Circuit

When input I1 is on, the MCS is not executed so that the counter and shift register are executed according to actual statuses of subsequent inputs I2 through I4.
When input I1 is off, the MCS is executed so that subsequent inputs I2 through I4 are forced off.
When input I1 is turned on while input I2 is on, the counter and shift register pulse inputs are turned on as shown below.

JMP (Jump) and JEND (Jump End)

The JMP (jump) instruction is usually used in combination with the JEND (jump end) instruction. At the end of a program, the JMP instruction can also be used with the END instruction, instead of the JEND instruction.

These instructions are used to proceed through the portion of the program between the JMP and the JEND without processing. This is similar to the MCS/MCR instructions, except that the portion of the program between the MCS and MCR instruction is executed.
When the operation result immediately before the JMP instruction is on, the JMP is valid and the program is not executed. When the operation result immediately before the JMP instruction is off, the JMP is invalid and the program is executed
When the input condition to the JMP instruction is on and the JMP is executed, other instructions between the JMP and JEND are executed as follows:

Instruction	Status
SOTU	Rising edges (ON pulses) are not detected.
SOTD	Falling edges (OFF pulses) are not detected.
OUT and OUTN	All are held in current status.
SET and RST	All are held in current status.
TIM, TMH, and TMS	Current values are held. Timeout statuses are held.
CNT	Current values are held. Pulse inputs are turned off. Countout statuses are held.
SFR	Shift register bit statuses are held. Pulse inputs are turned off. The output from the last bit is held.

Input conditions cannot be set for the JEND instruction.
More than one JMP instruction can be set by one JEND instruction.
Corresponding JMP/JEND instructions cannot be nested within another pair of corresponding JMP/JEND instructions.

Timing Chart

When input I 0 is on, JMP is executed so that the subsequent output status is held.
When input I 0 is off, JMP is not executed so that the following program is executed according to the actual input statuses.

Note: Pressing the JMP/E key on the program loader programs the JMP or JEND instruction alternately.

MICRO
7: BASIC Instructions

JMP (Jump) and JEND (Jump End), continued

Program List

Prgm Adrs	Instruction	Data
0	LOD	I1
1	JMP	
2	LOD	I2
3	OUT	Q 0
4	LOD	I3
5	JMP	I4
6	LOD	I4
7	OUT	Q1
8	LOD	I5
9	JMP	I6
10	LOD	6
11	OUT	Q 2
12	JEND	

This jump circuit will give priority to $\mathrm{I} 1, \mathrm{I} 3$, and I 5 , in that order. When input I is on, the first JMP is executed so that subsequent output statuses of Q0 through Q2 are held.
When input I1 is off, the first JMP is not executed so that the following program is executed according to the actual input statuses of I2 through I6.
When I 1 is off and I 3 is on, the second JMP is executed so that sub sequent output statuses of Q1 and Q2 are held.
When both I1 and I3 are off, the first and second JMP's are not exe cuted so that the following program is executed according to the actual input statuses of I4 through I6.

SET and RST (Reset)

The SET and RST (reset) instructions are used to set (on) or reset (off) outputs, internal relays, and shift register bits. The SET and RST instructions require one address which must be selected from the appropriate operand numbers. The same output can be set and reset many times within a program. SET and RST instructions operate in every scan while the input is on

Timing Chart

Key Operation			
LOD	SET	0	\square
10	1		
SET	F/RST	0	
1	Q		
LOD	SET	1	
10	1	BPS	
F/RST	F/RST	0	
Q		0	

When using in the high-speed processing mode,
operands are limited. See page 6-1.

END
The END instruction is always required at the end of a program; however, it is not necessary to program the END instruction after the last programmed instruction. The END instruction already exists at every unused address. (When an address is used for programming, the END instruction is removed.)
The END key is provided on the program loader for purposes other than programming an END instruction, (which is rarely necessary). A useful purpose for the END key is to find the program address for the end of a program:

A scan is the execution of all instructions from address zero to the END instruction. The time required for this execution is referred to as one scan time. The scan time varies with respect to program length, which corresponds to the address where the END instruction is found
During the scan time, program instructions are processed sequentially. This is why the output instruction closest to the END instruction has priority over a previous instruction for the same output. No output is initiated until all logic within a scan is processed.
Output occurs simultaneously, and this is the first part of the END instruction execution. The second part of the END instruction execution is to monitor all inputs, also done simultaneously. Then program instructions are ready to be processed sequentially once again.

introduction

This chapter describes the advanced instruction menus, terms, available operands, formats, and data types used for advanced instructions.

Advanced Instruction Menus

Advanced instructions are programmed using the ADV key of the program loader. To program an advanced instruction using the program loader, select the address where you want to program an advanced instruction, and press the ADV and Veys to display the first menu of advanced instructions

ADV
 $\begin{array}{cl}\text { [MENU1] } & \\ 0: \text { NOP } & 3:+-* / \\ 1: \text { MOV } & 4: \text { LOGIC }\end{array}$
 1:MOV 4:LOGIC
 12:CMP
 5:SFT

The MENU1 of advanced instructions include six headings of submenus. To show a submenu, press a number 0 through 5 . When the submenu is displayed, press a number to program a required advanced instruction, then the program screen is displayed to enter operands. The NOP instruction is entered at the selected address in the editor screen immediately when 0 is pressed while the MENU1 is displayed
It is also possible to jump from the editor screen to the submenu by pressing the ADV key and a number, 0 through 9 , A or B

To show the MENU2 of advanced instructions, press the $\boldsymbol{\nabla}$ key while the MENU1 is displayed.

[MENU2]	
17:CLK	A:HSC
8:IF	B:COMM
9:EXT	

The MENU2 includes five submenu headings. As described above, to go to a submenu, press a number key 7 through B . When the submenu is displayed, press a number to program a required advanced instruction, then the program screen is displayed to enter operands
To go back to MENU1 from MENU2, press the $\mathbf{\Delta}$ key
Details of programming advanced instructions are described in the following chapters.
Press the 0 key.

0 NOP
$1 \downarrow$ END
2 END
3 END

Press the 1 key.

[MOV MENU]	
1:MOV	$4:$ IMOVN
$2:$ MOVN	
$3:$ IMOV	

Press the $\mathbf{2}$ key.

[CMP MENU]	
1:=	4:>
$2:<>$	5:<=
3:<	6:>=

Press the 7 key.

[CLOCK MENU]	
1:CALR	4 :CLKW
2:CALW	5:ADJ
3:CLKR	

Press the $\mathbf{8}$ key.

Press the 9 key.

[EXT MENU]

1: PULS
2: PWM
3:A/D

Advanced Instruction List

Group	Number	Symbol	Name	Addrs Req'd	Available on
NOP	0	NOP	No Operation	1	All MICRO ${ }^{3}$ and $\mathrm{MICRO}^{3} \mathrm{C}$
Move	11	MOV	Move	3 or 4	All MICRO ${ }^{3}$ and $\mathrm{MICRO}^{3} \mathrm{C}$
	12	MOVN	Move Not	3 or 4	All MICRO ${ }^{3}$ and MICRO ${ }^{3} \mathrm{C}$
	13	IMOV	Indirect Move	5 or 6	All MICRO ${ }^{3}$ and $\mathrm{MICRO}^{3} \mathrm{C}$
	14	IMOVN	Indirect Move Not	5 or 6	All MICRO ${ }^{3}$ and $\mathrm{MICRO}^{3} \mathrm{C}$
Comparison	21	CMP=	Compare Equal To	4 or 5	All MICRO ${ }^{3}$ and $\mathrm{MICRO}^{3} \mathrm{C}$
	22	CMP<>	Compare Unequal To	4 or 5	All $^{\text {MICRO }}{ }^{3}$ and $\mathrm{MICRO}^{3} \mathrm{C}$
	23	CMP<	Compare Less Than	4 or 5	$\mathrm{All}_{\text {MICRO }}{ }^{3}$ and $\mathrm{MICRO}^{3} \mathrm{C}$
	24	CMP>	Compare Greater Than	4 or 5	All $^{\text {MICRO }}{ }^{3}$ and MICRO ${ }^{3} \mathrm{C}$
	25	CMP<=	Compare Less Than or Equal To	4 or 5	All MICRO ${ }^{3}$ and $\mathrm{MICRO}^{3} \mathrm{C}$
	26	CMP>=	Compare Greater Than or Equal To	4 or 5	All MICRO ${ }^{3}$ and $\mathrm{MICRO}^{3} \mathrm{C}$
Binary Arithmetic	31	ADD	Addition	4 or 5	All MICRO ${ }^{3}$ and $\mathrm{MICRO}^{3} \mathrm{C}$
	32	SUB	Subtraction	4 or 5	All MICRO ${ }^{3}$ and MICRO ${ }^{3} \mathrm{C}$
	33	MUL	Multiplication	4 or 5	All MICRO ${ }^{3}$ and $\mathrm{MICRO}^{3} \mathrm{C}$
	34	DIV	Division	4 or 5	All MICRO ${ }^{3}$ and MICRO ${ }^{3} \mathrm{C}$
Boolean Computation	41	ANDW	AND Word	4 or 5	All MICRO ${ }^{3}$ and MICRO ${ }^{3} \mathrm{C}$
	42	ORW	OR Word	4 or 5	All MICRO ${ }^{3}$ and $\mathrm{MICRO}^{3} \mathrm{C}$
	43	XORW	Exclusive OR Word	4 or 5	All MICRO ${ }^{3}$ and $\mathrm{MICRO}^{3} \mathrm{C}$
Bit Shift and Rotate	51	SFTL	Shift Left	3	All MICRO ${ }^{3}$ and MICRO ${ }^{3} \mathrm{C}$
	52	SFTR	Shift Right	3	All MICRO^{3} and $\mathrm{MICRO}^{3} \mathrm{C}$
	53	ROTL	Rotate Left	3	$\mathrm{All}_{\text {MICRO }}{ }^{3}$ and $\mathrm{MICRO}^{3} \mathrm{C}$
	54	ROTR	Rotate Right	3	All MICRO ${ }^{3}$ and MICRO $^{3} \mathrm{C}$
Real-time Clock/Calendar	71	CALR	Calendar Read	2	16 - and 24-I/O types only
	72	CALW	Calendar Write	2	16- and 24-1/0 types only
	73	CLKR	Clock Read	2	16- and 24-1/0 types only
	74	CLKW	Clock Write	2	16 - and $24-1 / 0$ types only
	75	ADJ	Adjust	1	16-and 24-1/0 types only
Interface	81	DISP	Display	4	Transistor output type only
	82	DGRD	Digital Switch Read	4	Transistor output type only
	83	ANRO	Analog Read 0	2	All MICRO ${ }^{3}$ and $\mathrm{MICRO}^{3} \mathrm{C}$
	84	ANR1	Analog Read 1	2	16 - and 24-I/O MICRO ${ }^{3}$ only
Pulse and A/D Conversion	91	PULS	Pulse Output	3	Transistor output type only
	92	PWM	Pulse Width Modulation	3	Transistor output type only
	93	A/D	Analog To Digital Conversion	2	All $^{\text {MICRO }}{ }^{3}$ and MICRO ${ }^{3} \mathrm{C}$
High-speed Counter	A1	HSCO	High-speed Counter 0 (32 bits)	4	24 V DC input type only
	A2	HSC1	High-speed Counter 1 (32 bits)	2	24V DC input type only
	A3	HSC2	High-speed Counter 2 (32 bits)	4	Transistor output type only
	A4	HSC3	High-speed Counter 3 (16 bits)	2	24V DC input type only
User Communication	B1	TXD	Transmit	5 to 404	$\mathrm{MICRO}^{3} \mathrm{C}$ only
	B2	RXD	Receive	5 to 404	MICRO ${ }^{3} \mathrm{C}$ only
Comparison	B3	CMP2	Double-word Comparison	4 or 5	$\mathrm{MICRO}^{3} \mathrm{C}$ only

Note: For details about the TXD, RXD, and CMP2 instructions, see the MICRO ${ }^{3} \mathrm{C}$ User's Manual.

Programming Advanced Instructions Using Program Loader

Repeat operation can be used with some advanced instructions. When repeat is designated for a source or destination operand, consecutive operands as many as the repeat cycles are processed starting with the designated operand. Details of repeat operation are described in following chapters. Repeat operation can be programmed using the program loader,

Example: Program the MOV (move) instruction

 with 5 repeat cycles for destination operand D1.

First, program the input condition for the advanced instruction pressing the LOD $\mathrm{I}, 0$, and $\boldsymbol{\checkmark}$ keys. Then program the MOV (move) instruction pressing the keys shown below.

$$
\begin{array}{|c|c|c|c|c|c|c|}
\hline 1 \\
\text { BPS }
\end{array} \begin{array}{|c}
\\
\hline \text { BPS }
\end{array}
$$

1 MOV
 MOV

D1:

Program data registers D10 and D50 for source operand S1 and destination operand D1. The cursor can be moved using the $\boldsymbol{\nabla}$ and $\boldsymbol{\triangle}$ keys.

Note: To enter a decimal or hexadecimal constant for a source operand, press the LOD/10 or OUT/16 key followed by the constant value.
With the cursor placed at the operand to designate repeat operation, press the REP (repeat) key. The display changes as shown on the right.
B/REP
On the right of the operand to repeat, "- R " is displayed.
Move down the cursor to the bottom line, and enter the quantity of repeat cycles, which can be 1 through 31 .

When programming of all operands and repeat cycles is complete, return to the normal editor screen.

Revising Advanced Instructions Using Program Loader

Place the cursor at the advanced instruction you want to revise using the $\boldsymbol{\nabla}$ and Δ keys.

With the cursor placed at the advanced instruction, press the key

The editor screen for the advanced instruction will be displayed with the programmed operands

```
1 S1: D 10
MOV
D1& D 50 -R
R=
```

$$
\begin{array}{ll}
1 & \text { S1: D } 10 \\
\text { MOV } & \\
& \text { D1: } \\
\text { R } 5 & 50-R
\end{array}
$$

0 LOD I 0
1 (MOV)
5 END
6 END

6 END

To exit after revising is complete, press the $\boldsymbol{\downarrow}$ key.

Structure of an Advanced Instruction

epeat Designatio

peat Cycles
Specifies the quantity of repeat cycles: 1 through 31 .

Opcod

The opcode is a symbol to identify the advanced instruction.

Source Operand

The source operand specifies the 16 -bit word data to be processed by the advanced instruction. Some advanced instructions require two source operands.

Destination Operand

The destination operand specifies the 16 -bit word data to store the result of the advanced instruction. Some advanced store the result of the advanced instruction. So
instructions require two destination operands.

nput Condition for Advanced Instructions

Almost all advanced instructions must be preceded by a contact, except NOP (no operation) and HSC0 through HSC3
(high-speed counter) instructions. The input condition can be programmed using a bit operand such as input, output, internal relay, or shift register. Timer and counter can also be used as an input condition to turn on the contact when the timer times out or the counter counts out
While the input condition is on, the advanced instruction is executed in each scan. To execute the advanced instruction only at the rising or falling edge of the input, use the SOTU or SOTD instruction.

Source and Destination Operands

The source and destination operands specify 16 -bit word data. When a bit operand such as input, output, internal relay, or shift register is designated as a source or destination operand, 16 points starting with the designated number are processed as source or destination data. When a word operand such as timer or counter is designated as a source operand, the current value is read as a source data. When a timer or counter is designated as a destination operand, the result of the advanced instruction is set to the preset value for the timer or counter. When a data register is designated as a source or destination operand, the data is read from or written to the designated data register

Using Timer or Counter as Source Operand

Since all timer instructions - TIM ($100-\mathrm{msec}$ timer), TMH ($10-\mathrm{msec}$ timer), and TMS ($1-\mathrm{msec}$ timer) - subtract from the reset value, the current value is decremented from the preset value and indicates the remaining time. As described above, hen a timer is designated as a source operand of an advanced instruction, the current value, or the remaining time, of the mer is read as a source data. Reversible counters C 0 and Cl start counting at the preset value and the current value is incremented or decremented from the preset value. Adding counters C2 through C31 start counting at 0 , and the current value is incremented up to the preset value. When any counter is designated as a source operand of an advanced instruction, the current value is read as a source data.

Using Timer or Counter as Destination Operand

As described above, when a timer or counter is designated as a destination operand of an advanced instruction, the result of the advanced instruction is set to the preset value of the timer or counter. Since timer and counter preset values can be 0 through 9999, make sure that the result of the advanced instruction does not exceed 9999. If the result to be set to a timer or counter designated as destination exceeds 9999, a user program execution error will result, then error indicator ERR1 is lit and special internal relay M304 turns on.
When a timer or counter preset value is designated using a data register, the timer or counter cannot be designated as a destination of an advanced instruction. When executing such an advanced instruction, a user program execution error will result. If a timer or counter is designated as a destination of an advanced instruction and if the timer or counter is not programmed, then a user program execution error will also result. For details of user program execution error, see page 18-5.
Note: When a user program execution error occurs, the result is not set to the destination

Using Input or Output as Source or Destination Operand

When an input or output is designated as a source or destination operand of an advanced instruction, 16 points starting with the designated number are used. Depending on the MICRO^{3} base unit used alone or in the expansion link system, available input terminals are limited and special care is needed. In the standard processing mode, inputs I 0 through I 35 and I15 and Q0 through Q11 Only these I/O numbers can be used for advanced instructions although the internal RAM 10 through I/O area of I0 through I37 and Q0 through Q37 for processing user programs.

Expansion Link Station	Input No.	10-I/O Base Units (6 input points)	16-I/O Base Units (9 input points)	24-1/O Base Units (14 input points)
Base Station	10 to 15	Input terminals available	Input terminals available	Input terminals available
	16 and 17	Always off (0)		
	110			
	111 to I15		Always off (0)	
	116 and 117			Always off (0)
Expansion Station	120 to 125	Input terminals available	Input terminals available	Input terminals available
	126 and 127	Always off (0)		
	130			
	131 to 135		Always off (0)	
	136 and 137			Always off (0)

Expansion Link Station	Output No.	10-I/0 Base Units (4 output points)	16-1/0 Base Units (7 output points)	24-1/0 Base Units (10 output points)
Base Station	Q0 to Q3	Output terminals available	Output terminals available	Output terminals available
	Q4 to Q6	Impossible to output		
	Q7		Impossible to output	
	Q10 and Q11			
	Q12 to Q17			Impossible to output
Expansion Station	Q20 to Q23	Output terminals available	Output terminals available	Output terminals available
	Q24 to Q26	Impossible to output		
	Q27		Impossible to output	
	Q30 and Q31			
	Q32 to Q37			Impossible to output

Input Source in the Move Instruction
 The MOV (move) instruction sets data of 16 inputs I0 through I17 to data register D0. When using a $10-\mathrm{I} / \mathrm{O}$ MICRO ${ }^{3}$ base unit, input terminals for I6 through I17 are not available, and these upper bits are always set to 0 .

The MOV (move) instruction sets data of 16 inputs I10 through I27 to data register D10. When using two $16-\mathrm{I} / \mathrm{O}$ MICRO ${ }^{3}$ base units in the expansion link system, input terminals for I11 through I17 are not available, and thes intermediate bits are always set to 0

The MOV (move) instruction sets data of 16 inputs starting with I30 to data register D20. When using two $24-\mathrm{I} / \mathrm{OMICRO}^{3}$ base units in the expansion
link system, input terminals for I 36 through I47 are not available, and these upper bits are always set to 0 .

Using Input or Output as Source or Destination Operand, continued

Output Destination in the Move Instruction

 through Q17. When using a $10-\mathrm{-I} / \mathrm{O}$ MICRO 3 base unit, output terminals fo Q4 through Q17 are not available, and these bits cannot be taken out.

The MOV (move) instruction sets data of D10 to 16 outputs Q10 through Q27. When using two $16-\mathrm{I} / \mathrm{O}$ MICRO ${ }^{3}$ base units in the expansion link sys
tem, output terminals for Q10 through Q17 and Q27 are not available, and these bits cannot be taken out.

Discontinuity of Operand Areas

Each operand area is discrete and does not continue, for example, from input to output or from output to internal relay. In addition, special internal relays M290 through M317 are in a separate area from internal relays M0 through M287.

Advanced instructions execute operation only on the available operands in the valid area. If invalid operands are designated, a user program syntax error occurs when transferring the user program to the MICRO^{3} base unit.

$$
\begin{array}{|lccc|l}
\text { M317 } & \text { MOV } & \begin{array}{c}
\text { S1 } \\
\text { D0 }
\end{array} & \begin{array}{c}
\text { D1 R } \\
\text { Q20 }
\end{array} & \text { REP } \\
\text { 2 }
\end{array} \quad \begin{aligned}
& \text { The MOV (move) instruction sets data of data register D0 to } 16 \text { outputs Q20 } \\
& \text { through Q37 in the first repeat cycle. The destination of the second cycle is } \\
& \text { the next 16 outputs Q40 through Q57, which are invalid, resulting in a user } \\
& \text { program syntax error, and error indicator ERR1 is lit. }
\end{aligned}
$$

0 NOP (No Operation)

No operation is executed by the NOP instruction.
The NOP instruction may serve as a place holder. Another use would be to add a delay to the MICRO ${ }^{3}$ scan time, in order to simulate communication with a machine or application, for debugging purposes.

Key Operation

ADV	$0 \vee$ NOP 1 5 5 6 6 END END

[^0]
Introduction

Data can be moved using the MOV (move), MOVN (move not), IMOV (indirect move), or IMOVN (indirect move not) instruction. The moved data is 16 -bit word data, and the repeat operation can also be used to increase the quantity of data instruction. The moved data is 16 -bit word data, and the repeat operation can also be used to increase the quantity of data
moved. In the MOV or MOVN instruction, the source and destination operand are designated by S1 and D1 directly. In the moved. In the VOV or MovN instruction, the source and destination operand are designated by S1 and D1 directiy. In the D2 added to source operand S1 and destination operand D1

Since the move instructions are executed in each scan while input is on, a pulse input from an SOTU or SOTD instruction should be used as required.

11 MOV (Move)

Key Operation

ADV	$\begin{gathered} 1 \\ \text { BPS } \end{gathered}$	1 BPS	$\begin{array}{cc} 1 & \text { S1 } \\ \text { Mov } & \\ & \text { D1: } \end{array}$			Enter op When re to repeat To exit,	rands pat is and ress th	1 and equired ter the $\boldsymbol{\$}$ ke	D1. press numb	he RE of re	key for the at cycles.	operand
Valid Operands (Standard Processing)												
Operand			Function	1	Q	M	T	c	R	D	Constant	Repeat
S1 (Source 1)			Operand to move	0-35	0-31	0-317	0-31	0-31	0-63	0-99	0-65535	1-31
D1 (Destination 1)			Operand to move to	-	0-31	0-287	0-31	0-31	0-63	0-99	-	1-31

In the high-speed processing mode, operands for advanced instructions are limited. See page 6-1.
In the high-speed processing mode, operands for advanced instructions are limited. See page 6-1. When T (timer) or C (counter) is used as S1, the timer/counter current value is red
used as D1, the data is written in as a preset value which can be 0 through 9999 .
When a bit operand such as input, output, internal relay, or shift register is used as the source or destination, 16 points are used. When repeat is designated for a bit operand, the quantity of operand bits increases in 16-point increments.

Examples: MOV

-810 designated by destination operand D1.

When input I1 is on, the data in data register D10 designated by source operand S 1 is moved to data register D2 designated by destination operand D1.

$\mathrm{D} 10 \rightarrow \mathrm{M} 0$
When input I 2 is on, the data in data register D10 designated by source operand S 1 is moved to 16 internal relays starting with M0 designated by destination operand D1.
D10 $\quad 12345 \longrightarrow$ M0 through M7, M10 through M17
The data in the source data register is converted into 16 -bit binary data, and the ON/OFF statuses of the 16 bits are moved to internal relays M0 through M7 and M10 through M17. M0 is the LSB (least significant bit). M17 is the MSB (most significant bit). When D0, M0 and M10 are monitored on the program loader, the data is displayed as shown on the right.

```
MON
    >D 10 12345
    M 0 macmamac
```


ider

Repeat Operation in the Move Instructions

When the S1 (source) is designated with repeat, operands as many as the repeat cycles starting with the operand designated by S 1 are moved to the destination. As a result, only the last of the source operands is moved to the destination.

$\boldsymbol{H}_{\mathrm{I} 2} \longmapsto$| MOV | S1R | D1 | REP |
| :---: | :---: | :---: | :---: |
| | D10 | D20 | 3 |

D10 110
D11 111

| D11 | 111 |
| :--- | :--- | :--- |
| D12 | 112 | D21

D21 \qquad

When the D1 (destination) is designated to repeat, the source operand designated by S 1 is moved to all destination oper ands as many as the repeat cycles starting with the destination designated by D1.

When both S1 (source) and D1 (destination) are designated to repeat, operands as many as the repeat cycles starting with the operand designated by S1 are moved to the same quantity of operands starting with the operand designated by D1.
$\left|\begin{array}{cccc}\text { I4 } \\ \hline & \text { MOV } & \begin{array}{ccc}\text { S1R } \\ \text { D10 }\end{array} & \begin{array}{c}\text { D1 R } \\ \text { D20 }\end{array} \\ & \text { REP } \\ 3\end{array}\right|$

The MOV (move) instruction moves 16 -bit word data. When a bit operand such as input, output, internal relay, or shift register is designated as the source or destination operand, 16 bits starting with the one designated by S1 or D1 are the target data. If a repeat operation is designated for a bit operand, the target data increases in 16 -bit increments.

If the repeat operation is designated for both the source and destination and if a portion of the source and destination areas overlap each other, then the source data in the overlapped area is also changed.

Source: \quad D10 through D13 (Repeat $=4$) Destination: D12 through D15 (Repeat $=4$)

12 MOVN (Move Not)

Key Operation

ADV	1 BPS	$\underset{\text { BRD }}{ } \mathbf{2}$	$\begin{array}{cc} 1 & \text { S1 } \\ \text { MOV } \\ \mathrm{N} & \mathrm{D} 1: \end{array}$			Enter op When re to repeat To exit, p	rands eat is and ress th	1 and equire ter the $\boldsymbol{\omega}$ ke	D. press numb	he R of re	key for the at cycles.	perand
Valid Operands (Standard Processing)												
Operand			Function	1	Q	M	T	c	R	D	Constant	Repeat
S1 (Source 1)			Operand to move	0-35	0-31	0-317	0-31	0-31	0-63	0-99	0-65535	1-31
D1 (Destination 1)			Operand to move to	-	0-31	0-287	0-31	0-31	0-63	0-99	-	1-31

When T (timer) or C (counter) is used as S 1 , the timer/counter current value is read out. When T (timer) or C (counter) is used as D1, the data is written in as a preset value which can be 0 through 9999 .

When a bit operand such as input, output, internal relay, or shift register is used as the source or destination, 16 points are used. When repeat is designated for a bit operand, the quantity of operand bits increases in 16-point increments.

Examples: MOVN

-10

M10 through M17, M20 through M27 NOT \longrightarrow M50 through M57, M60 through M67
The ON/OFF statuses of the 16 internal relays M10 through M17 and M20 through M27 are inverted and moved to 16 internal relays M50 through M57 and M60 through M67. When M50 and M60 are monitored on the program loader, the data is displayed as shown on the right below. M50 is the LSB (least significant bit), and M67 is the MSB (most significant bit).
Before inversion (M27-M10): \qquad S1

810 NOT \rightarrow D2
When input I1 is on, decimal constant 810 designated by source operand S1 is converted into 16-bit binary data, and the ON/OFF statuses of the 16 bits are inverted and moved to data register D2 designated by destination operand D1.
Before inversion (810): \qquad

After inversion (64725):

 D1 | 10 |
| :---: |
| |
| |
| LSB |

D0 | \square |
| :--- |
| 64725 |

D10 NOT \rightarrow D2
When input I2 is on, the data in data register D30 designated by S 1 is inverted bit by bit and moved to data register D20 designated by D1.

13 IMOV (Indirect Move)

 ignen the input is on, the values contained in operands des-
S2 are added to determine the source of tination, which is determined by the sum is moved to destained in operands designated by D1 and D2.

Key Operation

ADV	1 BPS
3 BPP	1 S1 IMOV S2: D1: D2:

Enter operands S1, S2, D1, and D2.
When repeat is required, press the REP key for the operand to repeat, and enter the number of repeat cycles.
To exit, press the \boldsymbol{d} key.
Valid Operands (Standard Processing)

Operand	Function	\mathbf{I}	\mathbf{Q}	\mathbf{M}	\mathbf{T}	\mathbf{C}	\mathbf{R}	\mathbf{D}	Constant	Repeat
S1 (Source 1)	Base address to move from	$0-35$	$0-31$	$0-317$	$0-31$	$0-31$	$0-63$	$0-99$	-	$1-31$
S2 (Source 2)	Offset for S1	$0-35$	$0-31$	$0-287$	$0-31$	$0-31$	$0-63$	$0-99$	-	-
D1 (Destination 1)	Base address to move to	-	$0-31$	$0-287$	$0-31$	$0-31$	$0-63$	$0-99$	-	$1-31$
D2 (Destination 2)	Offset for D1	$0-35$	$0-31$	$0-287$	$0-31$	$0-31$	$0-63$	$0-99$	-	-

In the high-speed processing mode, operands for advanced instructions are limited. See page 6-1.
When T (timer) or C (counter) is designated as $\mathrm{S} 1, \mathrm{~S} 2$, or D 2 , the operand data is the timer/counter current value. When T (timer) or C (counter) is designated as D 1 , the operand data is the timer/counter preset value which can be 0 through 9999. Make sure that the source data determined by $\mathrm{S} 1+\mathrm{S} 2$ and the destination data determined by $\mathrm{D} 1+\mathrm{D} 2$ are within the operand range. If the derived source or destination operand is out of the operand range, a user program execution error will result, turning on special internal relay M304 and error indicator ERR1.
When a bit operand such as input, output, internal relay, or shift register is used as the source or destination, 16 points are used. When repeat is designated for a bit operand, the quantity of operand bits increases in 16-point increments.
Source operand S2 and destination operand D2 do not have to be designated. If S2 or D2 is not designated, the source or destination operand is determined by S1 or D1 without offset.

Example: IMOV

\square
$\mathrm{D} 20+\mathrm{C} 10 \rightarrow \mathrm{D} 10+\mathrm{D} 25$
Source operand S1 and destination operand D1 determine the type of operand. Source operand S2 and destination operand D2 are the offset values to determine the source and destination operands.

If the current value of counter C10 designated by source operand S 2 is 4 , the source data is determined by adding the offset to data register D20 designated by source operand S1:

$$
\mathrm{D}(20+4)=\mathrm{D} 24
$$

If data register D25 contains a value of 20 , the destination is determined by adding the offset to data register D10 designated by destination operand D1:

$$
\mathrm{D}(10+20)=\mathrm{D} 30
$$

As a result, when input I 0 is on, the data in data register D24 is moved to data register D30

idee

MICRO

14 IMOVN (Indirect Move Not)

 $\mathrm{S} 1+\mathrm{S} 2 \mathrm{NOT} \rightarrow \mathrm{D} 1+\mathrm{D} 2$
When input is on, the values contained in operands desig nated by S1 and S2 are added to determine the source o data. The 16 -bit word data so determined is inverted and moved to destination, which is determined by the sum of values contained in operands designated by D1 and D2.

Key Operation

ADV $\begin{gathered}1 \\ \text { BPS }\end{gathered}$	1 S1 IMOV S2: N D1: D2:		Enter operands S1, S2, D1, and D2. When repeat is required, press the REP key for the operand to repeat, and enter the number of repeat cycles. To exit, press the $\boldsymbol{\beta}$ key.							
Valid Operands (Standard Processing)										
Operand	Function	1	Q	M	T	c	R	D	Constant	Repeat
S1 (Source 1)	Base address to move from	0-35	0-31	0-317	0-31	0-31	0-63	0-99	-	1-3
S2 (Source 2)	Offset for S1	0-35	0-31	0-287	0-31	0-31	0-63	0-99	-	-
D1 (Destination 1)	Base address to move to	-	0-31	0-287	0-31	0-31	0-63	0-99	-	1-31
D2 (Destination 2)	Offset for D1	0-35	0-31	0-287	0-31	0-31	0-63	0-99	-	

In the high-speed processing mode, operands for advanced instructions are limited. See page 6-1.
When T (timer) or C (counter) is designated as $\mathrm{S} 1, \mathrm{~S} 2$, or D 2 , the operand data is the timer/counter current value. When T (timer) or C (counter) is designated as D1, the operand data is the timer/counter preset value which can be 0 through 9999 . Make sure that the source data determined by $\mathrm{S} 1+\mathrm{S} 2$ and the destination data determined by $\mathrm{D} 1+\mathrm{D} 2$ are within the operand range. If the derived source or destination operand is out of the operand range, then a user program execution error will result, turning on special internal relay M304 and error indicator ERR1.

When a bit operand such as input, output, internal relay, or shift register is used as the source or destination, 16 points are used. When repeat is designated for a bit operand, the quantity of operand bits increases in 16-point increments.
Source operand S2 and destination operand D2 do not have to be designated. If S2 or D2 is not designated, the source or destination operand is determined by S1 or D1 without offset.

Example: IMOVN

	$\begin{aligned} & \hline \text { IMOVN } \begin{array}{c} \text { S10 } \\ \mathrm{C} 10 \end{array} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{S} 2 \\ \mathrm{D} 10 \end{gathered}$	$\begin{gathered} \hline \text { D1 } \\ \text { D30 } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { D2 } \\ \text { D20 } \\ \hline \end{gathered}$	EP

$\mathrm{C} 10+\mathrm{D} 10$ NOT $\rightarrow \mathrm{D} 30+$ D 20
Source operand S1 and destination operand D1 determine the type of operand. Source operand S2 and destination operand D2 are the offset values to determine the source and destination operands.

If the data of data register D10 designated by source operand S2 is 4, then the source data i determined by adding the offset to counter C 10 designated by source operand S 1 :

$$
\mathrm{C}(10+4)=\mathrm{C} 14
$$

If data register D20 designated by destination operand D2 contains a value of 15 , then the destination is determined by adding the offset to data register D30 designated by destination operand D1:

$$
\mathrm{D}(30+15)=\mathrm{D} 45
$$

As a result, when input I 0 is on, the current value of counter C14 is inverted and moved to data register D45.

Introduction

Data can be compared using comparison instructions, such as equal to, unequal to, less than, greater than, less than or equal to, and greater than or equal to. When the comparison result is true, an output or internal relay is turned on. The repeat operation can also be used to compare more than one set of data.
Since the comparison instructions are executed in each scan while input is on, a pulse input from an SOTU or SOTD instruction should be used as required.

21 CMP= (Compare Equal To)

$\mathrm{S} 1=\mathrm{S} 2 \rightarrow \mathrm{D} 1$ on
When input is on, 16 -bit word data designated by source operand S1 and S2 are compared. When S1 data is equal to S2 data, destination operand D1 is turned on. When the condition is not met, D
is turned off. is turned off

22 CMP<> (Compare Unequal To)

$\mathrm{S} 1 \neq \mathrm{S} 2 \rightarrow \mathrm{D} 1$ on
When input is on, 16-bit word data designated by source operands S1 and S2 are compared. When S1 data is not equal to S2 data, destination operand D1 is turned on. When the condition is not met, D1 is turned off

23 CMP< (Compare Less Than)

$\mathrm{S} 1<\mathrm{S} 2 \rightarrow \mathrm{D} 1$ on
When input is on, 16 -bit word data designated by source operands S1 and S2 are compared. When S1 data is less than S2 data, desti nation operand D1 is turned on. When the condition is not met, D1 is turned off.

24 CMP> (Compare Greater Than)

$\mathrm{S} 1>\mathrm{S} 2 \rightarrow \mathrm{D} 1$ on
When input is on, 16 -bit word data designated by source operands S 1 and S 2 are compared. When S 1 data is greater than S 2 data destination operand D1 is turned on. When the condition is no met, D1 is turned off.

25 CMP<= (Compare Less Than or Equal To)

When input is on, 16 -bit word data designated by source operand S1 and S2 are compared. When S1 data is less than or equal to S data, destination operand D1 is turned on. When the condition is not met, D1 is turned off
26 CMP>= (Compare Greater Than or Equal To)

Key Operation

Press the ADV key, followed by the advanced instruction number.

ADV	2	1	1 S1	Enter operands S1, S2, and D1. When repeat is required, press the REP key for the operand to repeat, and enter the number of repeat cycles. To exit, press the $\boldsymbol{\downarrow}$ key.
		BPS	$\begin{aligned} & \text { CMP S2: } \\ & \text { (=) D1: } \end{aligned}$	

Valid Operands (Standard Processing)

Operand	Function	\mathbf{I}	\mathbf{Q}	\mathbf{M}	\mathbf{T}	\mathbf{C}	\mathbf{R}	D	Constant	Repeat
S1 (Source 1)	Data to compare	$0-35$	$0-31$	$0-317$	$0-31$	$0-31$	$0-63$	$0-99$	$0-65535$	$1-31$
S2 (Source 2)	Data to compare	$0-35$	$0-31$	$0-317$	$0-31$	$0-31$	$0-63$	$0-99$	$0-65335$	$1-31$
D1 (Destination 1)	Comparison output	-	$0-31$	$0-287$	-	-	-	-	-	$1-31$

When T (timer) or C (counter) is used as S1 or S2, the timer/counter current value is read out. When T (timer) or C
(counter) is used as D1, the data is written in as a preset value which can be 0 through 9999 .

xamples: CMP>=

The comparison output is usually maintained while the input to the comparison instruction is off. If the comparison output is on, the on status is maintained when the input is turned off as demonstrated by this program.

This program turns the output off when the input is off.

Repeat Operation in the Comparison Instructions

When S1 and/or S2 (source) is designated to repeat, D1 (destination) is normally required to be designated to repeat, oth erwise only the result of the comparison in the last repeat cycle is set to one destination.
When S1 (source) and D1 (destination) are designated with repeat, operands as many as the repeat cycles starting with the operand designated by S1 are compared with the operand designated by S2. The comparison results are set to operands as many as the repeat cycles starting with the operand designated by D1.

S1 $($ Repeat $=3) \quad$ S2 $($ Repeat $=0) \quad$ D1 $($ Repeat $=3)$
$\mathrm{D} 20 \square 10 \longrightarrow 15 \longrightarrow \begin{aligned} & \text { D1 }(\text { Repeat }=\mathbf{3})\end{aligned}$
$\mathrm{D} 21 \xrightarrow{\square} \longrightarrow 15$ \qquad M11 turned on M12 turned on

When S2 (source) and D1 (destination) are designated to repeat, the operand designated by S1 is compared with operands as many as the repeat cycles starting with the operand designated by S2. The comparison results are set to operands as many as the repeat cycles starting with the operand designated by D1

Sl (Repeat $=\mathbf{0}$) \quad S2 (Repeat $=\mathbf{3}$)

$20 \longleftrightarrow$ D
D1 $($ Repeat $=3)$
\longrightarrow Q0 turned on \rightarrow Q1 turned on \longrightarrow Q2 turned off

When $\mathrm{S} 1, \mathrm{~S} 2$ (source), and D 1 (destination) are designated to repeat, operands as many as the repeat cycles starting with the operands designated by S1 and S2 are compared with each other. The comparison results are set to operands as many as the repeat cycles starting with the operand designated by D1.

Introduction

The binary arithmetic instructions make it possible for the user to program computations using addition, subtraction, multiplication, and division. For addition and subtraction operands, internal relay M303 is used to carry or to borrow.

31 ADD (Addition)

 $\mathrm{S} 1+\mathrm{S} 2 \rightarrow \mathrm{D} 1$
 When input is on, 16 -bit word data designated by source operands S1 and S2 are added. The result is set to destination operand D1 and carry (M303)

32 SUB (Subtraction)

When input is on, 16 -bit word data designated by source operand S2 is subtracted from 16-bit word data designated by source oper and S1. The result is set to destination operand D1 and borrow (M303).

33 MUL (Multiplication)

$\mathrm{S} 1 \times \mathrm{S} 2 \rightarrow \mathrm{D} 1$
When input is on, 16 -bit word data designated by source operand S1 is multiplied by 16 -bit word data designated by source operan
S2. The result is set to destination operand D1 2. The restit is set to destination operand D When the esult exceed 65535 , error indicator ERR1 and specia

34 DIV (Division)

$\mathrm{S} 1 \div \mathrm{S} 2 \rightarrow \mathrm{D} 1$ (quotient), $\mathrm{D} 1+1$ (remainder)
When input is on, 16 -bit word data designated by source operand S1 is divided by 16 -bit word data designated by source operand to destination operand D1, and the remainder is set to D1+1
When S2 is 0 (dividing by 0), error indicator ERR1 and special internal relay M304 (user program execution error) are turned on.

Key Operation

Press the ADV key, followed by the advanced instruction number

Enter operands S1, S2, and D1.
When repeat is required, press the REP key for the operand to repeat, and enter the number of repeat cycles.
To exit, press the $\boldsymbol{\downarrow}$ key
Valid Operands (Standard Processing)

Operand	Function	\mathbf{I}	\mathbf{Q}	\mathbf{M}	\mathbf{T}	\mathbf{C}	\mathbf{R}	\mathbf{D}	Constant	Repeat
S1 (Source 1)	Data for calculation	$0-35$	$0-31$	$0-317$	$0-31$	$0-31$	$0-63$	$0-99$	$0-65535$	$1-31$
S2 (Source 2)	Data for calculation	$0-35$	$0-31$	$0-317$	$0-31$	$0-31$	$0-63$	$0-99$	$0-65535$	$1-31$
D1 (Destination 1)	Destination to store results	-	$0-31$	$0-287$	$0-31$	$0-31$	$0-63$	$0-99$	-	$1-31$

When T (timer) or C (counter) is used as S 1 or S 2 , the timer/counter current value is read out. When T (timer) or C (counter) is used as D1, the data is written in as a preset value which can be 0 through 9999 .

Note: When using the timer or counter as destination, make sure that the data does not exceed the maximum preset value of 9999 . When the preset value exceeds 9999 , a user program execution error will result, turning on error indicator ERR1 and special internal relay M304. When a user program execution error occurs, the result is not set to the destination.
Since the binary arithmetic instructions are executed in each scan while input is on, a pulse input from an SOTU or SOTD instruction should be used as required.

Using Carry or Borrow Signals

When the D1 (destination) data exceeds 65535 as a result of addition, a carry occurs, and special internal relay M303 is turned on. When the D1 (destination) data is less than zero as a result of subtraction, a borrow occurs, and special internal relay M303 is turned on.

There are three ways to program the carrying process (see examples below). If a carry never goes on, the program does not have to include internal relay M303 to process carrying. If a carry goes on unexpectedly, an output can be programmed to be set as a warning indicator. If a carry goes on, the number of times a carry occurs can be added to be used as one word data in a specified register

Example: ADD

This example demonstrates the use of a carry signal from special internal relay M303 to set an alarm signal.

	$\overline{\mathrm{ADD}}$	S1 D2				$\mathrm{D} 2+500 \rightarrow \mathrm{D} 2$ When a carry occurs, output Q0 is set as a warning indicator When the acknowledge pushbutton (input I1) is pressed, the warning indicator is reset.
Acknowledge Pushbuton	$\underset{\text { M303 }}{ }$				Q0 ${ }^{\text {SET }}$	
					(RST)-	

Example: Repeat Operation Using ADD

This example uses the repeat operation to total the current values of four counters using the ADD (addition) instruction

When input I0 is turned on, the MOV (move) instruction sets 0 to data register D0
If the current values of counters C0 through C3 are 10, 20 30 , and 40 , respectively, then the ADD instruction with 4 epeat cycles totalizes the current values as follow
$\mathrm{C} 0(10)+\mathrm{D} 0(0) \rightarrow \mathrm{D} 0(10)$
$\mathrm{C} 2(30)+\mathrm{D} 0(30) \rightarrow \mathrm{D} 0(60)$
C3 (40) +D 0 (60) $\rightarrow \mathrm{D} 0$ (100)
Data register D0 stores the final result of 100 .

Example: SUB

The following example demonstrates the use of special internal relay M303 to process a borrow.

D12 - $7000 \rightarrow$ D12
To process borrowing so that the number of times a borrow occurs is subtracted from D13. When a borrow occurs, D13 is decremented by one.

Example: MUL

 and the result is set to D30.
Note: When the result exceeds 65535, a user program execution error will result, turning on error indicator ERR1 and special internal relay M304 (user program execution error). The result is not set to the destination operand.

$\mathrm{D} 10 \div \mathrm{D} 20 \rightarrow \mathrm{D} 30$ (quotient), D31 (remainder)
When input I2 is on, data of D10 is divided by data of D20. The quotient is set to D30, and the remainder is set to D31
Note: Destination uses two word operands, so do not use data register D99 as destination operand D1, otherwise a user program syntax error occurs, and error indicator ERR1 is lit. When using a bit operand such as internal relay for destina tion, 32 internal relays are required; so do not use internal relay M251 or a larger number as destination operand D1.

epeat Operation in the ADD, SUB, and MUL Instructions

Source operands S1 and S2 and destination operand D1 can be designated to repeat individually or in combination. When destination operand D1 is not designated to repeat, the final result is set to destination operand D1. When repeat is desig(amples are described using the ADD instruction.

When only S 1 (source) is designated to repeat, the final result is set to destination operand D1.

When only S2 (source) is designated to repeat, the final result is set to destination operand D1.

$\mathbf{1}$ (Repeat $=\mathbf{0}$) $\mathbf{S 2}$ (Repeat $=\mathbf{3}$) \quad D1 (Repeat $=\mathbf{0}$)
$\mathrm{D} 10 \square 10+\mathrm{D} 20 \square 25 \longrightarrow \mathrm{D} 30 \square(35)$ $\mathrm{D} 10 \underset{ }{10}+\mathrm{D} 21 \underset{35}{ } \longrightarrow \mathrm{D} 30 \square(45)$

When only D1 (destination) is designated to repeat, the same result is set to 3 operands starting with D1.

When S1 and S2 (source) are designated to repeat, the final result is set to destination operand D1.

When S1 (source) and D1 (dest.) are designated to repeat, different results are set to 3 operands starting with D1.

$\mathbf{S 2}$ (Repeat $=0$)
D1 (Repeat = 3)

When S2 (source) and D1 (dest.) are designated to repeat, different results are set to 3 operands starting with D1.

When all operands are designated to repeat, different results are set to 3 operands starting with D1

Note: Special internal relay M308 (carry/borrow) is turned on when a carry or borrow occurs in the last repeat operation. When a user program error occurs in any repeat operation, error indicator ERR1 and special internal relay M304 (user program execution error) are turned on and maintained while operation for other instructions is continued. For the advanced instruction which has caused a user program execution error, results are not set to any destination.

Repeat Operation in the DIV Instruction

Since the DIV (division) instruction uses two destination operands, the quotient and remainder are stored as described below. Source operands S1 and S2 and destination operand D1 can be designated to repeat individually or in combination. below. Source operands S1 and S2 and destination operand D1 can be designated to repeat individually or in combination $\mathrm{D}+1$ (remainder). When repeat is designated, consecutive operands as many as the repeat cycles starting with the desig nated operand are used.

When only S1 (source) is designated to repeat, the final result is set to destination operands D1 and D1+1.
$\left.\begin{array}{|ccccc|}\hline 1 & \text { SOTU } & \text { DIV } & \begin{array}{cccc}\text { S1 R } \\ \text { D10 }\end{array} & \begin{array}{c}\text { S2 } \\ \text { D20 }\end{array}\end{array} \begin{array}{c}\text { D1 } \\ \text { D30 }\end{array}\right)$
$\begin{array}{cc}\mathbf{S 1}(\text { Repeat }=\mathbf{3}) & \mathbf{S 2} \\ \text { D10 } & \vdots \\ \text { D11 } & \vdots \\ \text { D12 } & \vdots\end{array}$
$\xrightarrow[\substack{\text { D } \\ \text { D20 } \\ \text { D20 }}]{\mathbf{D} 20}$
D1 (Repeat $=0$)
D20
D20
D20
$\longrightarrow$$\longrightarrow \begin{gathered}\text { (D30) } \\ \text { (D30) } \\ \text { D30 } \\ \text { Duotient }\end{gathered} \substack{\text { (D31) } \\ \text { (D31) } \\ \text { (D31) } \\ \text { D31 } \\ \text { Demainder }}$ Quotie
When only S2 (source) is designated to repeat, the final result is set to destination operands D1 and D1 +1

$\mathrm{H}_{\mathrm{I} 2} \mathrm{H}$						$\text { S1 }(\text { Repeat }=0)$		S2 (Repeat = 3)	D1 (Repeat = 0)		
	DIV	$\begin{gathered} \text { S1 } \\ \text { D10 } \end{gathered}$	$\begin{aligned} & \text { S2R R } \\ & \text { D20 } \end{aligned}$	D1	$\begin{gathered} \text { REP } \\ 3 \end{gathered}$			D20	\longrightarrow	(D30)	(D31)
						D10	\div	D22	\longrightarrow	(D30)	(D31)
										Quotient	Remainder

When only D1 (destination) is designated to repeat, the same result is set to 6 operands starting with D1

When S 1 and S 2 (source) are designated to repeat, the final result is set to destination operands D 1 and $\mathrm{D} 1+1$.

S1 (Repeat = 3) \quad S2 (Repeat = 3)
D1 (Repeat = 0)
 $\mathrm{D} 12 \div \underset{\mathrm{D} 22}{\longrightarrow} \underset{\text { D30 }}{\square} \underset{\text { D31 }}{(\mathrm{D} 31}$ Quotient Re
ing with D1.
When S1 (source) and D1 (dest.) are designated to repeat, different results are set to 6 operands starting with D1.

$$
\begin{array}{llllll}
\text { D10 } & \vdots & \text { D20 } & \longrightarrow & \text { D30 } & \text { D33 } \\
\text { D11 } & \vdots & \text { D20 } & \longrightarrow & \text { D31 } & \text { D34 } \\
\text { D12 } & \vdots & \text { D20 } & \longrightarrow & \text { D32 } & \text { D35 } \\
\text { Dutient } & \text { Remainder }
\end{array}
$$

When S2 (source) and D1 (dest.) are designated to repeat, different results are set to 6 operands starting with D1.

When all operands are designated to repeat, different results are set to 6 operands starting with D1.

Note: When a user program error occurs in any repeat operation, error indicator ERR1 and special internal relay M304 (user program execution error) are turned on and maintained while operation for other instructions is continued. For the advanced instruction which has caused a user program execution error, results are not set to any destination.

ntroduction

Boolean computations use the AND, OR, and exclusive OR statements as carried out by the ANDW, ORW, and XORW instructions, respectively. Since the Boolean computation is executed in each scan while the input is on, a level input or pulse input should be used as required

41 ANDW (AND Word)

$\mathrm{S} 1 \cdot \mathrm{~S} 2 \rightarrow \mathrm{D} 1$
When input is on, 16 -bit word data designated by source operands S1 and S2 are ANDed, bit by bit. The result is set to destination operand D1.

S1	$\mathbf{S 2}$	D1
0	0	0
0	1	0
1	0	0
1	1	1

42 ORW (OR Word)

$\mathrm{S} 1+\mathrm{S} 2 \rightarrow \mathrm{D} 1$
When input is on, 16 -bit word data designated by source operands S1 and S2 are ORed, bit by bit. The result is set to destination operand D1.

43 XORW (Exclusive OR Word)

$\mathrm{S} 1 \oplus \mathrm{~S} 2 \rightarrow \mathrm{D} 1$
When input is on, 16 -bit word data designated by source operands S1 and S2 are exclusive ORed, bit by bit. The result is set to destination operand D

S1	S2	D1
0	0	0
0	1	1
1	0	1
1	1	0

Key Operation

Press the ADV key, followed by the advanced instruction number

ADV	4	1	1 S 1 t ANDW $\mathrm{S} 2:$ $\mathrm{D} 1:$	Enter operands S1, S2, and D1.
				When repeat is required, press the REP key for the operan to repeat, and enter the number of repeat cycles.
				To exit, press the $\boldsymbol{\downarrow}$ key.

Valid Operands (Standard Processing)

Operand	Function	\mathbf{I}	\mathbf{Q}	\mathbf{M}	\mathbf{T}	\mathbf{C}	\mathbf{R}	\mathbf{D}	Constant	Repeat
S1 (Source 1)	Data for computation	$0-35$	$0-31$	$0-317$	$0-31$	$0-31$	$0-63$	$0-99$	$0-65535$	$1-31$
S2 (Source 2)	Data for computation	$0-35$	$0-31$	$0-317$	$0-31$	$0-31$	$0-63$	$0-99$	$0-65535$	$1-31$
D1 (Destination 1)	Destination to store results	-	$0-31$	$0-287$	$0-31$	$0-31$	$0-63$	$0-99$	-	$1-31$

When T (timer) or C (counter) is used as S 1 or S 2 , the timer/counter current value is read out. When T (timer) or C
(counter) is used as D1, the data is written in as a preset value which can be 0 through 9999.
Note: When using the timer or counter as destination, make sure that the data does not exceed the maximum preset value of 9999. When the preset value exceeds 9999, a user program execution error will result, turning on error indicator ERR1 and special internal relay M304. When a user program execution error occurs, the result is not set to the destination.
Since these Boolean instructions are executed in each scan while input is on, a pulse input from an SOTU or SOTD instruction should be used as required

Example: XORW

To convert optional output status among a series of 10 output points, use the XORW instruction in combination with 10 internal relay points.

This program will invert the status of the shaded outputs at the left from on to off, and those not shaded from off to on.
This example uses the 24-I/O type MICRO ${ }^{3}$ base unit, which has 10 output terminals Q 0 through Q7, Q10, and Q11.

M17
M10 M7
MO

Ten points of outputs Q0 through Q11 are assigned to 10 points of internal relays M0 through M11.

Five points of M0, M2, M4, M6, and M10 are set by initialize pulse special internal relay M301

When input I1 is turned on, the XORW instruction is executed to invert the status of outputs Q0, Q2, Q4, Q6, and Q10.

epeat Operation in the ANDW, ORW, and XORW Instructions

Source operands S1 and S2 and destination operand D1 can be designated to repeat individually or in combination. When destination operand D1 is not designated to repeat, the final result is set to destination operand D1. When repeat is desig ated, consecutive operands as many as he repeat cycles starting with the designated operand are used. Since the repea word) ORW (OR word), and XORW (exclusive OR word) instructions, the following examples are described using the ANDW instruction.
When only S1 (source) is designated to repeat, the final result is set to destination operand D1

When only S2 (source) is designated to repeat, the final result is set to destination operand D1

When S1 (source) and D1 (dest.) are designated to repeat, different results are set to 3 operands starting with D1.

					S1 (Repeat = 3)	S2 (Repeat = 0)		D1 (Repeat $=3$)
$\operatorname{HIN}_{15} 1 \text { sotu }$	D10 D10	D20		${ }_{3}$	D10	D20	\longrightarrow	D30
					D12	$\begin{aligned} & \text { D20 } \\ & \text { D20 } \end{aligned}$	\longrightarrow	D32

When S2 (source) and D1 (dest.) are designated to repeat, different results are set to 3 operands starting with D1.

Note: When a user program error occurs in any repeat operation, error indicator ERR1 and special internal relay M304 (user program execution error) are turned on and maintained while operation for other instructions is continued. For the advanced instruction which has caused a user program execution error, results are not set to any destination.

Introduction

Bit shift and rotate instructions are used to shift the 16-bit data in the data register designated by source operand S1 to the left or right by the quantity of bits designated. The result is set to the data register designated by source operand S1 and a carry (special internal relay M303). Since the bit shift and rotate instructions are executed in each scan while the input is on, a level input or pulse input should be used as required.

51 SFTL (Shift Left)

When bit to shift = 1
Before shift:

After shift:

$\stackrel{-1}{\text { M303 }}$

Key Operation

ADV	5 cc=	1 BPS	$\begin{array}{r} 2 \\ \text { SFTL } \end{array}$ (↔) : 1bit	Enter operand S1 and the quantity of bits to shift. Repeat cannot be designated for bit shift instructions.

Valid Operands (Standard Processing)

Operand	Function	I	Q	M	T	C	R	D	Constant	Repeat
S1 (Source 1)	Data for bit shift	-	-	-	-	-	-	$0-99$	-	-
bit	Quantity of bits to shift	-	-	-	-	-	-	-	$1-15$	-

In the high-speed processing mode, data registers for this instruction are limited to D0 through D31.
Since the bit shift instructions are executed in each scan while input is on, a pulse input from an SOTU or SOTD instruction should be used as required.

Example: SFTL

	$\begin{gathered} \text { S1 } \\ 43690 \end{gathered}$	D10	$\underset{* *}{\text { REP }}$
$\mathrm{H}_{\mathrm{I} 0} \xlongequal{ }-\text { sotu }$	$\sqrt{\mathrm{SFTL}}$	$\begin{gathered} \text { S1 } \\ \text { D10 } \\ \hline \end{gathered}$	$\begin{gathered} \text { bit } \\ 1 \\ \hline \end{gathered}$

M301 is the initialize pulse special internal relay
When MICRO ${ }^{3}$ starts operation, the MOV (move) instruction sets 43690 to data register D10.
Each time input 10 is turned on, 16 -bit data of data register D10 is shifted to the left by 1 bit as designated by operand bit. The bit status shifted out is set to a carry (special internal relay M303). Zeros are set to the LSB
Bits to shift $=1$

52 SFTR (Shift Right)

| SFTR | S1
 $* * * *$ | bit
 $* *$ | S1 \rightarrow CY
 When input is on, 16-bit data of the data register designated by source operand S1 is
 shifted to the right by the quantity of bits designated by operand bit. The result is set
 to the data register, and the last bit status shifted out is set to a carry (special internal
 relay M303). Zeros are set to the MSB. |
| :--- | :--- | :--- | :--- | :--- |

When bits to shift $=1$

Key Operation

ADV	5 cc	2 BRD	$\begin{aligned} & 2 \mathrm{Si} \\ & \mathrm{SFTR} \end{aligned}$ (A) : 1bit	Enter operand S1 and the quantity of bits to shift. Repeat cannot be designated for bit shift instructions To exit, press the $\boldsymbol{\downarrow}$ key.

Valid Operands (Standard Processing)

Operand	Function	\mathbf{I}	\mathbf{Q}	\mathbf{M}	\mathbf{T}	\mathbf{C}	R	D	Constant	Repeat
S1 (Source 1)	Data for bit shift	-	-	-	-	-	-	$0-99$	-	-
bit	Quantity of bits to shift	-	-	-	-	-	-	-	$1-15$	-

In the high-speed processing mode, data registers for this instruction are limited to D0 through D31.
Since the bit shift instructions are executed in each scan while input is on, a pulse input from an SOTU or SOTD instruction should be used as required.

Example: SFTR

53 ROTL (Rotate Left)

When input is on, 16 -bit data of the data register designated by SI is rotated to the left by the quantity of bits designated by operand bit. The last bit status rotated out of the data register is set to a carry (special internal relay M303).

When bits to rotate $=1$

After rotation:
 1

Key Operation

Valid Operands (Standard Processing)

Operand	Function	I	Q	M	T	C	R	D	Constant	Repeat
S1 (Source 1)	Data for bit rotation	-	-	-	-	-	-	$0-99$	-	-
bit	Quantity of bits to rotate	-	-	-	-	-	-	-	$1-15$	-

In the high-speed processing mode, data registers for this instruction are limited to D0 through D31.
Since the bit rotate instructions are executed in each scan while input is on, a pulse input from an SOTU or SOTD instruction should be used as required.

Example: ROTL

M301 is the initialize pulse special internal relay
When MICRO ${ }^{3}$ starts operation, the MOV (move) instruction sets 40966 to data register D10.
Each time input IO is turned on, 16-bit data of data register D10 is rotated to
the left by 1 bit as designated by operand bit. The status of th MSB is the left by 1 bit as designated by operand bit. The status of the MSB is set to a carry (special internal relay M303).
Bits to rotate $=1$

Before rotation: D10 = 40966	$\stackrel{\text { CY }}{\square} \underset{\text { M303 }}{\square}$	msb				D10							${ }^{\text {LSB }}$			
															0 1 1 0	
After first rotation: D10 = 16397	$\begin{gathered} \downarrow \\ \stackrel{C Y}{C} \\ \sqrt{1} \end{gathered}$	MSB				D10								$\stackrel{\downarrow}{\text { LSB }}$		
	$\frac{1}{\text { м } 303}$						0									
	$\underset{\mathrm{CY}}{\downarrow}$	MSB				D10							$\stackrel{\downarrow}{\text { LSB }}$			
After second rotation: $\mathbf{D 1 0}=32794$	0			$0 \mid 0$			0									

[^1]
When bits to rotate $=1$

Before rotation:

After rotation:

MSB
$0\|1\|$

S1

CY
0
$\mathbf{~ M 3 0 3 ~}$

Key Operation

Valid Operands (Standard Processing)

Operand	Function	\mathbf{I}	Q	M	T	C	R	D	Constant	Repeat
S1 (Source 1)	Data for bit rotation	-	-	-	-	-	-	$0-99$	-	-
bit	Quantity of bits to rotate	-	-	-	-	-	-	-	$1-15$	-

In the high-speed processing mode, data registers for this instruction are limited to D0 through D31.
Since the bit rotate instructions are executed in each scan while input is on, a pulse input from an SOTU or SOTD instruction should be used as required.

Example: ROTR

M301 is the initialize pulse special internal relay
When MICRO ${ }^{3}$ starts operation, the MOV (move) instruction sets 13 to data register D20.
Each time input I1 is turned on, 16-bit data of data register D20 is rotated to the right by 1 bit as designated by operand bit. The last bit status rotated out of the data register is set to a carry (special internal relay M303).
Bits to rotate $=\mathbf{2}$
Before rotation: D20 = 13

After first rotation: D20 = 16387

After second rotation: D20 = $\mathbf{5 3 2 4 8}$
\qquad
D20 ${ }^{\text {LSB }} \quad$ CY

Introduction

The 16- and 24-I/O type MICRO ${ }^{3}$ base units feature five real-time calendar and clock instructions used for programming the calendar and clock; CALR (calendar read), CALW (calendar write), CLKR (clock read), CLKW (clock write), and ADJ (adjust). These instructions cannot be used on the $10-\mathrm{I} / \mathrm{O}$ type MICRO^{3} base unit. After initial setting of calendar and lock using FU, date and time are maintained. For FUN28, see page 5-12. If control data registers D95 through D week, hour, minute, and second data can be read out to these data registers when the MICRO ${ }^{3}$ is running or stopped. For FUN10, see page 5-8.
Note: Each clock/calendar instruction can be used only once in a user program.

71 CALR (Calendar Read)

$\mathrm{D}=$ Year (0 to 99)
$\mathrm{D}+1=$ Month (1 to 12
D+2 $=$ Day (1 to 31)
$\mathrm{D}+3=$ Day of week (0 to 6) assigned as follows:

$$
\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\text { Sunday } & \text { Monday } & \text { Tuesday } & \text { Wednesday } & \text { Thursday } & \text { Friday } & \text { Saturday }
\end{array}
$$

Key Operation

Valid Operands (Standard Processing)

Operand Function	\mathbf{I}	\mathbf{Q}	\mathbf{M}	\mathbf{T}	\mathbf{C}	\mathbf{R}	\mathbf{D}	Constant	Repeat
Destination to read calendar data	-	-	-	-	-	-	$0-99$	-	-

In the high-speed processing mode, data registers for this instruction are limited to D0 through D31.
Since the CALR instruction is executed in each scan while input is on, a pulse input from an SOTU or SOTD instruction should be used as required

Example: CALR

When input I 0 is on, calendar data is read to data registers D30 through D33.
D30 $=$ Year
D31 $=$ Mon
D 32 Day
D33 = Day of week

72 CALW (Calendar Write)

$\mathrm{D}=\quad$ Year (0 to 99)
$\mathrm{D}+1=$ Month (1 to 12)
$\mathrm{D}+3=$ Day of week (0 to 6) assigned as follows:

$$
\begin{array}{ccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\text { Sunday } & \text { Monday } & \text { Tuesday } & \text { Wednesday } & \text { Thursday } & \text { Friday } & \text { Saturday }
\end{array}
$$

Note: Only the months of January, March, May, July, August, October, and December can be programmed with a date of the 31 st. The month of February can be programmed with a date of the 29 th only for actual leap years. (Leap years are automatically adjusted for)
Note: If month, day, or day of week is assigned a value which is not within the range specified above or if a date is not assigned according to the preceding note, then invalid data will result in a user program execution error, internal relay
M304 turns on, and the ERR1 indicator on the MICRO M304 turns on, and the ERR1 indicator on the MICRO ${ }^{3}$ base unit also turns on. The error code is stored in data register D93 when the control data register is enabled using FUN10. See page 5-8.

Key Operation

Valid Operands (Standard Processing)

Operand Function	\mathbf{I}	\mathbf{Q}	\mathbf{M}	\mathbf{T}	\mathbf{C}	\mathbf{R}	\mathbf{D}	Constant	Repeat
Source to write the calendar data	-	-	-	-	-	-	$0-99$	-	-

In the high-speed processing mode, data registers for this instruction are limited to D0 through D31.
Since the CALW instruction is executed at the rising edge of the input, a pulse input from an SOTU or SOTD instruction is not required.

Example: CALW

$\underset{\text { M301 }}{\underset{-}{-}}$	MOV	S1 94	D11	REP
	MOV	S1 4	D11	$\underset{\substack{\text { REP } \\ * *}}{ }$
	MOV	S1 20	D1	$\underset{\substack{\text { REP } \\ * *}}{ }$
	MOV	$\begin{aligned} & \text { S1 } \\ & 3 \end{aligned}$	$\begin{gathered} \text { D1 } \\ \text { D43 } \end{gathered}$	$\underset{* *}{\text { REP }}$
H_{1}				$\begin{gathered} \text { CALW } \\ \text { D40 } \end{gathered}$

M301 is the initialize pulse special internal relay.
When MICRO ${ }^{3}$ starts operation, the MOV instructions set calendar data to data registers D40 through D43.
D40 $=94$ (Year 1994)
D41 $=4$ (April)
D42 $=20$ (Day)
D43 $=3$ (Wednesday)
When input I1 is turned on, the calendar is set using data from data registers D40 through D43.
Note: Calendar data can also be set using FUN28. See page 5-12.

73 CLKR (Clock Read)

Key Operation

Valid Operands (Standard Processing)

Operand Function	\mathbf{I}	\mathbf{Q}	\mathbf{M}	\mathbf{T}	\mathbf{C}	\mathbf{R}	D	Constant	Repeat
Destination to read the clock data	-	-	-	-	-	-	$0-99$	-	-

In the high-speed processing mode, data registers for this instruction are limited to D0 through D31.
Since the CLKR instruction is executed in each scan while input is on, a pulse input from an SOTU or SOTD instruction should be used as required.

When input I 2 is on, clock data is read to data registers D50 through D52.
D50 $=$ Hour (0 to 23)
D51 = Minute (0 to 59)
52 $=$ Second (0 to 59)

74 CLKW (Clock Write)

CLKW When input is turned on, the clock is set using data stored in three data registers starting with the designated operand.

$$
\begin{aligned}
& \mathrm{D}=\text { Hour }(0 \text { to } 23) \\
& \mathrm{D}+1=\text { Minute }(0 \text { to } 59) \\
& \mathrm{D}+2=\text { Second }(0 \text { to } 59)
\end{aligned}
$$

Note: If time is assigned a value which is not within the range specified above, invalid data will result in a user program execution error, internal relay M304 turns on, and the ERR1 indicator on the MICRO ${ }^{3}$ base unit also turns on. The error code is stored in data register D93 when the control data register is enabled using FUN10. See page 5-8

Key Operation

In the high-speed processing mode, data registers for this instruction are limited to D0 through D31.
Since the CLKW instruction is executed at the rising edge of the input, a pulse input from an SOTU or SOTD instruction
is not required.

Example: CLKW

	MOV	${ }_{15}^{\text {S1 }}$	D1	$\underset{\substack{\text { REP } \\ * *}}{\text { cen }}$
	Mov	S1	D1	$\underset{\substack{\text { ReP } \\ * *}}{\text { a }}$
	mov	S1	D1	$\underset{\substack{\text { REP } \\ * *}}{\text { at }}$
H_{13}				$\begin{gathered} \hline \text { CLKWW } \\ \text { D60 } \end{gathered}$

M301 is the initialize pulse special internal relay
When MICRO ${ }^{3}$ starts operation, the MOV instructions set clock data to data registers D60 through D62.
D60 $=15$ (Hour)
D61 $=30$ (Minute)
D62 $=0$ (Second)
When input I3 is turned on, the clock is set using data from data registers D60 through D62.
Note: Clock data can also be set using FUN28. See page 5-12.

When input is turned on, the clock is adjusted with respect to seconds. If seconds are between 0 and 29 for current time, adjustment for seconds will be set to 0 and minutes remain the same. If seconds are between 30 and 59 for current time, adjustment for seconds timing which starts at zero seconds.
Since the ADJ instruction is executed at the rising edge of the input, a pulse input from an SOTU or SOTD instruction is not required.

Key Operation

Example: ADJ

ADI When input I4 is turned on, the clock is adjusted with respect to seconds.

Example: Time Scheduled Control

This example demonstrates a program to turn output Q0 on and off according to the chart below:

Internal relays are allocated as shown below.
Internal relays are allocated as shown below.

Comparison Data	Month	Day	Day of Week	Hour	Minute
Comparison Data 1	M10	M11	M12	M13	M14
Comparison Data 2	M20	M21	M22	M 23	M 24
Comparison Data 3	M 30	M31	M 32	M 33	M 34
Comparison Data 4	M40	M41	M42	M43	M44
Comparison Data 5	M50	M51	M 52	M 53	M 54
Comparison Data 6	M60	M61	M62	M63	M64

Data registers are allocated as shown below. Comparison data must be set to data registers D30 through D59 in advance using the program loader. For example, to enter decimal value "4" to data register D30, press the keys:

This program compares the data of month, day, hour, and minute and does not compare the data of day of week and second.

Comparison Data 1
Month D30 $\quad 4 \quad \longrightarrow$ M1

Comparison Data 3

Comparison Data 5 (Turn output Q0 on)

Month D50	8	\rightarrow M50
Day D51	20	51
Day of Week D52		M52
Hour D53	12	\rightarrow Ms3
Minute D54	5	\rightarrow

Comparison Data 2

Comparison Data 4 (Turn

Month D45	7	$\rightarrow \mathrm{M} 40$
Day D46	2	$\rightarrow \mathrm{M} 41$
Day of Week D47		M42
Hour D48	19	M43
Minute D49	50	$\rightarrow \mathrm{M} 44$

Comparison Data 6 (Turn output Q0 off)

Month D55	9	M60
Day D56	26	M61
Day of Week D57		M62
Hour D58	17	\rightarrow M63
Minute D59	20	\longrightarrow M64

Example: Time Scheduled Control, continued

M317 is the in-operation special internal relay which remains on during operation.
While the program is executed, the CALR (calendar read) and CLKR (clock read) instructions read the calendar and clock data o data registers D20 (year), D21 (month), D22 (day), D23 (day of week), D24 (hour), D25 (minute), and D26 (second).
The CMP= (compare equal to) instructions compare the current values of month, day, day of week, hour, and minute in data regis ters D21 through D25 with the comparison data in five consecutive data registers. When data matches, a corresponding internal relay is turned on.
The first CMP= makes the following comparison in five repeat cycles and turns internal relays on:

D21 \leftrightarrow D30 \rightarrow M10 (month)
$\mathrm{D} 22 \leftrightarrow \mathrm{D} 31 \rightarrow$ M11 (day)
D23 D32 \rightarrow M12 (day of week)
D24 \leftrightarrow D33 \rightarrow M13 (hour)
D25 \leftrightarrow D34 \rightarrow M14 (minute)
The next CMP= compares D21 through D25 with D35 through D39 and turns internal relays M20 through M24 on. Subsequent CMP= instructions make similar comparisons.
When the current time matches comparison data 1 of month, day hour, and minute then internal relays M10, M11, M13 and M14 are turned on, and output Q0 is turned on.
When the current time matches comparison data 3 or 5 , output Q0 is also turned on.

When the current time matches comparison data 2 of month, day hour, and minute, internal relays M20, M21, M23, and M24 are turned on, and output Q 0 is turned off.
When the current time matches comparison data 4 or 6 , output Q is also turned off.
The day of week is not included in the comparison condition

Example: Sequential Start

This example demonstrates a program to turn outputs Q0 through Q2 on and off in sequence according to the chart below:

Internal relays are allocated as shown below

Comparison Data	Hour	Minute	Comparison Data	Hour	Minute
Comparison Data 1 (8:30)	M10	M11	Comparison Data 6 (13:10)	M22	M23
Comparison Data 2 (8:40)	M12	M13	Comparison Data 7(13:20)	M24	M25
Comparison Data 3 (8:50)	M14	M15	Comparison Data 8 (17:00)	M26	M27
Comparison Data 4 (12:00)	M16	M17	Comparison Data 9 (17:30)	M30	M31
Comparison Data 5 (13:00)	M20	M21	Comparison Data 10 (18:00)	M32	M33

Data registers are allocated as shown below. Comparison data must be set to data registers D20 through D39 in advance using the program loader. For example, to enter decimal value " 8 " to data register D20, press the keys.

MON ${ }^{\text {E/OR }}$	2 BRD	0	LOD 10	8 MCS/R	
Clock Readout Data				Comparison Data 1 (Turn output Q0 on)	
$\begin{array}{r} \text { Hour D10 } \\ \text { Minute D11 } \\ \text { Second D12 } \end{array}$					
				$\begin{array}{r} \text { Hour D20 } \\ \text { Minute D21 [} \end{array}$	$\rightarrow \mathrm{M} 10$
					$30 \longrightarrow$ M11
Comparison Data 3 (Turn output Q2 on)				Comparison Data 4 (Turn outputs Q0-Q2 off)	
$\begin{array}{r} \text { Hour D24 } \\ \text { Minute D25 } \end{array}$	$\xrightarrow{8} \longrightarrow$ M14			$\begin{array}{r} \text { Hour D26 } \\ \text { Minute D27 } \end{array}$	$12 \longrightarrow \mathrm{M} 16$
					\rightarrow M17
Comparison Data 6 (Turn output Q1 on)				Comparison Data 7 (Turn output Q0 on)	
$\begin{array}{r} \text { Hour D30 } \\ \text { Minute D31 } \end{array}$	3$\longrightarrow$$\longrightarrow \mathrm{M} 22$			$\begin{array}{r} \text { Hour D32 } \\ \text { Minute D33 } \end{array}$	$13 \longrightarrow \mathrm{M} 24$
					$20 \longrightarrow$ M25
Comparison Data 9 (Turn output Q1 off)				Comparison Data 10 (Turn output Q0 off)	
Hour D36	17	$\rightarrow \mathrm{M} 30$		Hour D38	$18 \longrightarrow$ M32
Minute D37	30	$\rightarrow \mathrm{M} 31$		Minute D39	\rightarrow M33

Example: Sequential Start, continued

Introduction

The DISP (display) instruction is used to display 1 through 5 digits of timer/counter current values and data register data on 7 -segment display units.

The DGRD (digital switch read) instruction is used to read 1 through 5 digits of digital switch settings to a data register or 16 internal relay points. This instruction is useful to change preset values for timers and counters using digital switches The ANR0 and ANR1 (analog read) instructions are used to read the analog value (0 through 255) set on the analog potentiometer on the MICRO ${ }^{3}$ base unit to a data register

81 DISP (Display)

When input is on, data designated by source operand S 1 is set to outputs designated by operand Q. This instruction is used to output 7 -segment data to display units.

Note: The DISP instruction can be used on transistor output type MICRO ${ }^{3}$ base units only.
The DISP instruction can be used only once in a user program. Display data can be 0 through 65535 (FFFFh).
Key Operation

$$
\begin{aligned}
& \text { (Q: 0) } \\
& \text { LATCH*L DATA*L }
\end{aligned}
$$

Enter operands $\mathrm{S} 1, \mathrm{Q}$, and quantity of digits (1 to 5).
To select the conversion, latch phase, and data phase, pres the REP key.
To exit, press the $\boldsymbol{\checkmark}$ key
Valid Operands (Standard Processing)

Operand	Function	I	Q	\mathbf{M}	T	C	R	D	Constant	Repeat
S1 (Source 1)	Data to display	-	-	-	$0-31$	$0-31$	-	$0-99$	-	-
Q	First output number to display data	-	$0-25$	-	-	-	-	-	-	-

In the high-speed processing mode, operands for advanced instructions are limited. See page 6-1.
When T (timer) or C (counter) is used as S 1 , the timer/counter current value is read out.

onversion

BCD: To connect decimal display units
BIN: To connect hexadecimal display units

Latch Phase and Data Phase

Select the latch and data phases to match the phases of the display units in consideration of sink or source output of the MICRO 3 base unit.

Output Points

The quantity of required output points is 4 plus the quantity of digits to display. When displaying the maximum of 5 digits, 9 consecutive output points must be reserved starting with the first output number designated by operand Q. Make sur that actual output terminals are available for all output numbers. Do not let the output numbers straddle the base and expansion stations in the expansion link system.

Display Processing Time

Displaying numerical data requires the following time after the input to the DISP instruction is turned on. Keep the input to the DISP instruction for the period of time shown below to process the display data

$$
\begin{aligned}
& \text { Scan Time } \\
& \text { ess than } 5 \mathrm{msec}
\end{aligned}
$$

5 msec or more
$10 \mathrm{msec}+1$ scan time $) \times$ Quantity of digits
3 scan times \times Quantity of digits

The following example demonstrates a program to display the 4 -digit current value of counter CNT10 on display units connected to the 24-I/O transistor sink output type MICRO ${ }^{3}$ base unit.

Output Wiring Diagram

MICRO ${ }^{3}$ Base Unit FC2A-C24B1 (Transistor Sink Output)

82 DGRD (Digital Read)

When input is on, data designated by operands I and Q is set to 16 internal relays or a data register designated by destination operand D1.
This instruction can be used to set preset values for timer (TIM, TMH, and TMS), counter (CNT), and counter comparison instructions using digital switches. The data that can be read using this instruction is 0 through 65535 (5 digits), or FFFFh.
Note: The DGRD instruction can be used on transistor output type MICRO^{3} base units only
The DGRD instruction can be used only once in a user program. Note: Do not use the DGRD instruction between JMP and JEND instructions or between MCS and MCR instructions.
Key Operation

Valid Operands (Standard Processing)

Operand	Function	I	Q	M	T	C	R	D	Constant	Repeat
	First input number to read	$0-32$	-	-	-	-	-	-	-	-
Q	First output number for digit selection	-	$0-31$	-	-	-	-	-	-	-
D1 (Destination 1)	Destination to store results	-	-	$0-287$	-	-	-	$0-99$	-	-

In the high-speed processing mode, operands for advanced instructions are limited. See page 6-1.

Conversion

BCD: To connect BCD digital switches
BIN: To connect hexadecimal digital switches

The inputs are used to read the data from the digital switches. The quantity of required input points is always 4 . Four input points must be reserved starting with the input number designated by operand I Make sure that actual input termina available for all input numbers. Do not let the input numbers straddle the base and expansion stations in the expansion link system.

Output Points

Outputs are used to select the digits to read. The quantity of required output points is equal to the quantity of digits to read. When connecting the maximum of 5 digital switches, 5 output points must be reserved starting with the output number designated by operand Q. Make sure that actual output terminals are available for all output numbers. Do not let the output numbers straddle the base and expansion stations in the expansion link system.

Digital Switch Data Reading Tim

Reading digital switch data requires the following time after the input to the DGRD instruction is turned on. Keep the input to the DGRD instruction for the period of time shown below to read the digital switch data.
Scan Time
Digital Switch Data Reading Tim
Scan time $>\frac{\text { Soft filter }+3 \mathrm{msec}}{2}$
Scan time $\leq \frac{\text { Soft filter }+3 \mathrm{msec}}{2}$
2 scan times \times (Quantity of digits +1)

$$
(\text { Soft filter }+3 \mathrm{msec}) \times(\text { Quantity of digits }+1)
$$

Example: DGRD

The following example demonstrates a program to read data from four digital switches to a data register in the 16-I/O transistor sink output type MICRO ${ }^{3}$ base unit

I/O Wiring Diagram

MICRO
15: Interface Instructions

83 ANRO (Analog Read 0)

When input is on, the value (0 through 249) set with analog potentiometer 0 is read to the data register designated as destination. This instruction is useful for adjusting preset values of timer (TIM, TMH, and TMS) and pulse (PULS and PWM) instructions.

84 ANR1 (Analog Read 1)

ANR1 When input is on, the value (0 through 249) set with analog potentiometer 1 is read to the data register designated as destination. This instruction is useful for adjusting preset values of timer (TIM, TMH, and TMS) and pulse (PULS and PWM) instructions.
Note: Analog potentiometer 0 is provided on all models of MICRO 3 and $\mathrm{MICRO}^{3} \mathrm{C}$. Analog potentiometer 1 is provided on 16 - and $24-$-/O MICRO ${ }^{3}$ base units. So, ANR0 can be used on all models. ANR1 can be used on 16 - and $24-\mathrm{I} / \mathrm{O}^{\mathrm{MICRO}}{ }^{3}$ only; not on $\mathrm{MICRO}^{3} \mathrm{C}$ and $10-\mathrm{I} / \mathrm{O} \mathrm{MICRO}^{3}$

Key Operation

Press the ADV key, followed by the advanced instruction number.

Valid Operands (Standard Processing)

Operand Function

In the high-speed processing mode, data registers for these instructions are limited to D0 through D31. Since the ANR0 and ANR1 instruction
instruction should be used as required.

Analog Potentiometer Setting

The analog potentiometer positions and set values are shown below:

Minimum Value $=0$ Turned Fully to the Right

The 10-I/O type MICRO^{3} and all MICRO ${ }^{3} \mathrm{C}$ have one potentiometer $\begin{gathered}\text { Analog Potentiometer }\end{gathered}$ The 16 - and $24-\mathrm{I} / \mathrm{O}$ type MICRO^{3} have two potentiometers: analog potentiometer 0 on the left and analog potentiometer 1 on the right.

Example: ANRO

When input I 0 is on, the value from analog potentiometer 0 is read to data register D80 and is used as a preset value for timer TIM7
ides

ntroduction

The PULS (pulse output) instruction is used to generate pulse outputs of 9.574 Hz through $13,020.8 \mathrm{~Hz}$ which can be used to control pulse motors for simple position control applications. The output pulse ratio is fixed at 50%.

The PWM (pulse width modulation) instruction is used to generate pulse outputs of a $51.2,25.6,3.2$, or 1.6 msec period with a variable pulse width ratio between 0% and 100%, which can be used for illumination control.
The PULS and PWM instructions can be used on transistor output type MICRO ${ }^{3}$ base units only.
The A / D (analog/digital conversion) instruction is used to convert an analog value from the A / D converter unit to a digital value and stores the result to a data register.

91 PULS (Pulse Output)

| $\begin{array}{\|lc\|} \hline \text { PULS } & \text { S1 } \\ \text { MODE1 } & * * * * \\ \hline \end{array}$ | When input is on, output Q0 generates a pulse output. The output pulse frequency is d mined by the MODE selection and source operand S1 according to the equation below. When input is off, output Q0 remains off. |
| :---: | :---: | When input is off, output Q0 remains off.

Note: Either the PULS or PWM instruction can be used only once in a user program.

Key Operation

ADV	$\begin{gathered} 9 \\ \text { JMPIE } \end{gathered}$	1 BPS			Enter operand S1 using the LOD/10 key for a decimal con stant, or designate a data register.
					Select MODE1 through MODE4 using the REP key. Do not choose MODE5 and MODE6.

Valid Operands (Standard Processing)

Operand	Function	I	Q	M	T	C	R	D	Constant	Repeat
S1 (Source 1)	Pulse width coefficient	-	-	-	-	-	-	$0-99$	$0-249$	-

In the high-speed processing mode, data registers for this instruction are limited to D0 through D31.
While the MICRO^{3} is running, the MODE selection cannot be changed. To change the output pulse frequency during operation, use a data register as source operand S1, and change the value of the data register. See page 3-16.
When a data register is designated as $S 1$, make sure that the value of the data register does not exceed 249 . If the value of the data register designated as S1 exceeds 249 during operation, a user program execution error will occur, then error indicator ERR1 on the MICRO ${ }^{3}$ base unit is lit and special internal relay M304 is also turned on. Correct the program and transfer the corrected program to the base unit.
When a data register is designated as source operand S 1 , the data is read as the user program is scanned. When changing the value of the data register designated as S1, change the value slowly in comparison to the output frequency
When output Q0 is monitored on the program loader while the PULS instruction is executed, Q0 remains on, and the output indicator also remains on. When input to the PULS instruction is turned off while the pulse output is on, the output is turned off after a complete pulse is generated

Output Frequency

Select MODE1 through MODE4 to determine the base frequency. (Do not choose MODE5 and MODE6.)

idee

xample: PULS

This example explains how to set $1-\mathrm{kHz}$ output pulses using the PULS instruction
From the table on the preceding page, MODE 3 and MODE 4 can be used to set 1 kHz . If MODE 4 is selected, then
Pulse Width Coefficient $S 1=\frac{\text { Base Frequency }}{\text { Output Frequency } \times 2}-6$

$$
\begin{aligned}
& =\frac{156250}{1000 \times 2}-6 \\
& =72.125
\end{aligned}
$$

Pulse width coefficient 72 should be used as source operand S1

$$
\begin{aligned}
& \mathrm{HI}_{\mathrm{I} 0}-\begin{array}{ll}
\text { PULS } & \text { S1 } \\
\text { MODE4 } & 72
\end{array} \quad \text { When input } 10 \text { is on, output Q0 generates pulse outputs of } 1001.6 \mathrm{~Hz} \\
& \text { Output Frequency }=\frac{156250}{(72+6) \times 2}=1001.6 \mathrm{~Hz}
\end{aligned}
$$

Example: Pulse Motor Speed Control Using PULS Instruction

This example demonstrates a program to control the rotating speed of a pulse motor using the PULS instruction. Analog potentiometer 0 is used to change the pulse motor speed. When input $I 0$ is on, the pulse output is generated to rotate the pulse motor. When input II is on, the pulse motor rotates in the reverse direction.

Operands

$\begin{array}{ll}\text { I0 } & \text { Input to execute the PULS instruction and start the pulse motor } \\ \text { I1 } & \text { Input to reverse the pulse motor rotation }\end{array}$
I1 Input to reverse the pulse motor rotation
Q0 Pulse output
Q1 Output to reverse the pulse motor rotation
D10 Pulse width coefficient
MODE1 $\quad 9.574$ through 406.901 Hz

1/0 Wiring Diagram

92 PWM (Pulse Width Modulation)

When input is on, output Q 0 generates a pulse output. The period of the pulse output is selected from $51.2,25.6,3.2$, or 1.6 msec . The output pulse width ratio is determined by surce operand S1 according to the equation shown below.
When input is off, output Q0 remains off.
Note: Either the PULS or PWM instruction can be used only once in a user program. Note: When the PWM instruction used in the protect source output type MICRO 3, the output protection function does not work on output Q 0 .
Key Operation

ADV	9		1 S1 PWM (*MODE1) (CO)		Enter operand S1 using the LOD/10 key for a decimal con stant, or designate a data register. Select MODE1 through MODE4 using the REP key. Do not choose MODE5 and MODE6.	

Valid Operands (Standard Processing)

Operand	Function	\mathbf{I}	\mathbf{Q}	\mathbf{M}	\mathbf{T}	\mathbf{C}	R	D	Constant	Repeat
S1 (Source 1)	Pulse width coefficient	-	-	-	-	-	-	$0-99$	$0-249$	-

In the high-speed processing mode, data registers for this instruction are limited to D0 through D31.
The pulse cycle period (MODE selection) cannot be changed during operation. To change the duty ratio during operation use a data register as source operand S 1 , and change the value of the data register. See page $3-16$. If the value of the data register designated as $S 1$ is between 0 and 4 , the pulse width coefficient is designated as 5 .
When a data register is designated as S1, make sure the value of the data register does not exceed 249. If the value of the data register designated as S1 exceeds 249 during operation, a user program execution error will occur, error indicator ERR1 on the MICRO ${ }^{3}$ base unit is lit, and special internal relay M304 is turned on. Correct the program and transfer corrected program to the base unit. When a data register is designated as S1, the data is read as the user program is scanned. When changing the value of the data register designated as $S 1$, change the value slowly in comparison to the output frequency.
When output Q0 is monitored on the program loader while the PWM instruction is executed, Q0 remains on, and the output indicator also remains on. When input to the PWM instruction is turned off while the pulse output is on, the output is turned off after a complete pulse is generated.

Output Pulse Width Ratio

Select MODE1 through MODE4 to determine the pulse cycle period. (Do not choose MODE5 and MODE6.)

The output pulse width ratio is determined by the following equation

$$
\begin{aligned}
& \text { Pulse Width Ratio }=\frac{\text { Pulse Width Coefficient S1 }+1}{250} \\
& \text { Pulse Width }=\text { Period } \times \frac{\text { Pulse Width Coefficient S } 1+1}{250}[\mathrm{msec}]
\end{aligned}
$$

Variable Range of Pulse Width Ratio

When S1 is a data register: $\quad 2.4 \%$ through 100% in 0.4% increments When S1 is a constant: $\quad 0.4 \%$ through 100% in 0.4% increments
To turn the pulse output off, turn the input to the PWM instruction off.

xample: PWM

When MODE1 (pulse cycle period 51.2 msec) is selected and 99 is set to S 1 , the output pulse waveform is as follows.

Example: Illumination Control Using PWM Instruction

This example demonstrates a program to control incandescent lamp illumination using the PWM instruction. Analog potentiometer 0 is used to change the illumination intensity.

Operands

Q0
MODE1 Pulse cycle period 51.2 msec
 mined by the value of data register D20. Output Q0 sends out the output pulses.

Output Wiring Diagram

- When using an incandescent lamp of 0.5A or less

- When using an incandescent lamp of 0.5A or more

Note: Provide protection against a rush current depending on the load.

MICRO
16: Pulse, A/D Conversion Instructions

93 A/D (Analog/Digital Conversion)

When input is on, the analog data from the A / D converter unit (FC2A-AD1, -AD2, -AD3,
-AD4, or -AD5) connected to input I 0 is
AD4, or -AD5) connected to input I0 is converted to a digital value and set to a data register designated by destination operand D1.
Resolution of the A/D conversion is 8 bits. Conversion time is 125 msec

Note: Either the A/D or HSC (high-speed counter) instruction can be used only once in a user program. The A/D converter unit can be connected to input IO of MICRO 3 at the base station only, not at the expansion station.

Key Operation

Enter operand D1.
Select the resolution of 8 bits using the REP key.
To exit, press the $\boldsymbol{\downarrow}$ key.

Valid Operands (Standard Processing)

Operand	Function	\mathbf{I}	\mathbf{Q}	\mathbf{M}	\mathbf{T}	\mathbf{C}	\mathbf{R}	\mathbf{D}	Constant	Repeat
D1 (Destination 1)	Destination to store data	-	-	-	-	-	-	$0-99$	-	-

In the high-speed processing mode, data registers for this instruction are limited to D0 through D31.

Digital Data Range

Depending on the resolution of A / D conversion, the digital data stored in the data register is limited to the range shown below:

$$
\begin{array}{cc}
\text { Resolution } & \text { Digital Data Range } \\
8 \text { bits } & 0 \text { through } 249 \text {, or } 250
\end{array}
$$

If the input to the A / D converter unit exceeds the input range, an overflow occurs and 250 is set

Resolution

When the user program is cleared from the program loader memory, the resolution for the A/D instruction is set to the default value of 8 bits.
Although pressing the REP key on the program loader toggles the resolution between 8 bits and 12 bits, select the resolution of 8 bits for programming the MICRO ${ }^{3}$ used with the A / D converter unit ($\mathrm{FC} 2 \mathrm{~A}-\mathrm{AD} 1,-\mathrm{AD} 2,-\mathrm{AD} 3,-\mathrm{AD} 4$, or -AD 5).

\section*{Example: A/D
 | When input I2 is on, the analog data from the A/D converter unit is converted to a digital |
| :---: | :---: | :---: | :---: | :--- |}

ides

Introduction

$M_{I C R O}{ }^{3}$ features high-speed counter functions which can be used for position control by counting high-speed pulses or for simple motor control in combination with the pulse output. This function can also be used in combination with a pulse generator to measure lengths or widths of objects.

The ordinary counter instruction counts only one pulse in one scan, and the counting speed depends on the scan time. The high-speed counter can count many input pulses in one scan and make it possible to count high-speed pulses faster than the scan time. If the high-speed counter counts input pulses representing a position, the current position can be determined This function is useful for position control.
The HSC0 is a high-speed counter with a single-stage comparison function. When the current value is equal to or greater than the preset value ($4,294,967,295$ maximum), a designated output or internal relay is turned on.
The HSC1 is a multi-stage comparison counter. The preset value and output data are programmed in data registers. When preset values are reached ($4,294,967,295$ maximum), designated outputs or internal relays are turned on in sequence.
The HSC2 is a pulse output control counter used with the PULS (pulse output) instruction. When a preset value is reached, a designated output or internal relay is turned on, and the pulse output at output Q0 is turned off.
The HSC3 is a gate-controlled counter without comparison function. When the gate input is turned off, the current value is moved to a designated data register
Note: The high-speed counter function can be used with the 24 V DC input type MICRO^{3} only, not with the AC input type.

High-speed Counter	HSCO	HSC1	HSC2	HSC3
Counted Value Range	$\begin{aligned} & \hline \begin{array}{l} 0 \text { to } 4,294,967,295 \\ \text { (FFFF FFFFh) } \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \text { o to 4,294,967,295 } \\ & \text { (FFFF FFFFh) } \end{aligned}$	$\begin{aligned} & 0 \text { to } 4,294,967,295 \\ & \text { (FFFF FFFFh) } \end{aligned}$	$\begin{aligned} & \hline 0 \text { to } 65,535 \\ & \text { (FFFFh) } \end{aligned}$
Points	1 point	1 point	1 point	1 point
Phase	Single phase	Single phase	Single phase	Single phase
Maximum Frequency	10 kHz	5 kHz	5 kHz (4 kHz when using program loader)	10 kHz

Note: The input response frequency of the high-speed counter depends on the hard filter setting. The soft filter does not affect the high-speed counter function. See Input Filter Function on page 4-3

A1 HSCO (Single-stage Comparison)

High-speed counter 0 counts input pulses to input I . When the current value is equal to or greater than the preset value designated by source operand S 1 , the output or internal relay designated by destination operand D1 is turned on
The high-speed counter current value is reset to 0 when MICRO^{3} is powered up. The high-speed counter holds the current value while MICRO 3 is stopped and restarts counting input pulses starting with the existing current value. Include the hard reset or soft reset in the user program, if necessary.
Note: Only one of HSC0 through HSC3 and A/D instructions can be used only once in a user program.

Key Operation

	$\begin{gathered} 1 \\ \text { BPS } \end{gathered}$	0 (IO) HSCO S1 D1:			Enter ope To select press the To exit, pr	rands hard r REP k ress th	S1 an eset ey. \boldsymbol{d}	D1 ode ey.	from L	OW, HIGH, or unu	
Valid Operands (Standard Processing)											
Operand	Function		1	Q	M	T	C	R	D	Constant	Repeat
S1 (Source 1)		et value	-	-	-	-	-	-	0-99	1-4,294,967,295	-
D1 (Destination 1)		-speed counter output	-	0-31	1 0-287	-	-	-	-	-	-

In the high-speed processing mode, operands for advanced instructions are limited. See page 6-1.

Allocation Numbers

The HSC0 instruction uses the following input and internal relay numbers:
Pulse input:
Input IO
Hard reset input:
Input II
Internal relay M315 (When M315 is on, the current value is reset to 0 .)

ard Reset Selection

Input I1 can be used to reset the current value of high-speed counter HSC0.
LOW: Resets the current value when input II is turned off. HSC 0 is enabled while I 1 is on
HIGH: Resets the current value when input I1 is turned on. HSC0 is enabled while I1 is off.
*---: Disables hard reset. (Input I1 can be used as an ordinary input.)

Soft Reset Special Internal Relay M315

In addition to the hard reset using input I1, the high-speed counter current value can be reset by turning special internal relay M315 on using another input, output, or internal relay. M315, if used, must be programmed immediately after the HSC0 instruction as shown on the right.

et Value

The preset value can be 1 through 4,294,967,295 (FFFF FFFFh), which is designated using a constant or two consecutive data registers. The first data register designated by source operand S1 stores the upper digits, and the next data register stres he lower diss. Yo enter a double-word value to two consecutve data registers using he program loader, rom the
 eed count cycle after resetting

Input Filter and Input Frequency

MICRO^{3} has hard and soft filter functions. Only the hard filter works on high-speed counter instructions. The hard filter settings affect the input response. See page 4-3. The maximum input frequency for the HSC0 instruction is 10 kHz .

Block Diagram (HSCO: Single-stage Comparison)

HSC0 counts input pulses to input IO. When the preset value is reached, comparison output is turned on

Preset Value $\longrightarrow 32$-bit Comparison Register

Output Delay (HSCO: Single-stage Comparison)

After the HSC0 has counted the Nth input pulse (the preset value), the output or internal relay designated by destination operand D1 is turned on with a delay shown below.

When an output is designated as destination operand D1, the maximum output delay can be 300 $\mu \mathrm{sec}$, not including the delay in the hardware When an internal relay is designated as destination operand D1, the delay can be 1 scan time at the maximum.
Note: After the preset value has been reached, the HSC0 current value continues to increase.

Example: HSCO

I0: Pulse input
11: Hard reset input (HSC0 is reset when I1 is on because the hard reset is set to HIGH.) I10: Soft reset input to turn on soft reset special internal relay M315
M301 is the initialize pulse special internal relay used to turn soft reset special internal relay M315 on at start up.
While hard reset input I 1 is off, the HSC0 instruction counts input pulses to input I 0 . When the HSC0 current value reaches 1000 , output Q0 is turned on.
When hard reset input I1 or soft reset input I10 is turned on, the HSC0 current value is reset to 0 .
For monitoring high-speed counter preset and current values, see page 3-15.

A2 HSC1 (Multi-stage Comparison)

 Multi-stage high-speed counter HSC1 counts input pulses to input 10 and compares the current value with multiple preset values. When the current value reaches the first preset value rent value with multiple preset values. When the current value reaches the first preset value, the first comparison output is turned on. When the second preset value is reached, the first

 comparison output is turned off, the second comparison output is turned on, and so forth.The high-speed counter current value is reset to 0 when MICRO 3 is powered up. The high-speed counter holds the current value while MICRO ${ }^{3}$ is stopped and restarts counting input pulses starting with the existing current value. Include the hard reset or soft reset in the user program, if necessary
Note: Only one of HSC0 through HSC3 and A/D instructions can be used only once in a user program.
When a slave station performs communication at $19,200 \mathrm{bps}$ through the loader port in the data link system, multi-stage comparison instruction HSC1 cannot be used at the slave station.

Key Operation

ADV	NOT	$\begin{array}{\|c} \mathbf{2} \\ \text { BRD } \\ \hline \end{array}$	0	(IO)	Enter operand S1.
			HSC1 S1	$!$	To select hard reset mode from LOW, HIGH, or unused, press the REP key.
				(*---)	exit, press the $\boldsymbol{\downarrow}$ key.

Valid Operands (Standard Processing)

Operand	Function	\mathbf{I}	\mathbf{Q}	\mathbf{M}	\mathbf{T}	\mathbf{C}	\mathbf{R}	\mathbf{D}	Constant	Repeat
S1 (Source 1)	Multi-stage preset data	-	-	-	-	-	-	$0-99$	-	-

In the high-speed processing mode, data registers for this instruction are limited to D0 through D31.

Allocation Numbers

The HSC1 instruction uses the following input and internal relay numbers:
$\begin{array}{ll}\text { Pulse input: } & \text { Input IO } \\ \text { Hard reset input: } & \text { Input II }\end{array}$
Soft reset special internal relay: Internal relay M315 (When M315 is on, the current value is reset to 0 .)

Hard Reset Selection

Input I1 can be used to reset the current value of high-speed counter HSC1.
LOW: Resets the current value when input I1 is turned off. HSC1 is enabled while I1 is on
HIGH: Resets the current value when input I1 is turned on. HSC1 is enabled while Il is off.
*-_-: Disables hard reset. (Input I1 can be used as an ordinary input.)

Soft Reset Special Internal Relay M31

In addition to the hard reset using input I1, the high-speed counter curren value can be reset by turning special internal relay M315 on using another input, output, or internal relay. M315, if used, must be programmed imme diately after the HSC 1 instruction as shown on the right.

Multi-stage Data Settin

The data of comparison stages, preset values, and comparison outputs are stored in consecutive data register stating whe data register designated by source operand S1.
Store the quantity of preset stages in the first data register.
In the next two data registers, store the upper and lower digits of the preset value for the first stage. In the fourth data register, store the destination of the first-stage comparison output, using a numeric allocation number of output or internal relay. See below. Store data in these data registers before executing the HSC1 instruction.

M301 is the initializ pulse special interna relay.

Preset Value

The preset value can be 1 through 4,294,967,295 (FFFF FFFFh), which is stored in two consecutive data registers. The first data register stores the upper digits, and the next data register stores the lower digits. To enter a double-word value to two consecutive data registers using the program loader, from the editor mode press the MON, D, data register number, ADV , followed by the LOD/10 (decimal) or OUT/16 (hexadecimal), data register value, and $\boldsymbol{\sim}$ keys. See page 3-16. If the preset value is changed during high-speed counter operation, the high-speed counter remains unchanged for that cycle. The change will be reflected in the next count cycle after resetting,

Allocation Numbers: Numeric and Symbolic

Use the numeric allocation numbers to specify the destination of the HSC1 comparison outputs.

Operand	Symbolic	Numeric	Operand	Symbolic	Numeric	Operand	Symbolic	Numeric
Output	Q0-Q7	200-207	Internal Relay	M70-M77	470-477	Internal Relay	M180-M187	580-587
	Q10 - Q11	210-211		M80-M87	480-487		M190-M197	590-597
	Q20-Q27	220-227		M90-M97	490-497		M200-M207	600-607
	Q30 - Q31	230-231		M100-M107	500-507		M210-M217	610-617
Internal Relay	M0-M7	400-407		M110 - M117	510-517		M220-M227	620-627
	M10-M17	410-417		M120-M127	520-527		M230-M237	630-637
	M20-M27	420-427		M130-M137	530-537		M240-M247	640-647
	M30-M37	430-437		M140-M147	540-547		M250-M257	650-657
	M40-M47	440-447		M150 - M157	550-557		M260 - M267	660-667
	M50 - M57	450-457		M160 - M167	560-567		M270-M277	670-677
	M60-M67	460-467		M170 - M177	570-577		M280-M287	680-687

Input Filter and Input Frequency

MICRO ${ }^{3}$ has hard and soft filter functions. Only the hard filter works on high-speed counter instructions. The hard filter settings affect the input response. See page $4-3$. The maximum input frequency for the HSC 1 instruction is 5 kHz .

Block Diagram (HSC1: Multi-stage Comparison)

HSC1 counts input pulses to input IO . When the preset value is reached, comparison output is turned on. Multiple prese values and comparison outputs can be programmed

Output Delay (HSC1: Multi-stage Comparison)

After the HSC1 has counted the Nth input pulse (the preset value), the output or internal relay designated as destination of comparison result is turned on with a delay shown below.

When an output is designated as destination operand, the maximum output delay can be $300 \mu \mathrm{sec}$, not including the delay in the hardware.
When an internal relay is designated as destination operand, the delay can be 1 scan time at the maximum.
Note: After the last preset value has been reached, the HSC 1 current value continues to increase.

Example: HSC1

This example demonstrates a 3 -stage high-speed counter operation using the HSC 1 instruction.

$\underset{\text { M } 301}{1} \stackrel{1}{1}$	MOV	$\begin{gathered} \hline \mathrm{S} 1 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { D1 } \\ \text { D10 } \end{gathered}$	$\underset{* *}{\text { REP }}$
	MOV			$\xrightarrow{\text { REP }}$
	MOV	S1 10000	$\begin{gathered} \hline \text { D1 } \\ \text { D12 } \\ \hline \end{gathered}$	$\begin{gathered} \text { REP } \\ * * \\ \hline \end{gathered}$
	MOV	S1 200	$\begin{gathered} \text { D1 } \\ \text { D13 } \end{gathered}$	$\underset{* *}{\text { REP }}$
	MOV	S1	$\begin{gathered} \hline \text { D1 } \\ \text { D14 } \end{gathered}$	$\underset{* *}{\text { REP }}$
	MOV	S1 50000	$\begin{gathered} \text { D1 } \\ \text { D15 } \\ \hline \end{gathered}$	$$
	MOV	S1 201	D16	$$
	MOV	S1	$\begin{gathered} \hline \text { D1 } \\ \text { D17 } \\ \hline \end{gathered}$	$$
	MOV	$\begin{gathered} \text { S1 } \\ 34464 \\ \hline \end{gathered}$	$\begin{gathered} \text { D1 } \\ \text { D18 } \end{gathered}$	$\underset{* *}{\text { REP }}$
	MOV	$\begin{gathered} \hline \text { S1 } \\ 202 \end{gathered}$	$\begin{gathered} \hline \text { D1 } \\ \text { D19 } \\ \hline \end{gathered}$	$\begin{aligned} & \text { REP } \\ & \hline * * \end{aligned}$
			$\begin{array}{\|l\|} \hline \mathrm{HSC1} \\ \mathrm{HIGH} \end{array}$	$\begin{gathered} \text { S1 } \\ \text { D10 } \end{gathered}$

M301 is the initialize pulse special internal relay used to execute the MOV (move) instructions at start up.
The MOV instructions set data to data registers D10 through D19.

D10	3	- Quantity of preset stages
D11	0	1 st -stage preset (upper digits)
D12	10000	1 st-stage preset (lower digits)
D13	200	- 1st-stage output (200 = Output Q0)
D14	0	2nd-stage preset (upper digits)
D15	50000	2nd-stage preset (lower digits)
D16	201	- 2nd-stage output (201 = Output Q1)
D17	1	rd-stage preset (upper digits)
D18	34464	3rd-stage preset (lower digits)

Preset value 100,000 is set to two data registers D17 (upper digits) and D18 (lower digits). Values for the two data registers are calculated by dividing the preset value by 65,536 (10000 h) as follows:
$100,000 \div 65,536=1$ and remainder 34,464
Upper Digits (D17) Lower Digits (D18)

Example: HSC1, continued

High-speed counter HSC1 counts input pulses to input
IO. When the first preset value 10,000 is I0. When the first preset value 10,000 is reached, output Q 0 is turned on. When the second preset value 50,000 is reached, output Q0 is turned on, and on is Q1 is turned off and output Q 2 is turned on Output Q 2 Q1isin on th had 11 is he high eed colt (had res is to

Since this example does not include the soft reset special internal relay to reset at startup, the current value is held when MICRO ${ }^{3}$ is stopped.
For monitoring high-speed counter preset and curren values, see page 3-15.

A3 HSC2 (Pulse Output Control)

 quency outped number of pulse outputs. The PULS instruction generit I0, HSC2 counts input pulses to input IO. (Input pulses can also be entered to input IO from another source.) When the HSC2 current value is equal to or greater than the preset value designated by source operand S 1 , the output or internal relay designated by destination operand D1 is turned on, and the pulse output at output Q0 is stopped.
The high-speed counter current value is reset to 0 when MICRO 3 is powered up. The high-speed counter holds the current value while MICRO ${ }^{3}$ is stopped and restarts counting input pulses starting with the existing current value. Include the hard reset or soft reset in the user program, if necessary.
Note: Since the PULS instruction can be used on transistor output type MICRO ${ }^{3}$ base units only, the HSC 2 instruction can also be used on transistor output type MICRO 3 base units only.
Note: Only one of HSC0 through HSC3 and A/D instructions can be used only once in a user program.

Key Operation

	3 BPP	0 $(I 0)$ HSC2 S1 D1: 			Enter op To select press the To exit,	erand hard REP	$\begin{aligned} & \text { S1 a } \\ & \text { reset } \\ & \text { key. } \end{aligned}$		from	OW, HIGH, or unu	
Valid Operands (Standard Processing)											
Operand	Function		1	Q	M	T	c	R	D	Constant	Repeat
S1 (Source 1)	Preset value		-	-	-	-	-	-	0-99	1-4,294,967,295	-
D1 (Destination 1)	High-speed counter output		-	0-31	0-287	-	-	-	-	-	-

In the high-speed processing mode, operands for advanced instructions are limited. See page 6-1.

Allocation Numbers

The HSC2 instruction uses the following input and internal relay numbers:
Pulse input:

Input I0

Hard reset input:
$\begin{array}{ll}\text { Hard reset input: } & \text { Input II } \\ \text { Soft reset special internal relay: } & \text { Internal relay M315 (When M315 is on, the current value is reset to } 0 \text {.) }\end{array}$

Hard Reset Selection

Input I1 can be used to reset the current value of high-speed counter HSC2.
$\begin{array}{ll}\text { LOW: } & \text { Resest the current value when input I1 is turned off. HSC2 is enabled while I1 is on } \\ \text { HIGH: }\end{array}$ HIGH: Resets the current value when input I1 is turned on. HSC2 is enabled while I1 is off
*---: Disables hard reset. (Input I1 can be used as an ordinary input.)

Soft Reset Special Internal Relay M315

In addition to the hard reset using input I1, the high-speed counter current value can be reset by turning special internal relay M315 on using another input, output, or internal relay. M315, if used, must be programmed immediately after the HSC2 instruction as shown on the right.

Preset Value

M301 is the initialize pulse special internal relay.

The preset value can be 1 through 4,294,967,295 (FFFF FFFFh), which is designated using a constant or two consecutive data registers. The first data register designated by source operand S 1 stores the upper digits, and the next data register stores the lower digits. To enter a double-word value to two consecutive data registers using the program loader, from the editor mode press the MON, D, data register number, ADV, followed by the LOD/10 (decimal) or OUT/16 (hexadecimal), data register value, and $\boldsymbol{\downarrow}$ keys. See page 3-16. If the preset value designated by a data register is changed during highspeed counter operation, the high-speed counter remains unchanged for that cycle. The change will be reflected in the next count cycle after resetting.

Input Filter and Input Frequency

MICRO 3 has hard and soft filter functions. Only the hard filter works on high-speed counter instructions. The hard filter settings affect the input response. See page $4-3$. The maximum input frequency for the HSC2 instruction is $5 \mathrm{kHz}(4 \mathrm{kHz}$ when using the program loader).

Block Diagram (HSC2: Pulse Output Control)

HSC2 counts input pulses to input 10 . When the preset value is reached, comparison output is turned on, and pulse output Q0 is turned off. The pulse output frequency is determined by the PULS (pulse output) instruction.

Output Delay (HSC2: Pulse Output Control)

After the HSC2 has counted the Nth input pulse (the preset value), the output or internal relay designated by destination operand D1 is turned on with a delay shown below.
 The output pulse stop signal is turned on 190 $\mu \mathrm{sec}$ at the maximum after the current value ches the preset value.
The example on the left shows the operation when the PULS instruction generate $4882.81-\mathrm{Hz}$ output pulses.
Note: When MICRO ${ }^{3}$ is restarted without reset ting the HSC2 after the preset value has been reached, the comparison result output or inter nal relay is reset, and the HSC2 continues to count input pulses starting with the preset value.

Example: HSC2

The PULS (pulse output) instruction is used to generate output pulses. The output pulses are sent from output Q0 to input IO. The HSC2 instruction is used to count the pulse signals up to 1000 . When the preset value is reached, HSC2 stops the pulse output at Q0 and turns output Q1 on.

HSC2 LOW	S1 1000	D1
$\xrightarrow[\text { M } 301]{ } \stackrel{(1)}{\text { M }}$		
$\mathrm{H}_{\mathrm{I} 2} \mapsto \text { sotd }$		
I2	$\begin{aligned} & \text { PULS } \\ & \text { MODE4 } \end{aligned}$	

0: Pulse input

1. Hard reset input (HSC2 is reset when II is off because the hard reset is set to LOW.
2. Input to execute the PULS (pulse output) instruction and to turn on soft reset special internal relay M315
M301: Initialize pulse special internal relay
While input I2 is on, the PULS instruction generates output pulses at output Q0.
Output Frequency $=\frac{\text { Base Frequency }(\text { MODE })}{(\text { Pulse Width Coefficient S1 }+6) \times 2}=\frac{156250}{(10+6) \times 2} \cong 4882.81 \mathrm{~Hz}$
While hard reset input I 1 is on, HSC2 counts input pulses to input I 0 . When the HSC2 cur rent value reaches 1000 , the pulse output at Q 0 is stopped, and output Q 1 is turned on.
When hard reset input I1 is turned off or soft reset input I2 is turned on, HSC2 is reset.
When input I2 is turned off, the PULS instruction turns off the pulse output at Q 0 .
For monitoring high-speed counter preset and current values, see page 3-15

I/O Wiring Diagram

A4 HSC3 (Gate Control)

Gate controlled high-speed counter HSC3 counts input pulses to input I0 while gate contro input 12 is on. When gate control input I2 is turned off, the current value is moved to a data register designated by destination operand D1. HSC3 does not compare the current value with a preset value
HSC3 can count up to 65535 . When another input pulse enters at 65535 , the current value becomes 0 , and special internal relay M316 (HSC3 overflow) is turned on.
The high-speed counter current value is reset to 0 when MICRO^{3} is powered up. The high-speed counter holds the current value while MICRO 3 is stopped and restarts counting input pulses starting with the existing current value. Include the hard reset or soft reset in the user program, if necessary
Note: Only one of HSC0 through HSC3 and A/D instructions can be used only once in a user program.

Key Operation

Valid Operands (Standard Processing)

Operand	Function	\mathbf{I}	\mathbf{Q}	\mathbf{M}	\mathbf{T}	\mathbf{C}	\mathbf{R}	\mathbf{D}	Constant	Repeat
D1 (Destination 1)	Store the current value	-	-	-	-	-	-	$0-99$	-	-

In the high-speed processing mode, data registers for this instruction are limited to D0 through D31.

Allocation Numbers

The HSC3 instruction uses the following input and internal relay numbers:
Pulse input:
Input IO
Hard reset input:
Gate input:
Input I1
Internal relay M315 (When M315 is on, the current value is reset to 0 .)
HSC3 overflow special internal relay: Internal relay M316

Hard Reset Selection

Input Il can be used to reset the current value of high-speed counter HSC3.
LOW: Resets the current value when input I1 is turned off. HSC3 is enabled while I1 is on
HIGH: Resets the current value when input I1 is turned on. HSC3 is enabled while I1 is off
*---: Disables hard reset. (Input Il can be used as an ordinary input.)

Gate Input

Input I2 is allocated as a gate input for the HSC3 instruction. When I2 is on, HSC3 is enabled to count input pulses to input IO. When I2 is turned off, HSC3 is disabled and the current value is moved to a data register designated by destination operand D1. When I2 is turned on again, HSC3 continues counting from the existing current value.

Soft Reset Special Internal Relay M315

In addition to the hard reset using input I1, the high-speed counter current In addition to the hard reset using input I, the high-speed counter current
value can be reset by turning special internal relay M315 on using another value can be reset by turning special internal relay M315 on using another diately after the HSC3 instruction as shown on the right.

Input Filter and Input Frequency

HSC3 $* * * *$ D1 D10	
M301	M315
(10	
I10	

M301 is the initialize pulse special internal relay.

Block Diagram (HSC3: Gate Control)

HSC3 counts input pulses to input I0 while gate input I2 is on and stops counting when I2 is off.

Gate Input (HSC3: Gate Control)

As shown in the figure above, pulse input I0 and gate input I2 are connected in an AND circuit. If gate input I2 is turned on and off while pulse input 10 is on, the gate pulses are counted as shown below.

$\begin{array}{cc} \text { Pulse Input I0 } & \begin{array}{c} \text { ON } \\ \text { OFF } \end{array} \\ & \begin{array}{c} \text { ON } \\ \text { Gate Input I2 } \\ \text { OFF } \end{array} \end{array}$		While pulse input I 0 is on, HSC 3 counts ON pulses to input I2.
Pulse Count ${ }_{\text {cor }}^{\text {ON }}$	$\square \square \square \square \square \square \square$	
HSC3 Current Value		

Example: HSC3

- $\begin{aligned} & \text { HSC3 } \\ & \text { HIGH }\end{aligned}$	D1 D20
$\underset{\text { M } 301}{1}$ (${ }_{\text {M }} 15$	
$\xrightarrow[\text { I10 }]{+}$	

I0: Pulse input

1. Hard reset input (HSC3 is reset when I 1 is on because the hard reset is set to HIGH.)
2. Gate input

I10: Soft reset input to turn soft reset special internal relay M315 on
M301 is the initialize pulse special internal relay used to turn soft reset special internal relay M315 on at start up.
While hard reset input I1 is off and gate input I2 is on, the HSC3 instruction counts input pulses to input I0. When gate input I2 is turned off, HSC3 stops counting, and the current value is moved to data register D20. When gate input I2 is turned on again, HSC3 continues counting from the existing current value.
When hard reset input I1 or soft reset input I10 is turned on, the HSC3 current value is reset to 0. When the current value exceeds 65535 , HSC3 overflow special internal relay M316 is turned on to signal an overflow.
For monitoring high-speed counter preset and current values, see page 3-15.

ntroduction

This chapter describes the procedures to determine the cause of trouble and actions to be taken when any trouble occurs during operating the MICRO^{3} programmable controller
MICRO^{3} has self-diagnostic functions to prevent the spread of troubles if any trouble should occur. In case of any trouble, follow the troubleshooting procedures to determine the cause and to correct the error.

Error Indicators ERR1 and ERR2

The MICRO ${ }^{3}$ base unit has two error indicators: ERR1 and ERR2.
When an error occurs in the MICRO ${ }^{3}$ base unit, error indicator ERR1
is lit. In addition, when the sensor power supply from the MICRO ${ }^{3}$
base unit is overloaded, error indicator ERR2 is lit. See the trouble shooting diagrams on pages 18-9 and 18-10
For error causes to turn ERR1 and ERR2 on, see page 18-2.

POW RUN ERR1 ERR2

- 4 - Error indicator ERR2

Error indicator ER
Error indicator ERR1

Reading Error Data

When any error occurs during the MICRO ${ }^{3}$ operation, the error codes and messages can be read out using FUN20 on the program loader.

: Next page exists. To view the next page, press the $\boldsymbol{\nabla}$ key.
1: Preceding page exists. To view the preceding page, press the $\mathbf{\Delta}$ key.

Error Messages

When operating FUN20, the following error messages may be displayed.

Error Message	Error Code	Error Status
Power Off	1 h	Power failure
Watch Dog Time	2 h	Watch dog timer error
PC Connect NG	4 h	Data link connection error
Users Prg. CRC	8 h	User program CRC error
TIM/CNT CRC	10 h	Timer/counter preset value CRC error
Prg. Sum Check	20 h	User program sum check error
Keep Data Sum	40 h	Keep data sum check error
Syntax	80 h	User program syntax error
EEPROM NG	100 h	User program writing error
Transistor NG	200 h	Protect output overload error
24V Overload	400 h	Sensor power overload error
Calendar NG	800 h	Calendar/clock error
ADV Error ()	-	Advanced instruction syntax error
RUN Error ()	-	User program execution error
COM Error ()	-	Link communication error

ADV Error, RUN Error, and COM Error are displayed on the same page.

After removing cause of the error, clea error code using the program loader

DEL

FUN> 20 ERROR
Nothing

The error indicator remains on until The error indicator remains on untis

Note: When the error code is cleared using the program loader as described above, the error data on the user program syntax error (Syntax), advanced instruction syntax error (ADV Error), user program execution error (RUN Error), and link communication error (COM Error) is cleared from memory. To read the error code again before removing the cause of the
ide

General Error Codes

When reading error data using FUN20, the error code is displayed using one, two, or three digits in hexadecimal notation (0 through F). Each digit of the error code indicates a different set of conditions requiring attention. If there are none of the conditions from the first chart (digit on the left), then this digit does not display on the program loader. If there are none from the firt

For example, the error code may read out " 21 ." This indicates two conditions requiring attention, "User program sum check error" from the second chart and "Power failure" from the third chart. If the read-out displays "D," this indicates three conditions exist from only the chart on the right.

When control data register D92 is enabled using FUN10, general error code is stored in D92. See page 5-8.

Display: Digit on the Left	Error Items			
		$\begin{array}{\|l\|l\|} \hline \begin{array}{l} \text { Sensor } \\ \text { Sower } \\ \text { overroad } \\ \text { ereror } \end{array} \end{array}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline \text { outpout } \\ \text { overoar } \\ \text { error } \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { Heser } \\ \text { porging } \\ \text { werting } \\ \text { Ureror } \end{array}$
No display (No error)				
100h				\bullet
200h			\bullet	
300h			-	-
400h		\bullet		
500h		\bullet		\bullet
600h		\bullet	\bullet	
700h		\bullet	\bullet	\bullet
800h	\bullet			
900h	\bullet			\bullet
AOOh	\bullet		\bullet	
B00h	\bullet		\bullet	\bullet
cooh	-	\bullet		
DOOh	-	\bullet		-
EOOh	\bullet	\bullet	\bullet	
FOOh	-	\bullet	\bullet	\bullet

	Error Items			
		$\begin{array}{\|c} \substack{\text { Keep } \\ \text { data sum } \\ \text { checok } \\ \text { ereror }} \end{array}$	$\begin{gathered} \text { User } \\ \hline \text { progeram } \\ \text { sume } \\ \text { sheck } \\ \text { error } \end{gathered}$	
No error				
10h				\bullet
20h			\bullet	
30h			-	\bullet
40h		\bullet		
50h		\bullet		\bullet
60h		-	\bullet	
70h		\bullet	-	\bullet
80h	\bullet			
90h	\bullet			\bullet
AOh	\bullet		\bullet	
BOh	-		\bullet	\bullet
COh	\bullet	\bullet		
DOh	\bullet	\bullet		\bullet
EOh	\bullet	\bullet	\bullet	
FOh	-	\bullet	\bullet	-

MICRO ${ }^{3}$ Operating Status, Output, and Error Indicator during Errors

Error Items	Operating Status	Output	Error Indicator	checked at
Power failure	Stop	OFF	ERR1 ON *1	Any time
Watchdog timer error	Stop	OFF	ERR1 ON	Any time
Data link connection error	Stop	OFF	ERR1 ON	Initializing data link
User program CRC error	Stop	OFF	ERR1 ON	Starting operation
TIM/CNT preset value CRC error	Maintained	Maintained	OFF	Starting operation
User program sum check error	Stop *2	OFF	ERR1 ON	During operation
Keep data sum check error	Maintained	Maintained	OFF	Turning power on
User program syntax error	Stop	OFF	ERR1 ON	Writing user program
User program writing error	Stop	OFF	ERR1 ON	Writing user program
Protect output overload error	Maintained	Maintained *3	ERR1 ON	During operation
Sensor power overload error	Stop	OFF	ERR1 \& ERR2 ON	Any time
Calendar/clock error	Maintained	Maintained	ERR1 ON	Any time
Advanced instruction syntax error	Stop	OFF	ERR1 ON	Writing user program
User program execution error	Maintained	Maintained	ERR1 ON	During operation
Link communication error	Maintained	Maintained	OFF	Any time

1: When the power voltage to the MICRO^{3} base unit drops below the rated value, the ERRI indicator is lit. While the power voltage remains below the rated value, the ERR1 indicator does not go on
2: When a program sum check error occurs, operation is stopped momentarily for recompiling the user program. After completing the recompilation, operation resumes.
3. Outputs where error occurs are turned of

Error Causes and Actions

h: Power Failure (Power Off)

This error indicates when the power supply is lower than the specified voltage. This error is also recorded when the power is turned off. Clear the error code using FUN20 on the program loader.

2h: Watchdog Timer Error (Watch Dog Time)

The watchdog timer monitors the time required for one program cycle (scan time). When the time exceeds approximately 300 msec , the watchdog timer indicates an error. If this error occurs frequently, the MICRO ${ }^{3}$ base unit has to be replaced. Clear the error code using FUN20 on the program loader

4h: Data Link Connection Error (PC Connect NG)

This error indicates that both data link slave stations (function selector switch set to 1 through 6) and an expansion station (function selector switch set to 7) are connected to the data link master station (function selector switch set to 0). Make sure that the function selector switches at all slave stations are set to 1 through 6 in the data link system. The expansion link function cannot be used in the data link system
To correct this error, change the function selector switch setting to 1 through 6 on slave station units. Turn power off and on again for the slave station unit. Then take one of the following method:

- Turn power off and on for the master station unit.
- Execute the link formatting sequence (FUN27) for the master station using the program loader. See page 5-11.
- Turn M307 on at the master station during operation to initialize the link communication. See page 6-3.

h: User Program CRC Error (Users Prg. CRC)

The user program stored in the MICRO ${ }^{3}$ base unit EERPOM is broken. Transfer a correct user program to MICRO ${ }^{3}$, and clear the error code using FUN20 on the program loader.

Oh: Timer/Counter Preset Value CRC Error (TIM/CNT CRC)

The execution data of timer/counter preset values is broken. Clear the error code using FUN20 on the program loader; then the timer/counter preset values are initialized to the values of the user program. Note that modified preset values are
cleared and that the original values are restored when the error code is cleared.

20h: User Program Sum Check Error (Prg. Sum Check)

The data of the user program compile area in the MICRO^{3} base unit RAM is broken. When this error occurs, the user program is recompiled automatically. Clear the error code using FUN20 on the program loader; then the timer/counter preset values are initialized to the values of the user program. Note that modified preset values are cleared and that the original values are restored when the error code is cleared.

40h: Keep Data Sum Check Error (Keep Data Sum)

This error indicates that the data designated to be maintained during power failure is broken because of memory backup failure. Clear the error code using FUN20 on the program loader. Note that the "keep" data of internal relays and shift registers are cleared when the error code is cleared.

30h: User Program Syntax Error (Syntax)

This error indicates that the user program has a syntax error or that FUN1 through FUN10 is set incorrectly. Correct the user program or FUN settings, and transfer the corrected user program to MICRO ${ }^{3}$. The error code is cleared when a cor rect user program is transferred

When this error occurs, the error message is displayed with a type code and an address code of $\mathbf{7}$ digits total

For details of the type code and address code, see the next page.

User Program Syntax Error Type Code and Address Code

Type Code	Address Code	Error Details
1	0001	Stop input number selection error (FUN1)
	0002	Reset input number selection error (FUN2)
	0003	Internal relay "keep" designation error (FUN3)
	0004	Shift register "keep" designation error (FUN4)
	0005	Processing mode selection error (FUN5)
	0006	Catch input edge selection error (FUN6)
	0007	Input filter time selection error (FUN7)
	0008	Loader port communication mode setting error (FUN8)
	0009	PLC address error for network communication (FUN9)
	0010	Control data register setting error (FUN10)
2	0000 to 1012 Address of the incorrect program	Invalid opcode for basic instruction
3		Invalid operand for basic instruction
4		Invalid timer/counter preset value
5 (Note)		Invalid opcode for advanced instruction TXD/RXD programmed in the high-speed processing mode
6 (Note)		Invalid data for advanced instruction Same data register designated as status DR for TXD and RXD
7 (Note)		Invalid repeated usage of advanced instruction
8		User program capacity over error

Note: When type code 5, 6, or 7 is displayed, the details are shown by the error code of the ADV Error (advanced instruction syntax error). See the next page.

00h: User Program Writing Error (EEPROM NG)

This error indicates a failure of writing into the MICRO 3 base unit EEPROM when transferring a user program or when setting user program protection. The error code is cleared when writing into the EEPROM is completed correctly. If this error occurs frequently, the MICRO 3 base unit has to be replaced.

200h: Protect Output Overload Error (Transistor NG)

This error is issued when a protect transistor output is overloaded during operation, then only the overloaded output is
forced off. When this error occurs at the base station in the expansion link system, error indicator ERR1 at the base station is lit. When the error is at the expansion station, error indicator ERR1 is lit at both the base and expansion stations.

If this error has occurred at output Q0 or Q20, then remove the cause of the overload, turn the output off (MON, Q, output number, RST, $\boldsymbol{4}$), or turn the output power off. Clear the error code using FUN20 on the program loader
If this error has occurred at other outputs, then remove the cause of the overload, and the output restores normal operation automatically. Clear the error code using FUN20 on the program loader.

00h. Sensor Power Overload Error (24V Overload)

This error indicates that the sensor power supply from the MICRO^{3} base unit is overloaded. When this error occurs, both error indicators ERR1 and ERR2 are lit.

When this error occurs at the base station in the expansion link system, error indicators ERR1 and ERR2 are lit at the base station. When the error is at the expansion station, ERR1 and ERR2 are lit at both the base and expansion stations.
To correct this error, reduce the sensor power output load within the rated value, and either turn power to MICRO ${ }^{3}$ off and on or clear the error code using FUN20 on the program loader.

300h: Calendar/Clock Error (Calendar NG)

This error indicates that the real time calendar/clock in the MICRO^{3} base unit has an error caused by invalid clock data due to voltage drop or by erroneous quartz oscillator operation.
Clear the error code using FUN20, and set the calendar/clock data using FUN28 on the program loader. Turn power off and on again. If the error continues, the MICRO ${ }^{3}$ base unit has to be replaced. See Troubleshooting Diagram 14 on page 18-20

Advanced Instruction Syntax Error (ADV Error)

When a user program syntax error (error code 80h-erro related with advanced instruction) is indicated with -eror 6 or 7 , the detailed information) is indicated with type code code indicated in the ADV Error line.

FUN 20 ERROR 80
 ADV Error (4) _ Error Code
 RUN Error (0)
 COM Error (0)

Error Code	Error Details
$\mathbf{1}$	The internal allocation number of the operand is invalid.
$\mathbf{2}$	Input or special internal relay is designated as a destination.
$\mathbf{3}$	Quantity of repeat cycles is set to 32 (or shift bits to 16 for shift/rotate instructions) or more.
$\mathbf{4}$	Advanced instruction which is not allowed for repeat usage is programmed more than once.

Correct the error in the user program and transfer the corrected user program to MICRO ${ }^{3}$. The error code is cleared when a correct user program is transferred

User Program Execution Error (RUN Error)

This error indicates that invalid data is found during execution of a user program. When this error occurs, special internal relay M304 (user program execution error) is also turned on. The detailed information of this error can be viewed from the error code indicated in the RUN Error line. This error code is stored in control data register D93, if enabled using FUN10. See page 5-8. When this error occurs, program operation and all output statuses are maintained.

Error Code	Error Details
$\mathbf{1}$	As a result of an advanced instruction, a value exceeding 9999 is written into the timer/counter preset value. Data is written into the preset value of a timer/counter which is not included in the user program or which uses a data register as a preset value.
$\mathbf{2}$	Data register used as a preset value for timer, counter, or counter comparison instruction exceeds 9999.
$\mathbf{3}$	Indirect operand for the IMOV or IMOVN instruction is out of range.
$\mathbf{4}$	Overflow or underflow has resulted from advanced instruction.
$\mathbf{5}$	Division by 0.
$\mathbf{6}$	Invalid data occurred during data conversion for the DISP or DGRD instruction.
$\mathbf{7}$	Attempt was made to write invalid value to calender/clock data.
$\mathbf{8}$	Data register used as an operand for the PULS or PWM instruction contains invalid data.
$\mathbf{9}$	The quantity of multi-stage preset data for high-speed counter HSC1 exceeds available data registers. Invalid numeric allocation number is designated as a comparison output of the HSC1.

Remove the cause of the error, and clear the error code using FUN20 on the program loader. Special internal relay M304 is reset when restarting the MICRO ${ }^{3}$ operation; M304 can also be reset using the program loader (MON, M304, RST, $\boldsymbol{\downarrow}$).

ink Communication Error (COM Error)

This error indicates a communication error in the expansion link or data link system. When this error occurs, special interThis error indicates a communication error in the expansion link or data link system. When this error occurs, special inter-
nal relay M305 (link communication error) is also turned on. The detailed information of this error can be viewed from the error code indicated in the COM Error line. This error code is stored in control data register D94, if enabled using FUN10 error code indicated in the COM Error line. This error code is stored in control data register D94,

Error Code	Error Details
$\mathbf{1 h}$	Overrun error (Data is received when the receive data registers are full.)
$\mathbf{2 h}$	Framing error (Failure to detect start or stop bit.)
$\mathbf{4 h}$	Parity error (An error was found by the parity check.)
$\mathbf{8 h}$	Receive timeout (Line disconnection)
$\mathbf{1 0 h}$	BCC (block check character) error (Disparity with data received up to BCC.)
$\mathbf{2 0 h}$	Retry cycle over (Error occurred in all 3 trials of communication.)
$\mathbf{4 0 h}$	l/O definition quantity error (Error in the connection to the FA-3S series PF3S-SIF4 serial interface mod- ule)

When more than one error is detected in the expansion link or data link system, the total of error codes is indicated. For example, when framing error (error code 2 h) and BCC error (error code 10h) are found, error code 12 is displayed.

Troubleshooting Diagrams

When one of the following problems is encountered, see the troubleshooting diagrams on the following pages. When using MICRO ${ }^{3} \mathrm{C}$, also see the MICRO ${ }^{3} \mathrm{C}$ User's Manual for troubles particular to the MICRO ${ }^{3} \mathrm{C}$

Problem	Troubleshooting Diagram
The PoW (power) indicator does not go on.	Diagram 1
The RUN indicator does not go on.	Diagram 2
Error indicator ERR1 is on.	Diagram 3
Error indicator ERR2 is on.	Diagram 4
Inputs do not operate normally.	Diagram 5
Outputs do not operate normally.	Diagram 6
Communication between the program loader and the MICRO ${ }^{3}$ base unit is not possible.	Diagram 7
Stop and reset operation cannot be performed.	Diagram 8
Normal voltage does not appear on sensor power terminals.	Diagram 9
Expansion link or data link is impossible.	Diagram 10
Output pulses are not generated at output Q0 when using the PULS or PWM instruction.	Diagram 11
High-speed counter does not work correctly.	Diagram 12
The catch input function cannot receive short pulses.	Diagram 13
The calendar/clock does not operate correctly.	Diagram 14
Transfer to and from the memory card is impossible.	Diagram 15

MICRO

Troubleshooting Diagram 1

Troubleshooting Diagram 2

MICRO

Troubleshooting Diagram 3

Note: Temporary errors can be cleared to resume normal operation using FUN20.

Troubleshooting Diagram 4

MICRG 18: Troubleshooting
Troubleshooting Diagram 5

Troubleshooting Diagram 6

MICRG
Troubleshooting Diagram 7

When only program transfer is not possible:

MICRO
Troubleshooting Diagram 9

Troubleshooting Diagram 10

MICRO
Troubleshooting Diagram 11

Troubleshooting Diagram 12

MICRO
Troubleshooting Diagram 13

MICRO
Troubleshooting Diagram 15

Execution Times for Instructions

Instruction	Operand and Condition		Maximum Execution Time ($\mu \mathrm{sec}$)	
			Standard Processing	High-speed Processing
LOD, LODN		I, Q, M	2.0	0.4
		R, T, C	2.0	0.8
OUT, OUTN			4.0	1.0
SET, RST		Q, M	3.4	0.8
		R	3.4	1.2
AND, ANDN, OR, ORN		I, Q, M	1.4	0.2
		R, T, C	1.4	0.6
AND LOD, OR LOD			1.2	0.4
BPS			7.0	5.0
BRD			1.4	0.6
BPP			6.0	6.0
TIM, TMH, TMS	When stopped		23	44
	While timing down		31	52
	After timeout		31	51
CNT	0	Preset input ON	20	41
		After countout	20	40
		Others	18	39
	1	Pulse input ON	16	37
		After countout	19	40
		Others	14	35
	$\begin{gathered} 2 \text { to } 31 \\ (2 \text { to } 15) \end{gathered}$	Reset input ON	12	32
		After countout	22	43
		Others	21	42
CC=, CC \geq			12	32
SFR, SFRN (N bits)	Reset input ON		$0.4 \mathrm{~N}+27$	$0.4 \mathrm{~N}+48$
	Pulse input ON		$0.4 \mathrm{~N}+32$	$0.4 \mathrm{~N}+54$
	Others		28	48
SOTU, SOTD			17	37
JMP, JEND, MCS, MCR			6.0	5.0
END	See the next page.			
MOV, MOVN	$\mathrm{M} \rightarrow \mathrm{M}$		109	129
		$\mathrm{D} \rightarrow \mathrm{D}$	61	80
CMP=, <>, <, >, <<, >=	$\mathrm{M} \leftrightarrow \mathrm{M} \rightarrow \mathrm{M}$		121	140
	$\mathrm{D} \leftrightarrow \mathrm{D} \rightarrow \mathrm{M}$		80	99
ADD	$\mathrm{M}+\mathrm{M} \rightarrow \mathrm{D}$		121	141
	$\mathrm{D}+\mathrm{D} \rightarrow \mathrm{D}$		80	99
SUB	$\mathrm{M}-\mathrm{M} \rightarrow \mathrm{D}$		121	141
	$\mathrm{D}-\mathrm{D} \rightarrow \mathrm{D}$		80	99
MUL	$\mathrm{M} \times \mathrm{M} \rightarrow \mathrm{D}$		131	151
	$\mathrm{D} \times \mathrm{D} \rightarrow \mathrm{D}$		90	109
DIV	$\mathrm{M} \div \mathrm{M} \rightarrow \mathrm{D}$		182	201
	$D \div D \rightarrow D$		140	159

Breakdown of END Processing Time

The END processing time depends on the MICRO ${ }^{3}$ settings and system configuration. The total of execution times for applicable conditions shown below is the actual END processing time

Item	Condition	Execution Time
Housekeeping	Standard processing mode	$200 \mu \mathrm{sec}$
	High-speed processing mode	$220 \mu \mathrm{sec}$
$\mathbf{I} \mathbf{Z}$ service	Base unit only	$130 \mu \mathrm{sec}$
	Expansion link system	9 to 10 msec
Control data register service	All control data registers enabled	$15 \mu \mathrm{sec}$
Calendar/clock function processing (see note1)		$150 \mu \mathrm{sec}$
Data link master station processing (see note 2)	Data link system	12.5 to 13 msec

Note 1: Calendar/clock function is processed once every 500 msec in the 16 - and $24-\mathrm{I} / \mathrm{O}^{\text {MICRO }}{ }^{3}$ base units. The $10-\mathrm{I} / \mathrm{O}$ MICRO^{3} base unit does not have the calendar/clock function.
Note 2: Data link slave stations are processed in interrupt processing asynchronous to the ordinary system processing. Processing times of advanced instructions are generally approximately $20 \mu \mathrm{sec}$ longer in the high-speed processing mode than in the standard processing mode.
In addition to processing user program instructions and END instruction, the MICRO 3 system processing includes interrupt processing of various functions.

MICRO

MICRO ${ }^{3}$ CPU Base Units / Expansion I/O and Program Loader

Name				Total I/O Points (Inputs/Outputs)	$\begin{gathered} \hline \text { Clock } \\ \text { and } \\ \text { Calendar } \end{gathered}$	Type No.
MICRO 3 CPU Base Unit, Expansion 1/0	AC Power Power Voltage: 100-240V AC $50 / 60 \mathrm{~Hz}$	24V DC Input Sink/Source	Relay Output 240V AC, 2A 30 V D, 2 A	10 points (6 in / 4 out)	Without	FC2A-C10A1
				16 points (9 in / 7 out)	With	FC2A-C16A1
				24 points (14 in / 10 out)	With	FC2A-C24A1
			Transistor Sink Output 24V DC, 0.5A	10 points (6 in / 4 out)	Without	FC2A-C10B1
				16 points (9 in / 7 out)	With	FC2A-C16B1
				24 points (14 in / 10 out)	With	FC2A-C24B1
		120V AC Input ($85-132 \mathrm{~V}$ AC) $50 / 60 \mathrm{~Hz}$	Relay Output 240 V AC, 2A 30 V DC, 2 A	16 points (9 in / 7 out, 24-pt housing)	With	FC2A-CA16A1
	DC Power Power Voltage: 24V DC	24V DC Input Sink/Source	Relay Output 240V AC, 2A 30V DC, 2A	10 points (6 in / 4 out)	Without	FC2A-C10A4
				16 points (9 in / 7 out)	With	FC2A-C16A4
				24 points (14 in / 10 out)	With	FC2A-C24A4
			Transistor Sink Output 24V DC, 0.5A	10 points (6 in / 4 out)	Without	FC2A-C10B4
				16 points (9 in / 7 out)	With	FC2A-C16B4
				24 points (14 in / 10 out)	With	FC2A-C24B4
			Transistor Protect Source Output 24 V DC, 0.5 A	10 points (6 in / 4 out)	Without	FC2A-C10D4
				16 points (9 in / 7 out)	With	FC2A-C16D4
				$\begin{aligned} & 24 \text { points } \\ & \text { (14 in / } 10 \text { out) } \end{aligned}$	With	FC2A-C24D4
Program Loader (loader cable not included)						FC2A-HL1E

Type List, continued

Name	Function	Type No.
Loader Cable 1 ($2 \mathrm{~m} / 6.56 \mathrm{ft}$. long)	Used to connect the program loader to the MICRO ${ }^{3}$ base unit (Loader cable is not included with program loader.)	FC2A-KL1
Loader Cable 2 ($5 \mathrm{~m} / 16.4 \mathrm{ft}$. long)		FC2A-KL2
Computer Link Cable	Used to connect the MICRO^{3} base unit or program loader to IBM PC (in the 1:1 computer link system), 2 m (6.56 ft .) long, with D sub 9 -pin female connector to connect to computer	FC2A-KC2
Jack Converter (included with computer link cable)	Used on the computer link cable to connect an AC adapter to power the program loader connected to IBM PC	FC2A-CJ1
Memory Card	SRAM memory card to store 31 user programs max. (64 K bytes)	FC2A-MC1
Expansion Cable	Used to connect MICRO^{3} base units for close mounting in the expansion link system, 250 mm (9.84") long	FC2A-KE1
Computer Link Interface Unit	Used to connect MICRO ${ }^{3}$ base unit to the RS232C/RS485 converter in the 1:N computer link system	FC2A-LC1
Computer Link Interface Cable	Used to connect MICRO ${ }^{3}$ base unit to the computer link interface unit in the 1:N computer link system, 100 mm ($3.937^{\prime \prime}$) long	FC2A-KC3
RS232C/RS485 Converter	Used to connect the computer link interface unit to IBM PC in the 1:N computer link system	FC2A-MD1
RS232C Cable (4-wire)	Used to connect the RS232C/RS485 converter to IBM PC in the 1:N computer link system, 1.5 m (4.92 ft .) long, with D-sub 9 -pin female connector to connect to computer	HD9Z-C52
A/D Converter Unit 1 (0 to 5V)	Used to convert an analog signal to a digital signal and send it to input 10 of the MICRO ${ }^{3}$ base unit (Resolution: 8 bits)	FC2A-AD1
A/D Converter Unit 2 (0 to 10V)		FC2A-AD2
A/D Converter Unit 3 ($\pm 5 \mathrm{~V}$)		FC2A-AD3
A/D Converter Unit 4 (4 to 20mA)		FC2A-AD4
A/D Converter Unit 5 ($\pm 10 \mathrm{~V}$)		FC2A-AD5
D/A Converter Unit 1 (0 to 5V)	Used to convert a digital signal (PWM signal) from output Q0 of the MICRO ${ }^{3}$ base unit to an analog signal (Resolution: 8 bits)	FC2A-DA1
D/A Converter Unit 2 (0 to 10V)		FC2A-DA2
D/A Converter Unit 3 ($\pm 5 \mathrm{~V}$)		FC2A-DA3
D/A Converter Unit 4 (4 to 20mA)		FC2A-DA4
D/A Converter Unit 5 ($\pm 10 \mathrm{~V}$)		FC2A-DA5
Analog Timer Unit	To set timer preset value externally (See page 4-20-accessories.)	PFA-1U11
DIN Rail	$35-\mathrm{mm}$-wide DIN rail to mount MICRO 3 base unit, 1 m (3.28 ft .) long	BAA1000
Mounting Clip	Used on DIN rail to fasten the MICRO ${ }^{3}$ base unit	BNL6
CUBIQ	Programming and monitoring software used on PC (3.5" diskette)	FC9Y-LP1E314

AC Adapter

When using the program loader for off line programming or communication with a computer, an AC adapter is required to power the program loader. AC adapter output capacity: 5 to 6.5 V DC, 4 W
The RS232C/RS485 converter is powered by 24 V DC source o an AC adapter with 9 V DC, 350 mA output capacity.

The output plug of the AC adapter applicable to both the program loader and RS232C/RS485 converter is shown on the right.

ider
\# 1:1 communication 4-16 1:N Communication $4-17$
100-msec clock M312 $6-3$ 10-msec clock M313 6-3 1-sec clock M311 6-3 1 -sec clock reset M310 6-3
24 V Overload 18
A A/D 16-5 Converter unit $4-21$ AC
adapter 4-17, A-4 adapter jack
input $1-22$
accessories A-4
ADD 11-1
adding counters CNT2-CNT31 7-19
addition 11-1
ADJ 14-4
adjust $14-4$
adjust $14-4$
ADV Error 18
ADV Error $18-5$
advanced instruction
advanced instructio
A/D $16-5$
ADD 11-1
ADJ 14-4
ADJ 14-4
ANDW $12-1$
$\begin{array}{lll}\text { ANR0 } & 15-5 \\ \text { ANR1 } & 15-5\end{array}$
$\begin{array}{ll}\text { ANR1 } & 15-5 \\ \text { CAL }\end{array}$
$\begin{array}{ll}\text { CALR } & 14-1 \\ \text { CALW } & 14-2\end{array}$
CALW 14-2
$\begin{array}{ll}\text { CLKR } & 14-3 \\ \text { CLKW } & 14-3\end{array}$
CMP $<10-1$
CMP $<=10-1$
CMPく> 10-1
CMP= $10-1$
CMP> $10-1$
CMP $=10-1$
CMP> $=10-1$
DGRD 15-3
DISP $15-1$
DIV 11-1

DI	$15-1$
HSC0	
HSC1	$17-1$

$\begin{array}{ll}\text { HSC0 } & 17-1 \\ \text { HSC1 } & 17-3 \\ \text { HSC2 } & 17-6\end{array}$
HSC1
HSC2
HSC3
$17-6$
$17 .-9$
$\begin{array}{ll}\text { HSC3 } & 17-9\end{array}$
IMOV 9-4
IMOVN 9-5
input condition 8 -4
input condit
list $8-2$
menus 8-1
MOV 9-1
MOVN 9-3
MUL 11-1
NOP 8 -6
$\begin{array}{ll}\text { NOP } \\ \text { ORW } & \text { 12-1 }\end{array}$
programming 8-3
PULS 16-1
PWM 16-3
reading $3-8$
revising 8-3
ROTL $13-3$
$\begin{array}{ll}\text { ROTR } & 13-4 \\ \text { SFTL } & 13-1\end{array}$

SFTR 13-2
SUB 11-1
syntax error 18-5
XORW 12-1
advanced instructions 8-1
all outputs OFF M302 6-2
analog
input function 4-21
output function 4-27
potentiometer $15-5$

$\begin{array}{l}\text { potentiometer setting } \\ \text { read } 0 \\ \text { res-5 }\end{array}$

read 0 15-5
read 1 15-5
timer unit 4-18, 4-20
timer unit 4-18, 4-20
timer, external 4-18
analog/digital conversion 16-5
AND and ANDN instructions 7-4
AND LOD instruction 7-5
AND word 12-1
ANDW 12-1
ANRO 15-5
B base
base
frequency 16-1
unit
processing mode code 5-8
system code 5-8
basic
instructions
system 1-3
bidirectional shift register 7-26
bit stack register 7-10
Boolean computation 12-1
BPS, BRD, and BPP instructions 7-9
C cables and accessories A-4
calendar
nd clock 14-1
read 14-1
write 14-2
Calendar NG 18-4
calendar/clock
data readout and setting (FUN28) 5-12
error 18-4
function processing A-2
CALR 14-1
CALW 14-2 (Cy) and borrow (Bw) M303 6-3
carry or borrow signals $11-2$
catch input
function 4-2
status set M290-M297 6-2
vs normal input 4-2
$\mathrm{CC}=$ and $\mathrm{CC} \geq$ instructions $7-21$
changing preset values for timers and counters 3-14
clearing changed preset values 3-14
$\begin{array}{ll}\text { CLKR } & \text { 14-3 } \\ \text { CLKW } & 14-3\end{array}$
clock
read 14-3
write $14-3$
CMP $<10-1$
CMP $<=10-1$
CMP
CMPく> 10-1
CMP= $10-1$
CMP> $10-1$
CNT instruction 7-18
COM Error 18-5
communication mode setting (FUN8) 5-7
compare
equal to $10-1$
greater than 10-1
greater than or equal to $10-1$
less than 10-1
ess than or equal to $10-1$
comparing programs
between loader and base unit 3-9
between loader and memory card 3-11
computer link
cable 4-16
function
interface cable
$4-17$
interface cable unit 4-17
system 1-4
contact protection circuit for relay output 1-17 control data register
service A-2
setting (FUN10) 5-8
counter
adding (up) counter 7-19
and shift register in master control circuit 7-29
comparison instructions 7-21
dual-pulse reversible counter $7-18$
up/down selection reversible $7-18$
counting catch input pulses
D D/A converter unit $4-27$
data clear, operand (FUN26) 5-11
data input 7-23
data link
connection error 18-3
ata register allocation 4-9
unction 4-8
master station processing A-2 system 1-4
wiring 1-27
data movement in
data register
allocation for data link system 4-9
allocation numbers $6-4$
clearing all data (FUN26) 5-11
control data register 5-8
entering data 3-16
monitoring $3-17$
data transmission through FA-3S serial interface module nsmissio
$4-13$
data type selection, display 5-14
day of week (calendar) 5-8

DC sink input
(AC power type) 1-22
(DC power type) $1-22$
(AC power type) $1-21$
(DC power type) $1-21$
deleting
a program from memory card 3-11
entire user program 3-5
program instructions $3-6$
program instructions
destination operand $8-4$
DGRD 15-3
digital
data range 16-5
read 15-3
resolution 4-24
analog timer unit 4-20
DIN rail 4-20
mount socket 4-20
mounting 1-26
direct mounting 1-25
discontinuity of operand areas 8-6
DISP 15-1
display $3-1,15-1$
data type selection (FUN36) 5-14 language selection (FUN35) 5-14 displaying instructions $3-5$ disposing 1-26
DIV 11-1
division 11-1
dual-pulse reversible counter CNT0 7-18
\boldsymbol{E} editor mode 3-3, 3-5
EEPROM NG 18-4
END instruction 7-32
END processing time, breakdown A-2
entering
data into data registers 3-16 program instructions 3-6 error
causes and actions 18-3 indicator during errors 18-2 indicators 18-1
messages
program loader operation 3-20 exclusive OR word 12-1
execution times for instructions A-1 expansion cable 4-6
expansion link
function 4-6
system 1-4
system setup 4-6
$\boldsymbol{F} \quad$ FA-3S serial interface module 4-13 formatting memory card 5-15 forward shift register 7-23 UN (function) mode
FUN table
(FUN1 through FUN11) 5-1 (FUN20 through FUN43) 5-2

FUN11 program capacity and PLC type selection
FUN31 program loader version readout/hardware check Preface-2
function 4-8
keys $3-1$ to 3-2
selector switch 4-6, 4-8, 4-13
(ADPcifications $1-7$ to $1-8$
(D/A converter unit) 4-29
G
$\begin{array}{ll}\text { gate } \\ \text { control HSC3 } & \text { 17-9 }\end{array}$
input 17
error code 5-8
error codes 18-2
specifications $1-5$ to $1-6$
$\begin{array}{ll}\text { (A/D converter unit) } & 4-22 \\ \text { (D/A converter unit) } & 4-28\end{array}$
H hard
filter 4-4
reset selection 17-2 to 17-3, 17-7, 17-9
high-speed counter $17-1$
(HSC3) overflow M316
(HSC3) overflow
soft reset M315 6-4
high-speed processing mode 4-1
hold-down spring 4-20
hour (clock) 5-8
housekeeping A-2
HSC0 17-1
$\begin{array}{ll}\text { HSC1 } & 17-3 \\ \text { HSC2 } & 17-6\end{array}$
$\begin{array}{ll}\text { HSC2 } & 17-6 \\ \text { HSC3 } & 17-9\end{array}$
I I/O
allocation numbers for expansion link system 4-7 service A-2
illumination control using PWM instruction 16-4
IMOV 9-4
IMOVN $9-5$
IMOVN 9-5
indirect
move 9-4
$\begin{array}{lll}\text { move not } 9-5 \\ \text { initialize pulse M301 } & 6-2\end{array}$
in-operation output M317 6 in-opera
input
condition for advanced instructions 8-4 filter
function 4-3
time selection (FUN7) 4-2, 5-6
$\begin{array}{ll}\text { internal circuit } & 1-12 \\ \text { operating range } & 1-12\end{array}$
operating range 1-12
or output as source or destination operand $8-5$
specifications $1-11$
ferminal arrangements 1-19
terminal arran
wiring $1-27$
wiring diagrams $1-21$ to $1-22$
inserting program instructions 3-7
installation 1-25
installation $1-25$
in control panel
1-2
instructions
binary arithmetic 11-1
bit shift and rotate 13-1
Boolean computation 12-1
clock and calendar 14-1
comparison 10-1
igh-speed counter 17-1
interface
move $9-1$
pulse and A/D conversion 16-1
real-time calendar and clock 14-1
internal
circuit
input 1-12
output 1-1
memory and user memory 3-3
relay "keep" designation (FUN3) 5-4
J jack converter 4-16
JMP and JEND instructions 7-30
jump instructions 7-30
$\boldsymbol{K} \quad$ keep
data sum check error 18-3 designation
internal relay (FUN3) 5-4 Keep Data Sum 18-3 key
function keys 3-1 to 3-2
program keys $3-1$ to $3-2$
L link
communication
error 18-5
error code
error M305-8
$6-3$
error M305
initialize flag M307
$6-3$
$\begin{array}{ll}\text { initialize flag M307 } \\ \text { prohibit flag M306 } & 6-3\end{array}$
prohibit flag M306
stop flag M307 $6-3$
formatting sequence (FUN27) 5-11
formatuing seq
systems $1-4$
loader cable 1-3
connection port 3-1
loader port communication
specifications 1-9
LOD and LODN instructions 7-2
M magnets on the back 3-1 maintaining catch input 4-3 master control instruction 7-28 memory backup function 1-10
memory card 3-1
comparing programs 3-11
deleting a program 3-11
formatting (FUN41) 5-15 dentification (FUN40) 5$\begin{array}{ll}\text { reading program } \\ \text { writing program } & 3-10 \\ 3-10\end{array}$ minute (clock) 5-8
mode 16-1, 16-3
nodule number selection switch 4-13
mode 3-3, 3-12
screen holding (FUN33) 5-13
monitoring
data registers 3-17
high-speed counters $3-15$
I/O, internal relays, and shift registers $3-12$
sequential $3-8$
timers and counters 3-13
mounting hole layout 1-24
MOV 9-1
move 9-1
move not 9-3
MOVN 9-3
MUL 11-1
multiple usage of MCS instructions 7-2
multiplication 11-1
multi-stage
comparison HSC1 17-3
data setting 17-4
N
no oper
noise
emission specifications 1-9
immunity specifications $1-9$
NOP 8-6
numeric and symbolic allocation numbers 17-4
0 ON-delay analog timer 4-19
opcode 8-4
operand data clear (FUN26) 5-11
operating procedure
expansion link system 4-6
operating status during errors 18-2
operation
basics 2-1
basics 2-1
register 7-5, 7-7, 7-10
OR and ORN instructions 7-4
OR LOD instruction
OR word 12-1
ORW 12-1
OUT and OUTN instructions 7-2
output
output
delay
1-16
during errors 18-2
frequency $16-1$
frequency range 16
internal circuit $1-16$
pulse width ratio $16-3$
response at power up and down 4-30
specifications $1-13$ to $1-15$
erminal arrangements 1-2
wiring 1-27
wiring diagram 15-2, 16-4
wiring diagrams $1-23$
$\boldsymbol{P} \quad$ panel mount
adapter $4-20$
socket 4-20
socket 4-20
parts description
base unit $1-2$
program loader 3-1
pass word 5-10
PLC
address for network communication (FUN9) 5-7
error data readout and reset (FUN20) 5-9
operating status readout (FUN24) 5-10
system program version readout (FUN23) 5-10
$\begin{aligned} & \text { system program ve } \\ & \text { power failure } \\ & 18-3\end{aligned}$
memory protection 7-17
Power Off 18-3
power supply
timing chart 1-10, 4-24, 4-30
voltage 1-28
wiring 1-27
preser values
changing $3-1$
restoring 3-14
Prg. Sum Check 18-3
processing
mode selection (FUN5) 5-5
speed 4-1
program
capacity $4-1$
capacity and PLC type selection (FUN11) Preface-2,
$\begin{aligned} & \text { capacity and PLC } \\ & \text { 5-9 } \\ & \text { check (FUN30) } \\ & \text { 5-12 }\end{aligned}$
keys 3-1 to 3-2
program loader
beep sound (FUN34) 5-14
connection to computer 4-16
error messages 3-20
operation modes 3-3
specifications $1-18$
system program installation (FUN42) 5-15
system program restore (FUN43) 5-16
version readout/hardware check (FUN31) Preface-2, $\begin{array}{r}5-13 \\ \hline\end{array}$
programming
advanced instructions 8-3
procedures and precautions 3-4
protect output overload error $18-4$
type of 4-24, 4-31
user program (FUN22) 5-10
PULS 16-1
pulse
pulse
cycle period 16-3
motor speed control using PULS instruction 16-2
output control HSC2 17-6
width
coefficient 16-1, 16-3
modulation 16-3

- reading
advanced instructions 3-8
error data 18-1
program
from base unit to loader 3-9
from memory card to loader 3-10
register
bit stack register $7-10$
operation register 7-5, 7-7, 7-10
stack register 7-5, 7-7
repeat
cycles 8-4
designation 8-4
operation
ADD, SUB, and MUL instructions 11-3
ANDW, ORW, and XORW instructions 12-3
DIV iranon instructions 10-2
DIV instruction 11-4
move instruction
number selection (FUN2) 5-4
resetting 3-18
resolution 4-24, 4-30, 16-5
reverse shift register 7-25
revising advanced instructions $8-3$
rising or falling edge selection for catch inputs (FUN6)
rotate
left 13-3
ROTL 13-3
ROTR 13-4
RS232C cable 4-17
RS232C/RS485 converter 4-17
RUN Error 18-5
RUN/STOP switch 2-1, 3-1
\boldsymbol{S} scan time
(current value) 5-8
readout (FUN25) 5-11
scanning process and WDT (watch dog timer) 1-10
searching for a program instruction $3-8$
second (clock) 5-8
self-diagnostics fladresses 3-5
self-diagnostics flow chart 1-10
sequential
sequential
monitoring 3-8
monitoring (FUN32) 5-13
start 14-7
Serial interface module 4-13
SET and RST instructions $7-32$
setting 3-18
SFR and SFRN instructions 7-2
SFR and SFRN instructions 7-2
SFTL 13-1
SFTR 13-2
shift
left
lis
left 13-1
right $13-2$
rift
shift register
"keep" designation (FUN4) 5-5 instructions 7-23
simple operation 2-3
single output instruction 7-27
single-stage
single-stage comparison HSC0 17-1
soft
soft
filter 4-5
internal relay M315 17-2 , 17-4, 17-7, 17-9 SOTU and SOTD instructions 7-27
and destination operands $8-4$
operand 8-4
special
functions $4-1$
internal relays $6-2$
internal relays
specifications
specifications
data link 4-9
terminal communication 1-9
function 1-7 to 1-8
general $1-5$ to $1-6$
high-speed counter 17-1
input 1-11
mmunication 1-9
$\begin{array}{ll}\text { emission } & 1-9 \\ \text { imsunity } \\ 1-9\end{array}$
output 1-13 to 1-15
program loader 1-18
stack register 7-5, 7-7
start control M300 6-2
start/stop
$\begin{array}{ll}\text { operation } \\ \text { schematic } & 2-1\end{array}$
using power supply $2-2$
using program loader $2-1$
stop input 2-2
number selection (FUN1) 5-3
structure o
structure of an advanced instruction 8-4
SUB 11-1
subraction
Syntax $18-3$
system
setup 1-3
data link 4-8, 4-13
expansion link 4-6
statuses 2-2
\boldsymbol{T} terminal arrangements
input 1-19
output 1-20
TIM, TMH , and
TIM, TMH, and TMS instructions 7-14
TIM/CNT CRC 18-3
uled control 14-5
accuracy 7-16
circuit 7-15
timer or counter
as destination operand 8-4
as source operand $8-4$
timer/counter preset value
changed M314
CRC error 18-3
readout and restore (FUN21) 5-9
transfer mode 3-3, 3-9
transistor
protect source output 1-23
sink output 1-23
Transistor NG 18-4
troubleshooting 18
diagrams $18-6$
ype list
analog timer unit and accessories 4-20
base units and program loader A-3
cables and accessories A-4
up counters CNT2-CNT31 7-1
up/down selection reversible counter CNT1 7-19
user communication data monitor (FUN50) 5-16
user communication status readout (FUN29) 5-12
user program
CRC error 18-3
execution error $18-5$
execution error M304 6-3
sum check error 18-3
syntax error $18-3$
writing error
18-4
ser program protection (FUN22) 5-10
user program protectio
Users Prg. CRC $18-3$
using
the editor mode 3-5
the transfer mode 3-9
W Watch Dog Time 18-3
watchdog timer error 18-3
watchdog timer error
weight Preface-2
wiring 1-27
diagram 4-19, 4-25, 4-31
input 1-21 to 1-22
output 1-23
socket adapter 4-20
wrist strap 3-1
from loader to base unit 3-9
from loader to memory card 3-10
X XORW 12-1
idee

IDEC CORPORAT
Sunnyvale, CA 94089-2240, USA
Tel (408) 747-0550
Toll Free (800) 262-IDEC
Fax (408) 744-9055
Fax (800) 635-6246
E-mail ideccorpe@industry.net
Japan
IDEC IZUMI CORPORATION
7-31, Nishi-Miyahara
1-Chome, Yodogawa-
Osaka 532, Japan
Tel (06) 398-2571
Fax (06) 392-9731
canada
CANADA
IDEC CANADA LIMTED
Unit 22-151 Brunel Road
Mississauga, Ontario, L4Z 1X3, Canada
Tel (905) 890-8561
Fax (905) 890-8562
GERMANY
IDEC ELEKTROTECHNIK GmbH
Wendenstraße 331
D-20537 Hamburg, Germany
Tel (040) 2511 11-93
united kingdom
IDEC ELECTRONICS LIMITED
Unit 12, Canbury Business Park
Elm Crescen
Kingston-Upon-Thames
Surrey KT 26 HJ , United Kingdom
Tel (0181) 549-0737
Fax (0181) 546-0963
hong kong
IDEC IZUMI (H.K. CO., LTD.
IDEC IZUMI (H.K.).) CO., LTD.
Room No. 1409, Tower 1 Sivercord
30 Canton Road, Tsimshatsui
Kowloon, Hong Kong
Tel (02) 376-2823
Fax (02) 376-0790
TAIWAN
IDEC TAIWAN CORPORATION
3F., No. 75 , Hsin Tai Wu Road, Sec.
Hsi-Chin, Taipei
Hsi-Chih, Taipei County, Taiwan
Republic of China
Tel (O2) 698-2601
Tel (02) 698-202) 698-2709
australia
IDEC AUSTRALIA PTY. LTD.
2/3 Macro Court
Rowville, Victoria 3178
Austraia
Tel (03) 9763-3244
Fax (03) 9763-3255
Users Manual \#EM317-0
Printed in the USA 5 U $2 / 97$

MICRO^{3}
Micro Programmable
Logic Controller

…: рррррррррррри

230
adnanananana

Mबता

idue MCRO'

$11 月 H$

User's Manual

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Idec manufacturer:
Other Similar products are found below :
LT7A-XE-G LT7A-XE-R LT7B-A250 LT7B-A250FB LW6L-M1C24MG FB1T-000Z FB1W-HW1B-V411R-EMO-2 FB1W-XW1EBV411MR FB1W-XW1E-BV413MR FB3W-413Z FC2A-KP1C FC4A-J8AT1 FC4A-T16S3 FC5A-C16R2C MM-SMART-24 MM-
SMART-40 FT1A-C12RA-S FT1A-C12RA-W FT1A-C14SA-B PF3S-BP12 PS3X-D24AFG PS3X-Q12AFG GT3A-3AD24 GT3F2EAD24 GT3S-2AF20 GT3W-A16AD24 GT3W-A33AF20N ABD302N-R ABD410N-R ABFD411N-G ABN4F11-G HE2B-M211PB HE2G-21SH HE9Z-D3B HG9Z-2A1 HG9Z-XC300 ACSNO-6123-FB-C6002 RH3V2-UAC240V DFAN-031-B AL6M-LK1-G AL6M-P3R AL6Q-M13-W AL6Q-M23P-QG ALFD29901DN-G-24V ALFN22211DNG-U ALFW224611D-W ALNE8811-G ALQW2B24611D-G $\underline{\text { ALW212611-G ALW22211DG }}$

[^0]: Details of all other advanced instructions are described in following chapters

[^1]: 54 ROTR (Rotate Right)

