HS5E Miniature Interlock Switches with Solenoid

Spring Lock Type Features:

- Automatically locks the actuator without power applied to the solenoid
- After the machine stops, unlocking is completed by the solenoid, providing high safety features
- Manual unlocking is possible in the event of power failure or maintenance
- Gold-plated contacts

Solenoid Lock Type Features:

- The actuator is locked when energized
- The actuator is unlocked when de-energized
- Flexible locking function can be achieved for an application where locking is not required and sudden stopping of machine must be prevented
- Gold-plated contacts

c ${ }^{-1}$
 © -Gs

$\begin{aligned} & \text { ? } \\ & \text { 름 } \\ & 00 \end{aligned}$	Part Numbers Spring Lock Type (Power Solenoid to Unlock)								
	Circuit Code	Contact Configuration			Cable Length	Part Number			
					Without LED	With LED	With LED and Rear Unlock Button		
	A								
	Main Circuit: $1 \mathrm{NC}+1 \mathrm{NC}$ Door Monitor Circuit: 1NO Lock Monitor Circuit: 1NO	Main Circuit: Monitor Circuit: Monitor Circuit:	$\Theta$$\begin{array}{l:l} 111+ \\ 23 & 24 \\ \hline \end{array}$	41 42 53 54	1 m	HS5E-A4001	HS5E-A4401-G	HS5E-A44L01-G	
					3 m	HS5E-A4003	HS5E-A4403-G	HS5E-A44L03-G	
					5 m	HS5E-A4005	HS5E-A4405-G	HS5E-A44L05-G	
	B Main Circuit: 1NC+1NC Door Monitor Circuit: 1NO Lock Monitor Circuit: 1NC	Main Circuit: Monitor Circuit: Monitor Circuit:	Θ 11 23 12		1 m	HS5E-B4001	HS5E-B4401-G		
					3 m	HS5E-B4003	HS5E-B4403-G		
					5 m	HS5E-B4005	HS5E-B4405-G		
	C Main Circuit: 1NC+1NC Door Monitor Circuit: 1NC Lock Monitor Circuit: 1NO	Main Circuit: Monitor Circuit: Monitor Circuit:	Θ 11 12 41 21 22 $\underline{53}$ 54		1 m	HS5E-C4001	HS5E-C4401-G	HS5E-C44L01-G	
					3 m	HS5E-C4003	HS5E-C4403-G	HS5E-C44L03-G	
					5 m	HS5E-C4005	HS5E-C4405-G	HS5E-C44L05-G	
	D Main Circuit: 1NC+1NC Door Monitor Circuit: 1NC Lock Monitor Circuit: 1NC	Main Circuit: Monitor Circuit: Monitor Circuit:	Θ 11 12 41		1 m	HS5E-D4001	HS5E-D4401-G	HS5E-D44L01-G	
					3 m	HS5E-D4003	HS5E-D4403-G	HS5E-D44L03-G	
					5 m	HS5E-D4005	HS5E-D4405-G	HS5E-D44L05-G	
	Main Circuit: 1NC+1NC Door Monitor Circuit: 2NC	Main Circuit: Monitor Circuit: Monitor Circuit:	$\begin{array}{l:l} \Theta 11 & 12 \\ \hline \Theta 21+22 \\ \Theta 31+32 \\ \hline \end{array}$	$\begin{array}{l:l} 41 & 42 \\ \hline \end{array}$	1 m	HS5E-F4001	HS5E-F4401-G	HS5E-F44L01-G	
					3 m	HS5E-F4003	HS5E-F4403-G	HS5E-F44L03-G	
					5 m	HS5E--4005	HS5E-F4405-G	HS5E-F44L05-G	
	G Main Circuit: 1NC+1NC Door Monitor Circuit: 1NC, 1NO	Main Circuit: Monitor Circuit: Monitor Circuit:	$\begin{array}{c:c} \oplus 11 & 12 \\ \hline \begin{array}{c} 31 \\ \hline 33 \\ \hline \end{array} & 224 \\ \hline \end{array}$	$\begin{array}{r\|r} 1 \\ 41 & 42 \\ \hline \end{array}$	1 m	HS5E-G4001	HS5E-G4401-G	HS5E-G44L01-G	
					3 m	HS5E-G4003	HS5E-G4403-G	HS5E-G44L03-G	
					5 m	HS5E-G4005	HS5E-G4405-G	HS5E-G44L05-G	
	H	Main Circuit: Monitor Circuit: Monitor Circuit:	$\Theta 11 \quad 12$	$\begin{array}{r} 41+\quad 42 \\ \hline 51+\quad 52 \\ \hline 61+\quad 62 \\ \hline \end{array}$	1 m	HS5E-H4001	HS5E-H4401-G		
	Main Circuit: 1NC+1NC Door Monitor Circuit: 2NC				3 m	HS5E-H4003	HS5E-H4403-G		
					5 m	HS5E-H4005	HS5E-H4405-G		
	J	Main Circuit: Monitor Circuit: Monitor Circuit:	$\Theta 11+12$	$\begin{array}{l:l} 41 & 42 \\ \hline 51 & 52 \\ \hline 63 & 64 \\ \hline \end{array}$	1 m	HS5E-J4001	HS5E-J4401-G		
	Main Circuit $1 \mathrm{NC}+1 \mathrm{NC}$				3 m	HS5E-J4003	HS5E-J4403-G		
	Door Monitor Circuit: 1 NC , 1No				5 m	HS5E-J4005	HS5E-J4405-G		

The contact configuration shows the status when the actuator is inserted and the switch is locked.
The contact configuration shows the status when the indicator is installed.
Actuators are not supplied with the interlock switch and must be ordered separately.
Standard stock items in bold

Dual Safety Circuit type

1. The contact configuration shows the status when the actuator is inserted and the switch is locked.
2. Manual unlock key is included with the interlock switch.
3. Actuators are not supplied with the interlock switch and must be ordered separately.
4. Standard stock items in bold

Four-circuit Independent Output Type (Spring Lock)

The contact configuration shows the status when the actuator is inserted and the switch is locked. Actuators are not supplied with the interlock switch and must be ordered separately. Standard stock items in bold.

Four-circuit Independent Output Type (Solenoid Lock)

The contact configuration shows the status when the actuator is inserted and the switch is locked.
Actuators are not supplied with the interlock switch and must be ordered separately.
Standard stock items in bold.

The contact configuration shows the status when the actuator is inserted and the switch is locked.
The contact configuration shows the status when the indicator is installed.
Actuators are not supplied with the interlock switch and must be ordered separately. Standard stock items in bold

Actuator Keys \& Accessories (order separately)

| Appearance | Part Number | Description | Part Number | Description |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Padlock Hasp (prevents unauthorized insertion | | | | |
| of actuator) | | | | |

HS5E- $\square 44 \mathrm{~L} \square$-G (rear unlocking button type) Horizontal Mounting/Straight Actuator (HS9Z-A51)

RP (Actuator Mounting Reference Position) Rear unlocking button mounting

$X \leq 6$ Panel mounting
$6<X<23$ Not mountable
$23 \leq X \leq 33$ Use HS9Z-FL53 rear unlocking button kit (Note) $33<X \leq 43$ Use HS9Z-FL54 rear unlocking button kit (Note)
$X=$ Panel thickness
(including panel, mounting frame, and mounting plate) Note: See page 332 for details.

Note: With the mounting hole dimension, the rear unlocking button rod does not touch the hole even when the interlock switch moves sideways.

Actuator Mounting Reference Position

As shown in the figure on the right, the mounting reference position of the actuator when inserted in the interlock switch is where the actuator stop placed on the actuator lightly touches the interlock switch.
Note: After mounting the actuator, remove the actuator stop from the actuator.

Dimensions and Mounting Hole Layouts, continued

Straight Actuator (HS9Z-A51)

Straight Actuator w/Rubber Bushings (HS9Z-A51A)

- The mounting center distance is set to 12 mm at factory. When $20-\mathrm{mm}$ distance is required, adjust the distance by moving the rubber bushings.
The actuator has flexiblity to the direction indicated by the arrows. When $20-\mathrm{mm}$ distance is selected, the actuator swings vertically.

Actuator Orientation

The orientation of actuator swing (horizontal/vertical) can be changed using the orienting insert (white plastic) installed on the back of the actuator. Do not lose the orientating insert, otherwise the actuator will not swing properly.

Right-angle Actuator (HS9Z-A52)

Actuator Stop (supplied with the actuator) (Note)

Right-angle Actuator w/Rubber Bushings (HS9Z-A52A)

Dimensions and Mounting Hole Layouts, continued

Manual Unlocking Key (Metal) (HS9Z-T3)

Manual Unlocking Key (plastic)

Rear Unlocking Button Kit Mounting Hole Layout

Note: With the mounting hole dimension, the rear unlocking button rod does not touch the hole even when the interlock switch moves sideways.

Circuit Diagrams and Operating Characteristics
Standard and Rear Unlocking Type - Spring Lock Type

Interlock Switch Status			Status 1	Status 2	Status 3	Status 4	Manual Unlock
			- Door Closed - Machine ready to operate - Solenoid de-energized	- Door Closed - Machine cannot be operated - Solenoid de-energized	- Door Open - Machine cannot be operated - Solenoid de-energized	- Door Open - Machine cannot be operated - Solenoid energized	- Door Closed - Machine cannot be operated - Solenoid de-energized \rightarrow energized
Door Status							
Circuit Diagram (HS5E-A4)							
Door			Closed (locked)	Closed (unlocked)	Open	Open	Closed (unlocked)
		$\begin{aligned} & \text { Main Circuit } \\ & 11-42 \end{aligned}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{gathered} \text { Monitor Circuit } \\ \text { (door open) } \\ 23-24 \end{gathered}$	OFF (open)	OFF (open)	ON (closed)	ON (closed)	OFF (open)
		$\begin{gathered} \text { Monitor Circuiut } \\ \text { (unlocked) } \\ 53-544 \end{gathered}$	OFF (open)	ON (closed)	ON (closed)	ON (closed)	ON (closed)
		$\begin{aligned} & \text { Main Circuit } \\ & 11-42 \end{aligned}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{gathered} \text { Monitor Circcuit } \\ \text { (door open) } \\ 23-24 \end{gathered}$	OFF (open)	OFF (open)	ON (closed)	ON (closed)	OFF (open)
		$\begin{gathered} \text { Monito Circuit } \\ \text { (locked) } \\ 51-52 \\ \hline \end{gathered}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
Contact Configuration		$\begin{gathered} \text { Main Circuit } \\ 11-42 \end{gathered}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{gathered} \text { Monitor Circuit } \\ \text { (door closed) } \\ 21-22 \end{gathered}$	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\begin{gathered} \text { Monitor Circcuit } \\ \text { (unlocked) } \\ 53-54 \\ \hline \end{gathered}$	OFF (open)	ON (closed)	ON (closed)	ON (closed)	ON (closed)
		Main Circuit 11-42	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		Monitor Circuit (door closed) 21-22	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\begin{gathered} \text { Monitor Circuit } \\ \text { (locked) } \\ 51-52 \end{gathered}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{aligned} & \text { Main Circuit } \\ & 11-42 \end{aligned}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{gathered} \text { Monitor Circuit } \\ \text { (door closed) } \\ 21-22 \end{gathered}$	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\begin{gathered} \text { Monitor Circuit } \\ \text { (door closed) } \\ 31-32 \end{gathered}$	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\begin{aligned} & \text { Main Circuit } \\ & 11-42 \end{aligned}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{gathered} \text { Monitor Circuit } \\ \text { (door closed) } \\ 21-22 \end{gathered}$	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\begin{gathered} \text { Monitor Circuit } \\ \text { (door open) } \\ 33-34 \end{gathered}$	OFF (open)	OFF (open)	ON (closed)	ON (closed)	OFF (open)
		$\begin{gathered} \text { Main Circuit } \\ 11-42 \end{gathered}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{gathered} \text { Monitor Circuit } \\ \text { (locked) } \\ 51-52 \end{gathered}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{gathered} \text { Monitor Circcuit } \\ \text { (locked) } \\ 61-62 \end{gathered}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{aligned} & \text { Main Circuit } \\ & 11-42 \end{aligned}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{gathered} \text { Monitor Circuit } \\ \text { (locked) } \\ 51-52 \end{gathered}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{gathered} \text { Monitor Circuit } \\ \text { (unlocked) } \\ 63-64 \end{gathered}$	OFF (open)	ON (closed)	ON (closed)	ON (closed)	ON (closed)
Solenoid Power A1-A2 (all types)			OFF (de-energized)	ON (energized)	ON (energized)	OFF (de-energized)	OFF (de-energized)

The above contact configuration shows the status when the actuator is inserted and locked.
Main Circuit: Connected to the control circuit of machine drive part, sending interlock signals of the protective door.
Monitor Circuit: Sends monitoring signals of protective door open/closed status or protective door lock/unlock status.
Operation Characteristics (reference)

The operation characteristics shown in the chart above are of the HS9Z-A51. For other actuator types, add 1.3 mm .
The operation characteristics show the contact status when the actuator enters the entry slot of an interlock switch.

$\begin{aligned} & 3 \\ & . \frac{0}{2} \\ & 00 \\ & 0 \end{aligned}$	Standard Type - Solenoid Lock Type						\qquad
	Interlock Switch Status		Status 1	Status 2	Status 3	Status 4	
			- Door Closed - Machine ready to operate - Solenoid de-energized	- Door Closed - Machine cannot be operated - Solenoid de-energized	- Door Open - Machine cannot be operated - Solenoid de-energized	- Door Open - Machine cannot be operated - Solenoid energized	
	Door Status						
	Circuit Diagram (HS5E-A7Y)						
	Door		Closed (locked)	Closed (unlocked)	Open	Open	Closed (unlocked)
		${ }_{\text {Main Circuit }}^{11-42}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{gathered} \text { Monitor Cirecuit } \\ \text { (door open) } \\ 23-24 \end{gathered}$	OFF (open)	OFF (open)	ON (closed)	ON (closed)	OFF (open)
		$\begin{gathered} \text { Monitior Ciricuit } \\ \text { (unlocecedit } \\ 53-54 \\ \hline \end{gathered}$	OFF (open)	ON (closed)	ON (closed)	ON (closed)	ON (closed)
	HS5E-B7Y	Main Ciraut	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{gathered} \text { Monitor Ciracuit } \\ \text { (loor open) } \\ 23-24 \end{gathered}$	OFF (open)	OFF (open)	ON (closed)	ON (closed)	OFF (open)
		$\begin{gathered} \text { Monitit C Circuit } \\ \text { Ilockectit } \\ 51-52 \end{gathered}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
	HS5E-C7Y	Main Ciraut	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{aligned} & \text { Monitor Circuit } \\ & \text { (door closed) } \\ & 21-22 \end{aligned}$	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
	Montio C Cirutit ${ }^{\text {a }}$	$\begin{aligned} & \text { Monitor Circuit } \\ & \text { (unlocked) } \\ & 53-54 \end{aligned}$	OFF (open)	ON (closed)	ON (closed)	ON (closed)	ON (closed)
	HS5E-D7Y	Main Ciricuit	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{aligned} & \text { Monitor Circuit } \\ & \text { (door closed) } \\ & 21-22 \end{aligned}$	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\begin{aligned} & \text { Monitor Circuit } \\ & \text { (locked) } \\ & 51-52 \end{aligned}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
	U HSEE-F7Y	$\begin{gathered} \text { Main Circuit } \\ 11-42 \end{gathered}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{gathered} \text { Monito Circuit } \\ \text { (door Colsesed) } \\ 21-22 \end{gathered}$	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\underset{\text { Monitor Clircuit }}{\text { (door closed) }}$ 31-32	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		Main Cirauit	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{aligned} & \text { Monitor Circuit } \\ & \text { (door closed) } \\ & 21-22 \end{aligned}$	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\begin{gathered} \text { Monitior Circuit } \\ \text { (door openit } \\ 33-34 \\ \hline \end{gathered}$	OFF (open)	OFF (open)	ON (closed)	ON (closed)	OFF (open)
		Main Cirauit	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{gathered} \text { Monitor Circuit } \\ \text { (locked) } \\ 51-52 \\ \hline \end{gathered}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{gathered} \text { Monitit Ciricuit } \\ \text { (lockecrit } \\ \text { 61-62 } \end{gathered}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		Main 11.42 irait	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{gathered} \text { Monitor Circuit } \\ \text { (locked) } \\ 51-52 \end{gathered}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{array}{\|c} \hline \text { Monitor Circuit } \\ \text { (unlocked) } \\ 63-64 \end{array}$	OFF (open)	ON (closed)	ON (closed)	ON (closed)	ON (closed)
	Solenoid Power A1-A2 (all types)		ON (energized)	OFF (de-energized)	OFF (de-energized)	ON (energized) ${ }^{2}$	OFF to ON ${ }^{1,2}$

The above contact configuration shows the status when the actuator is inserted and locked. Main Circuit: Connected to the control circuit of machine drive part, sending interlock signals of the protective door.

1: Actuator can be unlocked manually for confirming the door movement before wiring and energizing, and also for emergency situation such as power failure.
2: When the operator is confined in a hazardous zone, the actuator can be unlocked manually by
pressing the rear unlocking button.

Monitor Circuit: Sends monitoring signals of protective door open/closed status or protective door lock/unlock status.

Operation Characteristics (reference)

Main Circuit
Monitor Circuit (door open, NO) Monitor Circuit (door closed, NC) Monitor Circuit (unlocked, NO) Monitor Circuit (locked, NC)

The operation characteristics shown in the chart above are of the HS9Z-A51. For other actuator types, add 1.3 mm .
The operation characteristics show the contact status when the actuator enters the entry slot of an interlock switch.

Dual Safety Circuit Type

Interlock Switch Status			Status 1	Status 2	Status 3	Status 4	Manual Unlock
			- Door Closed - Machine ready to operate - Solenoid de-energized	- Door Closed - Machine cannot be operated - Solenoid energized	- Door Open - Machine cannot be operated - Solenoid energized	- Door Open - Machine cannot be operated - Solenoid de-energized	- Door Closed - Machine cannot be operated - Solenoid de-energized
Door Status							
Circuit Diagram (HS5E-A7Y)							
Door			Closed (locked)	Closed (unlocked)	Open	Open	Closed (unlocked)
	Door Monitor (Actuator inserted	Main Circuit	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
$$	Man Cirout: $-11+12$ Main Circuit: $\Theta 21+22$	$\begin{aligned} & \text { Main Circuit } \\ & 21-52 \end{aligned}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
Solenoid Power A1-A2 (all types)			OFF (de-energized)	ON (energized)	ON (energized)	OFF (de-energized)	OFF (de-energized)

The above contact configuration shows the status when the actuator is inserted and locked. Main Circuit: Connected to the control circuit of machine drive part, sending interlock signals of the protective door.

Note: Actuator can be unlocked manually for confirming the door movement before wiring and energizing, and also for emergency situation such as power failure.

Operation Characteristics (reference)

The operation characteristics shown in the chart above are of the HS9Z-A51.
For other actuator types, add 1.3 mm .
The operation characteristics show the contact status when the actuator enters the entry slot of an interlock switch.

$\begin{aligned} & 3 \\ & .0 .3 \\ & 0.3 \\ & 0 \\ & 0 \end{aligned}$	Standard Type - Solenoid	ck Typ					
	Interlock Switch Status		Status 1 - Door Closed - Machine ready to operate - Solenoid de-energized	Status 2 - Door Closed - Machine cannot be operated - Solenoid energized	Status 3 - Door Open - Machine cannot be operated - Solenoid energized	Status 4 - Door Open - Machine cannot be operated - Solenoid de-energized	Manual Unlock - Door Closed - Machine cannot be operated - Solenoid de-energized
	Door Status						
	Circuit Diagram (HS5E-VA4)						
	Door		Closed (locked)	Closed (unlocked)	Open	Open	Closed (unlocked)
		Main Circuit	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\begin{aligned} & \text { Monitor Circuit } \\ & \text { (door open) } \\ & 23-24 \end{aligned}$	OFF (open)	OFF (open)	ON (closed)	ON (closed)	OFF (open)
		$\begin{aligned} & \text { Monitor Circuit } \\ & \text { (door open) } \\ & 41-42 \end{aligned}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{gathered} \text { Monitor Circuit } \\ \text { (unlocked) } \\ 53-54 \end{gathered}$	OFF (open)	ON (closed)	ON (closed)	ON (closed)	ON (closed)
		Main ${ }_{\text {cincuit }}^{11-42}$	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\begin{gathered} \text { Monitor Circuit } \\ \text { (door open) } \\ 23-24 \end{gathered}$	OFF (open)	OFF (open)	ON (closed)	ON (closed)	OFF (open)
		$\begin{aligned} & \text { Monitor Circuit } \\ & \text { (door open) } \\ & 41-42 \end{aligned}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{gathered} \hline \text { Monitor Circuit } \\ \text { (locked) } \\ 51-52 \end{gathered}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		Main Circuit	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\begin{aligned} & \text { Monitor Circuit } \\ & \text { (door closed) } \\ & 21-22 \end{aligned}$	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\begin{aligned} & \text { Monitor Circuit } \\ & \text { (door open) } \\ & 41-42 \end{aligned}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{gathered} \text { Monitor Circuit } \\ \text { (unlocked) } \\ 53-54 \end{gathered}$	OFF (open)	ON (closed)	ON (closed)	ON (closed)	ON (closed)
		Main Circuit	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
	HS5E-VD4	$\begin{aligned} & \text { Monitor Circuit } \\ & \text { (door closed) } \end{aligned}$	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\begin{array}{\|c} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (door opent } \\ 41-42 \end{array} \\ \hline \end{array}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
	Monitor Circuit: $\begin{array}{l}\text { Monitor Circuit: } \\ \text { Mnnitnr Cirruit }\end{array}$ Θ $21+\frac{12}{+}$	$\begin{gathered} \text { Monitor Circuit } \\ \text { (locked) } \\ 51-52 \\ \hline \end{gathered}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
	Solenoid Power A1-A2 (all types)		OFF (de-energized)	ON (energized)	ON (energized)	OFF (de-energized)	OFF (de-energized)

The above contact configuration shows the status when the actuator is inserted and locked.
Monitor Circuit: Sends monitoring signals of protective door open/closed status or protective door lock/unlock status.

Operation Characteristics (reference)

Note: Actuator can be unlocked manually for confirming the door movement before wiring and energizing, and also for emergency situation such as power failure.

Main Circuit
Monitor Circuit (door open, NO) Monitor Circuit (door closed, NC) Monitor Circuit (unlocked, NO) Monitor Circuit (locked, NC)

The operation characteristics shown in the chart above are of the HS9Z-A51. For other actuator types, add 1.3 mm .
The operation characteristics show the contact status when the actuator enters the entry slot of an interlock switch.

Standard Type - Solenoid Lock Type

Interlock Switch Status			Status 1	Status 2	Status 3	Status 4	Manual Unlock
			- Door Closed - Machine ready to operate - Solenoid energized	- Door Closed - Machine cannot be operated - Solenoid de-energized	- Door Open - Machine cannot be operated - Solenoid de-energized	- Door Open - Machine cannot be operated - Solenoid energized	- Door Closed - Machine cannot be operated - Solenoid de-energized \rightarrow energized
Door Status							
Circuit Diagram (HS5E-VA4)							
Door			Closed (locked)	Closed (unlocked)	Open	Open	Closed (unlocked)
		Main Circuit 11-42	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\begin{gathered} \text { Monitor Circuit } \\ \text { (door open) } \\ 23-24 \end{gathered}$	OFF (open)	OFF (open)	ON (closed)	ON (closed)	OFF (open)
		$\begin{gathered} \text { Monitor Circuit } \\ \text { (door open) } \\ 41-42 \end{gathered}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{gathered} \text { Monitor Circuit } \\ \text { (unlocked) } \\ 53-54 \\ \hline \end{gathered}$	OFF (open)	ON (closed)	ON (closed)	ON (closed)	ON (closed)
		Main Circuit 11-42	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
	HS5E-VB7Y	$\begin{gathered} \text { Monitor Circuit } \\ \text { (doror open) } \\ 23-24 \end{gathered}$	OFF (open)	OFF (open)	ON (closed)	ON (closed)	OFF (open)
	$\begin{array}{lll:l} \text { Monitor Circuit } \Theta & & 11 & 12 \\ \text { Monito C Circuit: } & 2 \underline{23} & \frac{12}{24} & 42 \\ \hline \end{array}$	$\begin{gathered} \text { Monitor Circuit } \\ \text { (door open) } \\ 41-42 \end{gathered}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
	Monitor Circuit: $\quad 5 \quad 51+52$	$\begin{gathered} \text { Monito Circuit } \\ \text { (lockecri) } \\ 51-52 \\ \hline \end{gathered}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		Main Circuit 11-42	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
	HS5E-VC7Y	Monitor Circuit (door closed) 21-22	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\begin{gathered} \text { Monitor Circuit } \\ \text { (door open) } \\ 41-42 \end{gathered}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
	Monitor Circuit: Monitor Circuit: 53 54	$\underset{\substack{\text { Monito Circcuit } \\ \text { (unlocked) } \\ 53-54}}{ }$	OFF (open)	ON (closed)	ON (closed)	ON (closed)	ON (closed)
		$\begin{aligned} & \text { Main Circuit } \\ & \text { 11-42 } \end{aligned}$	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
	HS5E-VD7Y	$\begin{gathered} \text { Monitor Circuit } \\ \text { (door closed) } \\ 21-22 \\ \hline \end{gathered}$	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
	Monitor Circuit:	$\begin{gathered} \text { Monitor Circuit } \\ \text { (door open) } \\ 41-42 \end{gathered}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
	Monitor Circuit: $\Theta 21+22$ Monitor C Circuit:	Monitor Circuit (locked) $51-52$ 51-52	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
Solenoid Power A1-A2 (all types)			OFF (de-energized)	ON (energized)	ON (energized)	OFF (de-energized)	OFF (de-energized)

> The above contact configuration shows the status when the actuator is inserted and locked. Monitor Circuit: Sends monitoring signals of protective door open/closed status or protective door lock/unlock status.

Operation Characteristics (reference)

Main Circuit

Monitor Circuit (door open, NO) Monitor Circuit (door closed, NC) Monitor Circuit (unlocked, NO Monitor Circuit (locked, NC)

The operation characteristics shown in the chart above are of the HS9Z-A51. For other actuator types, add 1.3 mm .
The operation characteristics show the contact status when the actuator enters the entry slot of an interlock switch.

Operating Instructions

Minimum Radius of Hinged Door

- When using the interlock switch for a hinged door, refer to the minimum radius of doors shown below. For the doors with small minimum radius, use angle adjustable actuators (HS9Z-A53 or HS9Z-A55).

Because deviation or dislocation of hinged door may occur in actual applications, make sure of the correct operation before installation.

HS9Z-A52 Actuator

When the door hinge is on the extension line of the interlock switch surface:

When the door hinge is on the extension line of the actuator mounting surface:

HS9Z-A52 Actuator (w/rubber bushings)

When the door hinge is on the extension line of the interlock switch surface:

When the door hinge is on the extension line of the actuator mounting surface:

Actuator Angle Adjustment

- Using the angle adjustment screw, the actuator angle can be adjusted (refer to the dimensional drawing on pagepage 330).
Adjustable angle: 0 to 20°
- The larger the adjusted angle of the actuator, the smaller the applicable radius of the door opening
- After installing the actuator, open the door. Then adjust the actuator so that its edge can be inserted properly into the actuator entry slot of the interlock switch.
- After adjusting the actuator angle, apply Loctite to the adjustment screw so that the screw will not move.

When using the HS9Z-A53 Angle Adjustable (vertical) Actuator
When the door hinge is on the extension line of the interlock switch surface: 50 mm When the door hinge is on the extension line of the actuator mounting surface: 80 mm

When using the HS9Z-A55 Angle Adjustable (vertical/horizontal) Actuator
When the door hinge is on the extension line of the interlock switch surface: 50 mm Horizontal Swing

Vertical Swing

When the door hinge is on the extension line of the actuator mounting surface: 70 mm

Rotating the Head

The head of the HS5E can be rotated by removing the four screws from the corners of the HS5E head and reinstalling the head in the desired orientation. Before wiring the HS5E, replace the head if necessary. Before replacing the head, turn the manual unlock to the UNLOCK position using the manual unlock key. When reinstalling the head, make sure that no foreign object enters the interlock switch. Tighten the screws tightly, without leaving space between the head and body, otherwise the interlock switch may malfunction.
Recommended tightening torque: 0.9 to $1.1 \mathrm{~N} \cdot \mathrm{~m}$.

Instructions, continued

For Manual Unlocking
 Spring lock type

The HS5E allows manual unlocking of the actuator to pre-check proper door movement before wiring or turning power on, as well as for emergency use such as a power failure.

Solenoid lock type

The solenoid lock type interlock switch normally does not need the manual unlock. However, only when the interlock switch would not release the actuator even though the solenoid is de-energized, the interlock switch can be unlocked manually. Unlock the interlock switch manually only when the solenoid is de-energized. Do not unlock the interlock switch manually when the solenoid is energized.

When locking or unlocking the interlock switch manually, turn the key fully using the manual unlock key supplied with the interlock switch.
Using the interlock switch with the key not fully turned (less than 90°) may cause damage to the interlock switch or operation failures (when manually unlocked, the interlock switch will keep the main circuit disconnected and the door unlocked).
Do not apply excessive force to the manual unlock, otherwise the manual unlock will become damaged.
Do not leave the manual unlock key attached to the interlock switch during operation. This is dangerous because the interlock switch can always be unlocked while the machine is in operation.

Installing the Rear Unlocking Button

After installing the interlock switch on the panel, place the rear unlocking button (supplied with the switch) on the push rod on the back of the interlock switch, and fasten the button using the M3 sems screw. Rear unlocking button can be installed alone when the total thickness of mounting frame and panel is 6 mm or less. When the total thickness of mounting frame, panel, and mounting plate is 23 to 43 mm , use the rear unlocking button kit (HS9Z-FL53 or HS9Z-FL54) sold separately.

Cables

- When bending the cable during wiring, make sure that the cable radius is kept at 30 mm minimum.
- Solenoid has polarity. Be sure of the correct polarity when wiring

Safety Precautions

Install the rear unlocking button kit in the correct direction as shown below. Do not install the kit in incorrect directions, otherwise malfunction will be caused.

Correct

Incorrect

Do not apply strong force exceeding $100 \mathrm{~m} / \mathrm{s} 2$ to the interlock switch while the rear unlocking button is not pressed, otherwise malfunction will be caused.

Manual Unlocking using the Rear Unlocking Button

The rear unlocking button is used by the operator confined in a hazardous area for emergent escape.

How to operate

When the rear unlocking button is pressed, the interlock switch is unlocked and the door can be opened.
To lock the interlock switch, pull back the button.
When the button remains pressed, the interlock switch cannot be locked even if the door is closed, and the main circuit remains open.

Recommended Tightening Torque

- HS5E interlock switch: 1.8 to 2.2 N.m (four M4 screws) (Note)
- Rear unlocking button: 0.5 to $0.7 \mathrm{~N} \cdot \mathrm{~m}$
- Rear unlocking button kit: 4.8 to $5.2 \mathrm{~N} \cdot \mathrm{~m}$ (M5 screw)
- Actuators

HS9Z-A51:	1.8 to $2.2 \mathrm{~N} \cdot \mathrm{~m}$ (two M4 screws)
HS9Z-A52:	0.8 to $1.2 \mathrm{~N} \cdot \mathrm{~m}$ (two M4 Phillips screws)

HS9Z-A51A/A52A: 1.0 to $1.5 \mathrm{~N} \cdot \mathrm{~m}$ (two M4 screws)
HS9Z-A53: $\quad 4.5$ to $5.5 \mathrm{~N} \cdot \mathrm{~m}$ (two M6 screws)
HS9Z-A55: $\quad 1.0$ to $1.5 \mathrm{~N} \cdot \mathrm{~m}$ (two M4 screws)
Note: The above recommended tightening torque of the mounting screws are the values with hex socket head bolts. When other screws are used and tightened to a smaller torque, make sure that the screws do not become loose after mounting.

Instructions, continued

Wire Identification

Wires can be identified by color and a white line printed on the wire.

- HS5E-V: Wires of gray and gray/white insulation cannot be used.
- HS5E-DD: Wires of brown and brown/white insulation cannot be used.

No.	Insulation	No.	Insulation	No.	Insulation	No.	Insulation
1	White	4	Blue	7	Blue/White	10	Pink/White
2	Black	5	Brown/White	8	Orange/White	11	Gray
3	Brown	6	Orange	9	Pink	12	Gray/White

Terminal Number Identification

- When wiring, the terminal number of each contact can be identified by wire color.
- The following table shows the identification of terminal numbers.

Type	Circuit Diagram
HS5E-VA	
HS5E-VB	Monitor Circuit: Blue \qquad 12 Blue/White Pink 4 \qquad 42 Pink/White Monitor Circuit: Orange 23 24 Orange/White Monitor Circuit: Brown 51 52 Brown/White
HS5E-VC	
HS5E-VD	Monitor Circuit: Blue \rightarrow 11 12 Blue/White Pink 41 42 Pink/White Monitor Circuit: Orange \rightarrow $21+1$ 22 Orange/White Monitor Circuit: Brown 51 52 Brown/White

The above contact configuration shows the status when the actuator is inserted and locked.

When wiring, cut unnecessary wires such as the dummy insulation (white) and any unused wires.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Emergency Stop Switches / E-Stop Switches category:
Click to view products by Idec manufacturer:

Other Similar products are found below :
84-5021.2B40 A01ESSP8 A22EL-M-24A-11B AVN302N-R A165E-S-01(STOP) AYLD2212602SN-R-TK962 AVLD39911N-R-24V A22Z-EG22 A165E-SY 3100.0110Y 3050.1302Y 3SE2243-0XX40 3SK1111-2AB30 3SK1211-1BB40 3SK1211-2BB40 44-710 846841.2B20 84-6830.0040 H3141AAKAA A165E-R-24D-01 E3102AAAAB A22E-M-03 ZA2BV05 A22EL-M-T2-01 951FY000-WO ER6022-022N 952+2000-00 ES3S51653001 601+0000-OP E3101AAAAB 84-5130.0040 CS AR-22V230 DS AE1VA DS KB2A DS KB3A HE6B-M211Y $774191 \underline{774316} 777760$ R1.188.0640.0 SNV 4063KL-A R1.188.1810.0 SNA 4043K-A R1.188.1840.0 SNA 4043K-A $\underline{\text { SR BD40ALK-B02F AVLW39911D-R-120V AYD311NUG 84-5040.0020.0049 FP } 1879 \text { FP } 2079 \text { FP } 2178 \text { FP } 2179}$

