Circuit Protectors

NC1V

IDEC's original Spring-up Terminals and Cover.
Provide IP20 Finger-safe Protection.

- Note: TÜV, CE, and CCC marks are applicable for series trip type only.
- See website for details on approvals and standards.

Finger-safe, spring-up terminal reduces wiring time.

Ring terminal tabs can be installed easily, and screws are held captive.

Main Circuit Terminals are Fingersafe (IP20)
Spring-up, fingersafe structure requires no terminal cover.

Auxiliary/Alarm Contact Terminals are Equipped with a Terminal Cover

Voltage coil terminals on the relay trip version are also equipped with a terminal cover as standard.

Retractable Actuator

The actuator is retracted while the circuit protector is turned on. Inadvertent operation, due to touching the actuator, can be prevented.

Rated Short-circuit Capacity 2500A

Available with Inertial Delay

Allows for use with large inrush currents such as motors

Safe Trip-free Mechanism

The circuit remains open even when the operator is turned on after tripping (unit must be manually reset after removing the cause of the tripping).

Padlock Attachment

Locks the retractable actuator in the off position to prevent NC1V from being switched on inadvertently.

NC1V Circuit Protectors

IDEC's original spring-up, fingersafe terminals enhance reliability and safety.

Specifications

APEM
Switches \& Pilot Lights

Control Boxes
Emergency
Stop Switches
Enabling
Switches
Safety Products
Explosion Proof
Terminal Blocks
Relays \& Sockets

Power Supplies
LED Illumination
Controllers
Operator
Interfaces
Sensors
AUTO-ID

Part No. Development

NC1V - $2100 \mathrm{~F}-30 \mathrm{~A} A$ DC24V

8 Voltage Trip Coil Voltage
DC24V: 24-48V DC

* Specified for relay trip only.

2 No. of Poles
7 Time Delay Curve
M: Slow
2: 2-pole
3: 3-pole
A: Medium
S: Instantaneous

* For both AC/DC
* Specified for series trip only.

1: Series trip (current trip)
5: Relay trip (voltage trip)
4 Auxiliary/Alarm Contacts
Rated Current
$0.1 \mathrm{~A}, 0.3 \mathrm{~A}, 0.5 \mathrm{~A}, 1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}, 5 \mathrm{~A}, 7 \mathrm{~A}, 10 \mathrm{~A} 15 \mathrm{~A}, 20 \mathrm{~A}, 25 \mathrm{~A}, 30 \mathrm{~A}$

* Specified for series trip only.

11: With one auxiliary contact
12: With two auxiliary contacts
13: With three auxiliary contacts
21: With one alarm contact
31: With one auxiliary contact and one alarm contact
32: With two auxiliary contacts and one alarm contact

5 Inertial Delay

Blank: Without
F: With

* Inertial delay is for AC voltage only.
* Available with medium and slow types (not applicable with relay trip).
Explosion Proof
Terminal Blocks Relays \& Sockets
Circuit
Protectors

Power Supplies LED Illumination

Controllers
Operator Interfaces

Sensors
AUTO-ID

Note: Inertial delay is for AC circuit. Also, time delay curve of S (instantaneous) is not available with inertial delay.

Internal Circuit

1-pole

NC1V-1100 (Without auxiliary/alarm contacts)	NC1V-1111 (With auxiliary contact)	NC1V-1121 (With alarm contact)	NC1V-1500 (Relay Trip)

2-pole

NC1V-2100 (Without auxiliary/alarm contacts)	NC1V-2111 (With auxiliary contact)	NC1V-2121 (With alarm contact)	NC1V-2500 (Relay Trip)

3-pole

NC1V-3100 (Without auxiliary/alarm contacts)	NC1V-3111 (With auxiliary contact)	NC1V-3121 (With alarm contact)	NC1V-3500 (Relay Trip)
	One auxiliary contact. Also available with two or three auxiliary contacts.	One alarm contact. Also available with one auxiliary and one alarm contacts, and two auxiliary and one alarm contacts.	

Overcurrent-Time Delay Characteristics (sec at $40^{\circ} \mathrm{C}$) [vertical mounting]

Item	Time Delay Curve	Percent of Rated Current								
		100\%	125\%	150\%	175\%	200\%	400\%	600\%	800\%	1000\%
AC ($50 / 60 \mathrm{~Hz}$)/DC	S (instantaneous)	NO TRIP	-	$\begin{aligned} & * 0.005 \\ & \text { to } 0.1 \end{aligned}$	$\begin{gathered} 0.003 \\ \text { to } 0.06 \end{gathered}$	$\begin{aligned} & 0.0027 \\ & \text { to } 0.05 \end{aligned}$	$\begin{aligned} & 0.002 \\ & \text { to } 0.03 \end{aligned}$	$\begin{gathered} 0.002 \\ \text { to } 0.028 \end{gathered}$	$\begin{gathered} 0.002 \\ \text { to } 0.025 \end{gathered}$	$\begin{gathered} 0.002 \\ \text { to } 0.022 \end{gathered}$
	A (medium)	N0 TRIP	*25 to 240	16 to 140	-	6 to 32	0.4 to 4	$\begin{gathered} 0.0055 \\ \text { to } 1.5 \end{gathered}$	$\begin{aligned} & 0.004 \\ & \text { to } 0.8 \end{aligned}$	$\begin{aligned} & 0.004 \\ & \text { to } 0.65 \end{aligned}$
	M (slow)	N0 TRIP	*60 to 600	30 to 200	-	9 to 60	0.4 to 10	$\begin{aligned} & 0.006 \\ & \text { to } 4.5 \end{aligned}$	$\begin{aligned} & 0.004 \\ & \text { to } 1.8 \end{aligned}$	$\begin{aligned} & 0.004 \\ & \text { to } 0.8 \end{aligned}$
AC ($50 / 60 \mathrm{~Hz}$)	With Inertial Delay A (medium)	N0 TRIP	25 to 240	-	-	6 to 32	0.8 to 6	$\begin{aligned} & 0.09 \\ & \text { to } 3.5 \end{aligned}$	$\begin{aligned} & 0.02 \\ & \text { to } 1.8 \end{aligned}$	$\begin{aligned} & 0.01 \\ & \text { to } 1.0 \end{aligned}$
	With Inertial Delay M (slow)	N0 TRIP	60 to 600	-	-	10 to 60	0.8 to 10	$\begin{aligned} & 0.06 \\ & \text { to } 4.5 \end{aligned}$	$\begin{gathered} 0.02 \\ \text { to } 3 \end{gathered}$	$\begin{aligned} & 0.01 \\ & \text { to } 1.75 \end{aligned}$

*: May trip on DC.

NC1V Circuit Protectors

Time Delay Curves at $40^{\circ} \mathrm{C}$

Note: The entire shaded area applies to AC.
For DC, the shaded area on the right of the dashed line applies.

Time Delay Curve and Ambient Temperature

NC1V circuit protectors employ an electromagnetic tripping system, where the rated current (trip current) is not affected by ambient temperatures. But the time delay may vary with the oil viscosity in the oil dash pot. Lower oil viscosity at higher temperatures results in a shorter delay, whereas at lower temperatures the delay will be longer.

Temperature Correction Curve

The time delay curves on the preceding page are measured at $40^{\circ} \mathrm{C}$. With reference to the following curves, time delays can be corrected according to ambient temperature.

The time delay is based on an ambient temperature of $40^{\circ} \mathrm{C}$. Time delays at other temperatures are corrected according to the temperature correction curve. The time delay of the instantaneous time delay curve (S) is not affected by the ambient temperature.

When operating temperature exceeds $40^{\circ} \mathrm{C}$, derate the rated current by multiplying the derating factor shown on the right.

Operating Temp.	Derating Factor
$50^{\circ} \mathrm{C}$	0.9
$55^{\circ} \mathrm{C}$	0.8
$60^{\circ} \mathrm{C}$	0.7

Inertial Delay

Inertial delay is designed not to trip on a non-repeating single pulse of 20 times the rated current (peak value) for a duration of 8 ms . In addition, circuit protectors equipped with inertial delay do not respond to high inrush currents caused by transformer or lamp loads, but perform the specified interruption on the subsequent overcurrents. Inertial delay is available on AC circuits, and is not available with the series trip curve S (instantaneous).

Voltage Drop Due to Coil Resistance or Impedance

The internal resistance or impedance of a circuit protector tends to be larger for a smaller rated current. Therefore, when circuit protectors of a small rated current are used, voltage drop should be taken into consideration. Internal resistance also varies with time delay curves, which should also be considered during installation.

Main Contact - Auxiliary/Alarm Contact

[Auxiliary Contact]

Main Contact	NO ontact	NC Contact
ON	closed	open
Tripped	open	closed
OFF	open	closed

[Alarm Contact]

Main Contact	NO ontact	NC Contact
ON	open	closed
Tripped	closed	open
OFF	open	closed

Relay Trip (Voltage Trip)

Tripping Voltage	For DC Resistance (Ω)
$24-48 \mathrm{~V}$	100.0

Tolerance: $\pm 25 \%$

2-pole

3-pole

Note: Cannot be used with NC1V with auxiliary or alarm contact.

Accessories

Dimensions

NC9Z-MA Panel Mounting Bracket

Dimensions A and B

Dimension	A	B
1-pole	21.2	17.8
2-pole	38.7	35.3
3-pole	56.2	52.8

Mounting Hole Layout

Panel Mounting Screw Length (Dimension C in mm)
Applicable Panel Thickness: 0.8 to 3.2 mm
The outside diameter of the M3 screw (including washer) must be 7 mm maximum.

Panel thickness (mm)		0.8	1.0	1.2	1.4	1.6	1.8	2.0	2.3	2.6	3.2
Without washer	U ${ }^{4}$	5	5	6	6	6	6	6	8	8	8
With plain washer (0.5 thick)	0	6	6	6	6	6	6	8	8	8	8
With spring washer (0.7 thick)	0	6	6	6	6	6	8	8	8	8	8
With plain washer (0.5 thick) and spring washer (0.7 thick)	v?	6	6	6	8	8	8	8	8	8	8
Countersunk head screw	$0 \pm \square$	-	-	-	-	-	-	6	6	8	8

All dimensions in mm.

NC9Z-TA1 Wiring Clip

Insulation Sleeve
When using wiring clips on 2- or 3-pole circuit protectors, install UL/CSA-rated insulation sleeves on the crimping terminals to ensure the air gap required by UL1077. Applicable Insulation Sleeves (Example)

- Nissei Eco (V-38)
- Tokyo Dip (TP-038)
- Nichifu (TIC38)

Applicable Crimping Terminal

Tightening torque: 1.8 to $2.2 \mathrm{~N} \cdot \mathrm{~m}$
Materials

- Panel Mounting Bracket: Steel
- Wiring Clip: Brass (terminal strip) Steel (screw, washer)

Tightening torque: 0.5 to $0.8 \mathrm{~N} \cdot \mathrm{~m}$
The screw length behind the panel must be 9 mm maximum.

NC9Z-PW1 Marking Plate

Marking Plate Installed on the Circuit Protector

When installed on a 2-pole circuit protector

NC98-LK1 Padlock Attachment

NC1V Circuit Protectors

Replacement Parts
All dimensions in mm

Shape	Material	Part No.	Ordering No.	Package Quantity	Remarks
Terminal Cover	PA66				
WC1V-AUX-CV	NC1V-AUX-CV	1			
Wiring Clip	Terminal: Brass Screw/washer: Steel	NC9Z-TA1	NC9Z-TA1PN10	10	

Instructions

Installation Angle

Tripping method is hydraulic magnetic. Minimum operating current varies with installation angle. Operating currents are influenced by the weight of movable iron core. With reference to the following figures, correct the rated current.

Minimum operating current is calculated from the following formula: (Minimum operating current) $=$ (Rated current) \times (Correction factor by installation angle) \times (Reference minimum tripping current rate)

DIN Rails

[Installation on DIN Rail]

1. Fasten the DIN rail securely.
2. With the latch facing downward, install the NC1V circuit protector on the DIN rail as shown below.

[Removal from DIN Rail]

Using a flat screwdriver, pull the latch on the circuit protector to remove from the DIN rail.

Applicable Wire and Crimp Terminal

Terminal	Terminal Screw	Connectable Wire Size (mm²)	Applicable Crimping Terminal	Tightening Torque ($\mathrm{N} \cdot \mathrm{m}$)
	Spring-up, fingersafe, slotted Phillips screw with square washer (up to 20A)	0.25 to 1.65	R1.25-4	1 to 1.4
		1.04 to 2.63	R2-4	
		2.63 to 6.64	R5.5-4	
	Spring-up fingersafe terminal (25A and 30A)	0.25 to 1.65	R1.25-5	1.8 to 2.2
		1.04 to 2.63	R2-5	
		2.63 to 6.64	R5.5-5	
	Slotted Phillips screw with square washer	0.25 to 1.65	R1.25-3.5	0.7 to 0.9
		1.04 to 2.63	R2-3.5	

- For wiring the main circuit terminal, use the applicable crimp terminals and tighten to the recommended tightening torque.
- When using the NC1V circuit protector as CSA-certified product, use with CSAcertified crimp terminal.
- When using the NC1V circuit protector as UL-listed product, use with UL-listed crimp terminal.

Panel Mounting Screw (not supplied)

Screw Size	Tightening Torque	Shape
M4	0.8 to $1.0 \mathrm{~N} \cdot \mathrm{~m}$	Spring Washer Plain Washer

Product Markings (Example: NC1V-1111-30AA)

Installation of Auxiliary/Alarm Terminal Cover

After wiring the terminals, install the terminal cover by aligning the terminal cover with the circuit protector as shown below.

Terminal cover installed

Instructions

Installing Auxiliary/Alarm Terminal Cover

Connect the terminal before installing the terminal cover.
Installing
Attach the latch on TOP side and install the terminal cover as shown below.

Installing NC9Z-MA Panel Mounting Brackets

1. Insert the wiring clip into the terminal of the circuit protector, and tighten.

- Tightening torque to the main circuit terminal
- 20A max. (M4): 1 to $1.4 \mathrm{~N} \cdot \mathrm{~m}$
- 25A, 30A (M5): 1.8 to $2.2 \mathrm{~N} \cdot \mathrm{~m}$

2. Insert the panel mounting bracket to the circuit protector.
3. Install the rear of the panel mounting bracket into the DIN rail recess on the circuit protector and push in the clamp.

Note: NC1V circuit protectors with auxiliary/alarm contacts cannot be used with mounting brackets.

Installing the NC98-PW1 Marking Plate

Available for 2-pole circuit protectors only.
For use on 1-pole circuit protectors, break the marking plate into two halves.

Marking Range

Installing the NC98-LK1 Padlock Attachment

(1) Pull down the retractable actuator, and install the padlock attachment on the circuit protector.
1-pole: Insert the pin into the holes under the retractable actuator.
2- or 3-pole: Insert the pin into the holes in the center of the circuit protector.

(2) Turn the body.

(3) Install the body on the retractable actuator as shown below.
(4) Slide the pin to the lock position.

Padlock

- The padlock is not supplied with the padlock attachment and must be supplied by the user.
- The total weight of the padlock can be a maximum of 45 g . Make sure the padlock weight does not exceed 45 g , otherwise the NC1V circuit protector may be damaged.

AUT0-ID

- Applicable Padlock Size

(A)	(B)	C	D	E	(F)	G
19 to 25	35 to 42	9 to 11.5	4 to 4.5	11 to 15	8 to 10	7.5 to 9.0

Recommended Padlock

Manufacturer	Part No.
Alpha	$1000-25$
Master Lock	4120

Safety Precautions

- When using the padlock, do not use the NC1V circuit protector where it is subject to vibration or shock, otherwise failure or damage may result.
- Do not apply a force of more than 50N on the retractable actuator, otherwise the actuator will be damaged.
- When using three or more 1-pole NC1V circuit protectors adjacently, facilitate installing the padlock attachment by providing a clearance of 6 mm minimum between the protectors, or by using the tweezers or flat screwdriver.

APEM
Switches \& Pilot Lights

Control Boxes
Emergency
Stop Switches
Enabling
Switches
Safety Products
Explosion Proof

Circuit Protectors

Power Supplies

Controllers
Operator
Interfaces
Sensors NCIV

Terminal Blocks
Relays \& Sockets

LED Illumination

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Circuit Breakers category:

Click to view products by Idec manufacturer:

Other Similar products are found below :
LUGZX66-1-61-20.0-44 M39019/01-201S M39019/01-221 M39019/01-323 M39019/01-333 M39019/01-336 M39019/02-248 M39019/02-
311 M39019/02-316 M39019/04-249S M39019/05-246S M39019/06-254S M55629/1-016 M55629/1-018 M55629/1-021 M55629/1-033
M55629/1-036 M55629/1-046 M55629/1-048 M55629/1-058 M55629/1-067 M55629/1-070 M55629/1-079 M55629/1-084 M55629/1-085
M55629/1-101 M55629/1-109 M55629/11-102 M55629/1-120 M55629/12-045 M55629/12-046 M55629/1-330 M55629/1-366 M55629/1387 M55629/1-401 M55629/1-450 M55629/2-022 M55629/2-030 M55629/2-072 M55629/2-082 M55629/2-099 M55629/2-101 M55629/2-
102 M55629/21-BM-BM M55629/21-HM-HM M55629/21-NS-NS M55629/22-NR-NR-NR M55629/22-RS-RS-RS M55629/2-347
M55629/2-401

