Force Guided Relays

RF $_{\text {series }}$

Enables flexible construction of safety circuits
Compact and EN compliant RF1V force guided relays.

제 (ㅏㅏㅇ
 (force guided relays)

께 © (e
(socket)

- See website for details on approvals and standards.

No. of Poles | Page |
| :---: |
| 4-pole |
| 2-pole |

Force guided contact mechanism

EN50205 Type A TÜV approved

Fast Response Time

Response time of 8 ms .
Ensures safety by turning the load off quickly.

High Shock Resistance

High shock resistant suitable for use in machine tools and in environments subjected to vibration and shocks. ($200 \mathrm{~m} / \mathrm{s}^{2}$ minimum)

Clear Visiblilty

Available with a built-in LED.
Output expansion for safety relay modules and safety controllers
HR1S Safety Relay Module
Cost effective and easy method to expand mechanical contact outputs.

FS1A Safety Controller

Solid state safety outputs of safety controllers can be converted to mechanical contact outputs.

- Circuit Example

RF1V Force-guided Relays / SF1V Relay Sockets

Compact and EN compliant RF1V force guided relays.

Package quantity: 10

Contact		Rated Coil Voltage	Without LED Indicator	With LED Indicator	With Counter-electromotive Force Diode With LED Indicator	
		Part No.	Part No.	Part No.		
4-pole	2NO-2NC		12V DC	RF1V-2A2B-D12	RF1V-2A2BL-D12	RF1V-2A2BLD1-D12
		24V DC	RF1V-2A2B-D24	RF1V-2A2BL-D24	RF1V-2A2BLD1-D24	
		48 V DC	RF1V-2A2B-D48	RF1V-2A2BL-D48	RF1V-2A2BLD1-D48	
	3NO-1NC	12V DC	RF1V-3A1B-D12	RF1V-3A1BL-D12	RF1V-3A1BLD1-D12	
		24 V DC	RF1V-3A1B-D24	RF1V-3A1BL-D24	RF1V-3A1BLD1-D24	
		48 V DC	RF1V-3A1B-D48	RF1V-3A1BL-D48	RF1V-3A1BLD1-D48	
6-pole	4NO-2NC	12 V DC	RF1V-4A2B-D12	RF1V-4A2BL-D12	RF1V-4A2BLD1-D12	
		24V DC	RF1V-4A2B-D24	RF1V-4A2BL-D24	RF1V-4A2BLD1-D24	
		48 V DC	RF1V-4A2B-D48	RF1V-4A2BL-D48	RF1V-4A2BLD1-D48	
	5NO-1NC	12 V DC	RF1V-5A1B-D12	RF1V-5A1BL-D12	RF1V-5A1BLD1-D12	
		24V DC	RF1V-5A1B-D24	RF1V-5A1BL-D24	RF1V-5A1BLD1-D24	
		48 V DC	RF1V-5A1B-D48	RF1V-5A1BL-D48	RF1V-5A1BLD1-D48	
	3NO-3NC	12 V DC	RF1V-3A3B-D12	RF1V-3A3BL-D12	RF1V-3A3BLD1-D12	
		24V DC	RF1V-3A3B-D24	RF1V-3A3BL-D24	RF1V-3A3BLD1-D24	
		48 V DC	RF1V-3A3B-D48	RF1V-3A3BL-D48	RF1V-3A3BLD1-D48	

Sockets

Package quantity: 10

Types	No. of Poles	Part No.
	4	SF1V-4-07L
	6	SF1V-6-07L
PC Board Mount Sockets	4	SF1V-4-61
	6	SF1V-6-61

Coil Ratings

Contact		Rated Coil Voltage (V)	$\begin{gathered} \text { Rated Current (mA) } \\ \pm 10 \% \\ \text { (at } 20^{\circ} \mathrm{C} \text {) (Note } 1 \text {) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Coil } \\ \text { Resistance (} \Omega \text {) } \\ \pm 10 \% \text { (at } 20^{\circ} \mathrm{C} \text {) } \end{gathered}$	Operating Characteristics (at $20^{\circ} \mathrm{C}$)			Power Consumption	
		Pickup Voltage (initial value)			Dropout Voltage (initial value)	Maximum allowable Voltage (Note 2)			
4-pole	2NO-2NC		12V DC	30.0	400	75\% maximum	10\% minimum	110\%	Approx. 0.36W
		24V DC	15.0	1,600					
		48 V DC	7.5	6,400					
	3NO-1NC	12 V DC	30.0	400					
		24V DC	15.0	1,600					
		48 V DC	7.5	6,400					
6-pole	4NO-2NC	12V DC	41.7	288	Approx. 0.50W				
		24V DC	20.8	1,152					
		48 V DC	10.4	4,608					
	5NO-1NC	12 V DC	41.7	288					
		24V DC	20.8	1,152					
		48 V DC	10.4	4,608					
	3NO-3NC	12 V DC	41.7	288					
		24V DC	20.8	1,152					
		48V DC	10.4	4,608					

[^0]RF1V Force Guided Relays / SF1V Relay Sockets

Relay Specifications

Number of Poles		4-pole		6-pole		
Contact Configuration		2NO-2NC	3NO-1NC	4NO-2NC	5NO-1NC	3NO-3NC
Contact Resistance (initial value) (Note 1)		$100 \mathrm{~m} \Omega$ maximum				
Contact Material		AgSnO_{2} (Au flashed)				
Rated Load (resistive load)		6A 250V AC, 6A 30V DC				
Allowable Switching Power (resistive load)		1500 VA, 180 W DC (30V DC max.), 85W DC (30V to 120V DC max.)				
Allowable Switching Voltage		250 V AC, 125 V DC				
Allowable Switching Current		6A				
Minimum Applicable Load (Note 2)		5V DC, 1 mA (reference value)				
Power Consumption (approx.)		0.36W		0.50W		
Insulation Resistance		$1000 \mathrm{M} \Omega$ minimum (500 V DC megger, same measurement positions as the dielectric strength)				
Dielectric Strength	Between contact and coil	4000 V AC, 1 minute				
	Between contacts of different poles	2500V AC, 1 minute Between contacts 7-8 and 9-10		2500V AC, 1 minute Between contacts 7-8 and 11-12 Between contacts 9-10 and 13-14 Between contacts 11-12 and 13-14		
		4000 V AC, 1 minute Between contacts 3-4 and 5-6 Between contacts 3-4 and 7-8 Between contacts 5-6 and 9-10		4000 V AC, 1 minute Between contacts 3-4 and 5-6 Between contacts 3-4 and 7-8 Between contacts 5-6 and 9-10 Between contacts 7-8 and 9-10		
	Between contacts of the same pole	1500 V AC, 1 minute				
Operate Time (at $20^{\circ} \mathrm{C}$)		20 ms maximum (at the rated coil voltage, excluding contact bounce time)				
Response Time (at $20^{\circ} \mathrm{C}$) (Note 3)		8 ms maximum (at the rated coil voltage, excluding contact bounce time, without diode) (Note 4)				
Release Time (at $20^{\circ} \mathrm{C}$)		20 ms maximum (at the rated coil voltage, excluding contact bounce time, without diode)				
Vibration Resistance	Operating Extremes	10 to 55 Hz , amplitude 0.75 mm				
	Damage Limits	10 to 55 Hz , amplitude 0.75 mm				
Shock Resistance	Operating Extremes (half sine-wave pulse: 11 ms)	$200 \mathrm{~m} / \mathrm{s}^{2}$, when mounted on DIN rail mount socket: $150 \mathrm{~m} / \mathrm{s}^{2}$				
	Damage Limits (half sine-wave pulse: 6 ms)	$1000 \mathrm{~m} / \mathrm{s}^{2}$				
Electrical Life		250V AC 6A resistive load: 100,000 operations minimum (operating frequency 1200 per hour) $30 V$ DC 6A resistive load: 100,000 operations minimum (operating frequency 1200 per hour) 250 V AC 1A resistive load: 500,000 operations minimum (operating frequency 1800 per hour) 30 V DC 1A resistive load: 500,000 operations minimum (operating frequency 1800 per hour) [AC 15] 240V AC 2A inductive load: 100,000 operations minimum (operating frequency 1200 per hour, $\cos \emptyset=0.3$) [DC 13] 24V DC 1A inductive load: 100,000 operations minimum (operating frequency 1200 per hour, $\mathrm{L} / \mathrm{R}=48 \mathrm{~ms}$)				
Mechanical Life		10 million operations minimum (operating frequency 10,800 operations per hour)				
Operating Temperature (Note 5)		-40 to $+85^{\circ} \mathrm{C}$ (no freezing)				
Operating Humidity		5 to 85\%RH (no condensation)				
Storage Temperature		-40 to $+85^{\circ} \mathrm{C}$ (no freezing)				
Storage Humidity		5 to 85\%RH (no condensation)				
Operating Frequency (rated load)		1200 operations per hour				
Weight (approx.)		20 g		23 g		

Note 1: Measured using 6V DC,1A voltage drop method.
Note 3: Response time is the time until NO contact opens, after the coil voltage is turned off. Note 5: See the table below for the current and operating temperature
Socket Specifications

Model		SF1V-6-07L		SF1V-4-61	SF1V-6-61
Rated Current	6A				
Rated Voltage	250V AC/DC				
Insulation Resistance	$1000 \mathrm{M} \Omega$ minimum (500V DC megger, between terminals)				
Applicable Wire	$\begin{aligned} & 0.7 \text { to } 1.65 \mathrm{~mm}^{2} \\ & \text { (18 AWG to } 14 \text { AWG) } \\ & \hline \end{aligned}$		-		
Recommended Screw Tightening Torque	0.5 to $0.8 \mathrm{~N} \cdot \mathrm{~m}$		-		
Screw Terminal Style	M3 slotted Phillips self-tapping screw		-		
Terminal Strength	Wire tensile strength: 50N min.		-		
Dielectric Strength	2500 V AC, 1 minute (Between live and dead metal parts, between live parts of different poles)				
Vibration Resistance	Damage limits: 10 to 55 Hz , amplitude 0.75 mm Resonance: 10 to 55 Hz , amplitude 0.75 mm				
Shock Resistance	$1000 \mathrm{~m} / \mathrm{s}^{2}$				
Operating Temperature (Note)	-40 to $+85^{\circ} \mathrm{C}$ (no freezing)				
Operating Humidity	5 to 85\% RH (no condensation)				
Storage Temperature	-40 to $+85^{\circ} \mathrm{C}$ (no freezing)				
Storage Humidity	5 to 85\% RH (no condensation)				
Degree of Protection	IP20 (finger-safe screw terminals)		-		
Weight (approx.)	40 g	55 g	9 g		10 g

Note: See the table at right for the current and operating temperature.

Operating Temperature (relay, socket)

	Single mounting	Collecti	mounting
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	4-pole	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
		6-pole	$-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
Contact Current	6 A	6A	
Remarks	When the ambient temperature is over $70^{\circ} \mathrm{C}$, lower the contact current at $0.1 \mathrm{~A} /{ }^{\circ} \mathrm{C}$. 5N01NC: Up to $70^{\circ} \mathrm{C}$: Keep the total current of NO side to 24A maximum. Over $70^{\circ} \mathrm{C}$: Lower the contact current at $0.1 \mathrm{~A} /{ }^{\circ} \mathrm{C}$.	4-pole	When the ambient temperature is over $60^{\circ} \mathrm{C}$, lower the contact current at $0.1 \mathrm{~A} /{ }^{\circ} \mathrm{C}$.
		6-pole	When the ambient temperature is over $50^{\circ} \mathrm{C}$, lower the contact current at $0.1 \mathrm{~A}^{\circ} \mathrm{C}$. 5NO1NC: Up to $50^{\circ} \mathrm{C}$: Keep the total current of NO side to 24A maximum. Over $50^{\circ} \mathrm{C}$: Lower the contact current at $0.1 \mathrm{~A} /{ }^{\circ} \mathrm{C}$.

Applicable Crimping Terminal
All dimensions in mm.

Note: Ring tongue terminals cannot be used.

Accessories

Characteristics

Electrical Life Curve

Notes on Contact Gaps except Welded Contacts
Example: RF1V-2A2B-D24

- If the NO contact (7-8 or 9-10) welds, the NC contact (3-4 or 5-6) remains open even when the relay coil is de-energized, maintaining a gap of 0.5 mm minimum. The remaining unwelded NO contact ($9-10$ or $7-8$) is either open or closed.
- If the NC contact (3-4 or 5-6) welds, the NO contact (7-8 or 9-10) remains open even when the relay coil is energized, maintaining a gap of 0.5 mm minimum. The remaining unwelded NC contact (5-6 or 3-4) is either open or closed.

APEM

Switches \& Pilot Lights

Control Boxes
Emergency Stop Switches
Enabling
Switches
Safety Products
Explosion Proof
Terminal Blocks
Relays \& Sockets
Circuit
Protectors
Power Supplies
LED Illumination

Controllers
Operator Interfaces

Sensors
AUTO-ID

Interlock
Switches
Non-contact Interlock Switches
Safety Laser
Scanners
Safety Light
Curtains
Safety Modules

FS1A
RF1V
RF2
HR2S
HR1S

With LED Indicator

3NO-1NC Contact

RF1V (6-pole)
Without LED Indicator

With LED Indicator

5NO-1NC Contact
4NO-2NC Contact

4NO-2NC Contact

3NO-3NC Contact

3NO-3NC Contact
With Counter-electromotive Force Diode

5NO-1NC Contact

4NO-2NC Contact

3NO-3NC Contact

Dimensions

SF1V PC Board Mount Sockets

SF1V (4-pole)

PC Board Mounting Hole Layout / Terminal Arrangement (Bottom View)

SF1V DIN Rail Mount Socket Dimensions

SF1V (4-pole)

(Panel Mounting Hole Layout)

PC Board Mounting Hole Layout / Terminal Arrangement (Bottom View)

SF1V (6-pole)
(Internal Connection)

(Top View)

(Panel Mounting Hole Layout)

(Top View)

Operating Instructions

1. Driving Circuit for Relays

1. To make sure of correct relay operation, apply rated voltage to the relay coil. Pickup and dropout voltages may differ according to operating temperature and conditions.
2. Input voltage for DC coil:

A complete DC voltage is best for the coil power to make sure of stable operation. When using a power supply containing a ripple voltage, suppress the ripple factor within 5%. When power is supplied through a rectifications circuit, relay operating characteristics, such as pickup voltage and dropout voltage, depend on the ripple factor. Connect a smoothing capacitor for better operating characteristics as shown below.

3. Operating the relay in sync with an AC load:

If the relay operates in sync with AC power voltage of the load, the relay life may be reduced. If this is the case, select a relay in consideration of the required reliability for the load. Or, make the relay turn on and off irrespective of the AC power phase or near the point where the AC phase crosses zero voltage.
4. Leakage current while relay is off: Incorrect

Correct

When driving an element at the same time as the relay operation, special consideration is needed for the circuit design. As shown in the incorrect circuit below, leakage current (lo) flows through the relay coil while the relay is off. Leakage current causes coil release failure or adversely affects the vibration resistance and shock resistance. Design a circuit as shown in the correct example.
5. Surge suppression for transistor driving circuits: When the relay coil is turned off, a high-voltage pulse is generated. Be sure to connect a diode to suppress the counter electromotive force, or use RF1V with counter-electromotive force diode. Then, the coil release time becomes slightly longer. To shorten the coil release time, connect a Zener diode between the collector and emitter of the controlling transistor. Select a Zener diode with a Zener voltage slightly higher than the power voltage.

6. The coil terminal of the relay has polarity. Connect terminals according to the internal connection diagram. Incorrect wiring may cause malfunction.

2. Protection for Relay Contacts

1. The contact ratings show maximum values. Make sure that these values are not exceeded even momentarily. When an inrush current flows through the load, the contact may become welded. If this is the case, connect a contact protection circuit, such as a current limiting resistor.
2. Contact protection circuit:

When switching an inductive load, arcing causes carbides to form on the contacts, resulting in an increased contact resistance. In consideration of contact reliability, contact life, and noise suppression, use of a surge absorbing circuit is recommended. Note that the release time of the load becomes slightly longer. Check the operation using an actual load. Incorrect use of a contact protection circuit will adversely affect switching characteristics. Four typical examples of contact protection circuits are shown in the following table:

O		This protection circuit can be used when the load impedance is smaller than the RC impedance in an AC load power circuit. R: Resistor of approximately the same resistance value as the load $\mathrm{C}: 0.1 \text { to } 1 \mu \mathrm{~F}$
	$\square_{\text {Power }}^{\circ 0} \frac{c}{c}$	This protection circuit can be used for both AC and DC load power circuits. R: Resistor of approximately the same resistance value as the load C: 0.1 to $1 \mu \mathrm{~F}$
		This protection circuit can be used for DC load power circuits. Use a diode with the following ratings. Reverse withstand voltage: Power voltage of the load circuit $\times 10$ Forward current: More than the load current
		This protection circuit can be used for both AC and DC load power circuits. For a best result, when using on a power voltage of 24 to 48 V AC/DC, connect a varistor across the load. When using on a power voltage of 100 to 240 V AC/DC, connect a varistor across the contacts.

RF1V Force Guided Relays / SF1V Relay Sockets

Operating Instructions
3. Do not use a contact protection circuit as shown below:

This protection circuit is very effective in arc suppression when opening the contacts. But, the capacitor is charged while the contacts are opened. When the contacts are closed, the capacitor is discharged through the contacts, increasing the possibility of contact welding.
This protection circuit is very effective in arc suppression when opening the contacts. But, when the contacts are closed, a current flows to charge the capacitor, causing contact welding.

Generally, switching a DC inductive load is more difficult than switching a DC resistive load. Using an appropriate arc suppressor will improve the switching characteristics of a DC inductive load.

3. Usage, transport, and storage conditions

1. Temperature, humidity, atmospheric pressure during usage, transport, and storage.
(1) Temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (no freezing)

See E-187 for the current and operating temperature.
(2) Humidity: 5 to 85% RH (no condensation) The humidity range varies with temperature. Use within the range indicated in the chart below.
(3) Atmospheric pressure: 86 to 106 kPa

Operating temperature and humidity range

2. Condensation

Condensation occurs when there is a sudden change in temperature under high temperature and high humidity conditions. The relay insulation may deteriorate due to condensation.
3. Freezing

Condensation or other moisture may freeze on the relay when the temperatures is lower than $0^{\circ} \mathrm{C}$. This causes problems such as sticking of movable parts or delay in operation.
4. Low temperature, low humidity environments

Plastic parts may become brittle when used in low temperature and low humidity environments.

4. Panel Mounting

When mounting DIN rail mount sockets on a panel, take the following into consideration.

- Use M3.5 screws, spring washers, and hex nuts.
- For mounting hole layout, see dimensions on E-189.
- Keep the tightening torque within 0.49 to $0.68 \mathrm{~N} \cdot \mathrm{~m}$. Excessive tightening may cause damage to the socket.

5. Others

1. General notice
(1) To maintain the initial characteristics, do not drop or shock the relay.
(2) The relay cover cannot be removed from the base during normal operation. To maintain the initial characteristics, do not remove the relay cover.
(3) Use the relay in environments free from condensation, dust, sulfur dioxide $\left(\mathrm{SO}_{2}\right)$, and hydrogen sulfide $\left(\mathrm{H}_{2} \mathrm{~S}\right)$.
(4) The RF1V relay cannot be washed as it is not a sealed type. Also make sure that flux does not leak to the PC board and enter the relay.
2. Connecting outputs to electronic circuits:

When the output is connected to a load which responds very quickly, such as an electronic circuit, contact bouncing causes incorrect operation of the load. Take the following measures into consideration.
(1) Connect an integration circuit.
(2) Suppress the pulse voltage due to bouncing within the noise margin of the load.
3. Do not use relays in the vicinity of strong magnetic field, as this may affect relay operation.
4. UL and CSA ratings may differ from product rated values determined by IDEC.

6. Notes on PC Board Mounting

- When mounting 2 or more relays on a PC board, keep a minimum spacing of 10 mm in each direction. If used without spacing of 10 mm , rated current and operating temperature differs. Consult IDEC.
- Manual soldering: Solder the terminals at $400^{\circ} \mathrm{C}$ within 3 sec .
- Auto-soldering: Preliminary heating at $120^{\circ} \mathrm{C}$ within 120 sec. Solder at $260^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ within 6 sec .
- Because the terminal part is filled with epoxy resin, do not excessively solder or bend the terminal. Otherwise, air tightness will degrade.
- Avoid the soldering iron from touching the relay cover or the epoxy filled terminal part.
- Use a non-corrosive resin flux.

RF2 2-pole Force Guided Relay / SJ seitis Socket

For simple and easy safety measure. Reduce cost and installation space.

Switches \& Pilot Lights

Control Boxes
Emergency
Stop Switches
Enabling
Switches
Safety Products
Explosion Proof

Terminal Blocks

Relays \& Sockets
Circuit
Protectors
Power Supplies
LED Illumination

Controllers
Operator
Interfaces
Sensors
AUTO-ID

Interlock
Switches
Non-contact
Interlock Switches
Safety Laser
Scanners
Safety Light
Curtains
Safety Modules

FS1A
RF1V

HR1S

Note 1: With diode: terminal 1 -, terminal $8+$
Note 2: With diode of reverse polarity coil: terminal $1+$, terminal $8-$ Note 3: Use this chart for interpreting part numbers. Not all possible variations can be realized.

LD1		K		-	D24	
Option		Degree of Protection			Rated Coil Voltage	
Blank	Standard				D12	12 V D
L	With LED indicator	Blank	RTII			
			RTIII		D24	24 V D
D	With diode (Note 1)				D48	48 V DC
D1	With diode of reverse polarity coil (Note 2)					
LD	With LED indicator \& diode (Note 1)					
LD1	With LED indicator \& diode of reverse polarity coil (Note 2)					

RF2 2-pole Force Guided Relay / SJ Series Socket

Standard Ratings

Voltage	UL Rating Resistive		CSA Rating Resistive	
	NO	NC	NO	NC
277 V AC	6 A	3 A	6 A	3 A
30 V DC	6 A	3 A	6 A	3 A

Voltage	TÜV Rating Resistive	
	N0	NC
240 VAC	6 A	3 A
24 V DC	6 A	3 A

Ratings

Control Boxes
Emergency
Stop Switches
Enabling
Switches
Safety Products
Explosion Proof
Terminal Blocks
Specifications
Terminal Blocks
Relays \& Socket
Circuit
Protectors
Power Supplies
LED Illumination

Controllers
Operator Interfaces

Sensors

AUTO-ID

Interlock
Switches
Non-contact Interlock Switches

Safety Laser Scanners
Safety Light Curtains

Safety Modules

Rated Voltage (V)	$\begin{gathered} \text { Rated Current (mA) } \\ \pm 15 \%\left(\text { at } 20^{\circ} \mathrm{C}\right) \end{gathered}$		Coil Resistance$\pm 10 \% \text { (at } 20^{\circ} \mathrm{C} \text {) }$	Operating Characteristics (against rated values at $20^{\circ} \mathrm{C}$)			Power Consumption
			Minimum Pickup Voltage	Dropout Voltage	Maximum Allowable Voltage (Note)		
	Without LED	With LED					
12V DC	58	63	205	75\% maximum	10\% minimum	110\%	Approx. 0.7W
24V DC	29	33	820				
48 V DC	14.6	18	3300				

Note: Maximum allowable voltage is the maximum voltage that can be applied to relay coils.

Model		RF2S (Plug-in Terminal)	RF2V (PC board terminal)
No. of Poles		2-pole	
Contact Configuration		SPST-N0 + SPST-NC, DPDT	
Disconnecting Means		Micro disconnection	
Contact Resistance (Note 1)		$100 \mathrm{~m} \Omega$ maximum	
Contact Material		AgNi+Au-Clad	
Degree of Protection		RTII (flux-tight), RTIII (sealed)	
Rated Load (resistive load)		NO contact: 240V AC, 6A/24V DC, 6A NC contact: 240 V AC, $3 \mathrm{~A} / 24 \mathrm{~V}$ DC, 3 A	
Contact	Maximum Allowable Power (resistive load)	NO contact: 1440VA/144W, NC contact: 720VA/72W	
	Maximum Allowable Voltage	250 V AC, 125 V DC	
	Maximum Allowable Current	6A	
Minimum Applicable Load (Note 2)		1V DC, 1mA	
Power Consumption		Approx. 0.7W	
Rated Insulation Voltage		250V	
Insulation Resistance		1000M Ω minimum (500 V megger)	
Impulse Withstand Voltage		6000 V	
Pollution Degree		2	
Dielectric Strength	Between contact and coil	5000 V AC, 1 minute	
	Between contacts of the same pole	4000 V AC, 1 minute	
	Between contacts of the different poles	1500 V AC, 1 minute	
Operating Time		$15 \mathrm{~ms} \mathrm{max}. \mathrm{(at} \mathrm{the} \mathrm{rated} \mathrm{coil} \mathrm{voltage} ,\mathrm{excluding} \mathrm{contact} \mathrm{bounce} \mathrm{time)}$	
Response Time (Note 3)		5 ms max. (at the rated coil voltage, without diode) 20ms max. (at the rated coil voltage, with diode)	
Release Time		10ms max. (at the rated coil voltage, excluding contact bounce time, without diode) 25 ms max. (at the rated coil voltage, excluding contact bounce time, with diode)	
Vibration Resistance	Operating Extremes	NO contact: 10 to 55 Hz , amplitude 0.75 mm NC contact:10 to 55 Hz , amplitude 0.2 mm	
	Damage Limits	10 to 55 Hz , amplitude 0.75 mm	
Shock Resistance	Operating Extremes	NO contact: $100 \mathrm{~m} / \mathrm{s}^{2}$, NC contact: $50 \mathrm{~m} / \mathrm{s}^{2}$	
	Damage Limits	1000m/s ${ }^{2}$	
Electrical Life		NO contact: 100,000 operations minimum (operating frequency 1,800 per hour) at 240 V 6 A resistive load or 2 A inductive load (power factor 0.4) 100,000 operations minimum (operating frequency 1,800 per hour) at 24 V 6 A resistive load or 1A inductive load (time constant 48ms) NC contact: 100,000 operations minimum (operating frequency 1,800 per hour) at 240 V AC, 3 A resistive load or 2 A inductive load (power factor 0.4) 100,000 operations minimum (operating frequency 1,800 per hour) at 24 V DC, 3 A resistive load or 1 A inductive load (time constant 48ms)	
Mechanical Life		10 million operations minimum (operating frequency 18,000 operations per hour)	
Operating Temperature		Single mounting: -40 to $+70^{\circ} \mathrm{C}$ (no freezing) Collective mounting: -40 to $+55^{\circ} \mathrm{C}$ (no freezing)	-40 to $+70^{\circ} \mathrm{C}$ (no freezing)
Operating Humidity		5 to 85\%RH (no condensation)	
Storage Temperature		-40 to $+85^{\circ} \mathrm{C}$ (no freezing)	
Weight (approx.)		18 g (without LED/diode), 20 g (with LED/with diode/with LED \& diode)	

- Above values are initial values.

Note 1: Measured using 5V DC, 1A voltage drop method.
Note 2: Failure rate level P, reference value
Note 3: Response time is the time until NO contact opens, after the coil voltage is turned off.

SJ Series Relay Socket

지단 (Standard screw terminal and Fingersafe screw terminal) c균 (Push-in terminal)

- See website for details on approvals and standards. Note: Sockets can be used on RF2S (Plug-in terminal) only.

Sockets
SOCKetS

Terminal Style		Part No.	Ordering No.	Package Quantity
DIN-rail Socket (*1)	Standard Screw Terminal (*2)	SJ2S-05B	SJ2S-05B	1
	Fingersafe Screw Terminal (*2)	SJ2S-07L	SJ2S-07L	1
	Push-in Terminal	SJ2S-21L	SJ2S-21L	1
PC Board Socket	SJ2S-61	SJ2S-61PN10	10	
	SJ2S-61	SJ2S-05PN50	50	

*1) Release lever is supplied with the socket.
*2) Terminal number marking in white also available. Add "W" to the Part No.
Example: SJ2S-07LW

- See website for details on PC board socket.

Accessories and Replacement Parts (for DIN-rail Socket)

Descrip	ription/Shape	Applicable Socket Part No.	Material	Part No.	Ordering No.	Package Quantity	Remarks
Removable Marking Plate		$\begin{aligned} & \text { SJ2S-05B } \\ & \text { SJ2S-07L } \end{aligned}$	Plastic (white)	SJ9Z-PW	SJ9Z-PWPN10	10	
		SJ2S-21L		SJ9Z-P2100W	SJ9Z-P2100W		(*4)
Jumper$(* 3)$	For 2 sockets	$\begin{aligned} & \text { SJ2S-05B } \\ & \text { SJ2S-07L } \end{aligned}$	Nickel-coated brass with polypropylene coating	SJ9Z-JF2	SJ9Z-JF2PN10		Terminal centers: 15.5 mm Rated current: 12A
	For 5 sockets			SJ9Z-JF5	SJ9Z-JF5PN10		
	For 8 sockets			SJ9Z-JF8	SJ9Z-JF8PN10		
	For 10 sockets			SJ9Z-JF10	SJ9Z-JF10PN10		
	For 2 sockets	SJ2S-21L	Zinc-plated steel with polybutylene terephthalate coating	SJ9Z-J2102A	SJ9Z-J2102A		A2 terminal of the coil is connected. The rated current is 2 A .
Releas (with i marking	Lever egrated plate)	$\begin{aligned} & \text { SJ2S-05B } \\ & \text { SJ2S-07L } \end{aligned}$	Plastic (gray)	SJ9Z-CM	SJ9Z-CMPN05	5	When not using marking plate
Release		SJ2S-21L	Plastic	SJ9Z-C21R	SJ9Z-C21R	10	

*3) Ensure that the total current to the jumper does not exceed the maximum current. *4) Used for Push-in terminals.

Socket Specifications

Model		$\begin{aligned} & \hline \text { SJ2S-05B/-07L } \\ & \text { (DIN Rail Socket) } \end{aligned}$	$\begin{array}{c\|} \hline \text { SJ2S-61 } \\ \text { (PC Board Socket) } \\ \hline \end{array}$	SJ2S-21L (Push-in Terminal Socket)
Rated Current		8A		
Rated Insulation Voltage		250V AC/DC		300 V AC/DC (*6)
Applicable Wire		$2 \mathrm{~mm}{ }^{2}$	-	Solid wire / stranded wire: 0.14 to $1.5 \mathrm{~mm}^{2}$, AWG26 to 16 Stranded wire with ferrule (without insulated cover): 0.5 to $1.5 \mathrm{~mm}^{2}$, AWG20 to 16 Stranded wire with ferrule (with insulated cover) 0.14 to $1.0 \mathrm{~mm}^{2}$, AWG26 to 18
Applicable Cripming Terminal		See the dimensions shown at right	-	
Recommended Tightening Torque		0.6 to $1.0 \mathrm{~N} \cdot \mathrm{~m}$	-	-
Screw Terminal Style		M3 slotted Phillips screw (self-lifting)	-	-
Terminal Strength		Wire tensile strength: 50N minimum	_	-
Dielectric Strength (*5)	Between contact and coil	4000 V AC, 1 min .	5000 V AC, 1 min .	2500V AC, 1 min. (between live and dead metal parts, between live metal parts of the different poles)
	Between contacts of the same pole	1000 V AC, 1 min .		
	Between contacts of the different pole	3000 V AC, 1 min .		
Vibration Resistance	Damage limits	90m/s ${ }^{2}$		10 to 55 Hz , amplitude 1.5 mm
	Resonance	Frequency 10 to 55 Hz , amplitude 0.75 mm		
Shock Resistance (damage limits)		$1000 \mathrm{~m} / \mathrm{s}^{2}$		50G (when using release lever)
Operating Temperature		-40 to $+70^{\circ} \mathrm{C}$ (no freezing)		
Operating Humidity		5 to 85\% RH (no condensation)		
Storate Temperature		-55 to $+85^{\circ} \mathrm{C}$ (no freezing)		-40 to $+70^{\circ} \mathrm{C}$ (no freezing)
Degree of Protection (Screw Terminal)		SJ2S-07L: IP20 (IEC 60529)	-	-
Weight		34 g	4.5 g	43g

Applicable Crimping Terminal

Note: Ring terminal cannot be used on SJ2S-OL. See Cat. No. EP1728 for applicable terminals on Push-in terminals.
*5) The above are same when used with a RF2 force guided relay. *6) When using the socket with RF2S Force Guided Relay, the rated insulation voltage is 150 V AC/DC.

RF2 2-pole Force Guided Relay / SJ Series Socket
Circuit
Protectors

Controllers
Operator

Sensors
AUTO-ID

SJ2S-61

Socket Dimensions

SJ2S-07L
M3 Terminal Screws

(integrated with release lever)

PC Board Terminal Mounting Hole
Layout
(Bottom View)
RF2V (SPST-NO + SPST-NC)

RF2V (DPDT)

With LED/diode

(All dimensions in mm.)

RF2V (PC board terminal)
Standard (without LED/diode)

* With LED/diode: 28.4

SJ2S-05B

(Top View)
SJ2S-21L

Internal Connection (Bottom View)

RF2*-1A1B- \square
Standard

RF2*-2C-
Standard

RF2*-1A1BL- \square
With LED indicator

RF2*-2CL- \square
With LED indicator

RF2*-1A1BLD1- \square
With LED indicator + diode of reverse polarity coil

RF2*-2CLD1- \square
With LED indicator + diode of reverse polarity coil

RF2*-1A1BD1- \square
With diode of reverse polarity coil

RF2*-2CD1-口
With diode of reverse polarity coil

- Relays with diode have polarity. Take polarity into consideration when wiring.
- When using DPDT model as a force guided relay, use in SPST-NO + SPST-NC wiring (EN50205).

RF2*-1A1BLD- \square
With LED indicator + diode

RF2*-2CLD- \square
With LED indicator + diode

RF2*-1A1BD- \square
With diode

RF2*-2CD- \square
With diode

Control Boxes
Emergency Stop Switches
Enabling
Switches
Safety Products
Explosion Proof

Terminal Blocks
Relays \& Sockets
Circuit
Protectors
Power Supplies
LED Illumination

Controllers
Operator Interfaces

Sensors
AUTO-ID

Interlock
Switches
Non-contact
Interlock Switches
Safety Laser
Scanners
Safety Light
Curtains
Safety Modules

Operating Instructions

1. When using DPDT model as a force guided relay

Use in SPST-NO + SPST-NC wiring according to EN50205 (2002) RF2*-2C- \square
Standard

Example:

Use terminal 3-4 as NO contact and 6-7 as NC contact. Or terminal 2-3 as NC contact and terminal 5-6 as NO contact.

2. Driving Circuit for Relays

2-1. To make sure of correct relay operation, apply rated voltage to the relay coil. Pickup and dropout voltages may differ according to operating temperature and conditions.
2-2. Input voltage for DC coil:
A complete DC voltage is best for the coil power to make sure of stable operation. When using a power supply containing a ripple voltage, suppress the ripple factor within 5%. When power is supplied through a rectification circuit, the relay operating characteristics, such as pickup voltage and dropout voltage, depend on the ripple factor. Connect a smoothing capacitor for better operating characteristics as shown below.

Emax = Maximum pulsating current
Emin $=$ Minimum of pulsating current
Emean $=\mathrm{DC}$ mean value
2-3. Operating the relay in sync with an AC load:

If the relay operates in sync with AC power voltage of the load, the relay life may be reduced. If this is the case, select a relay in consideration of the required reliability for the load. Or, make the relay turn on and off irrespective of the AC power phase or near the point where the AC phase crosses zero voltage.

2-4. Leakage current while relay is OFF
When driving an element at the same time as the relay operation, special consideration is needed for the circuit design. As shown in the incorrect circuit at right, leakage current (lo) flows through the relay coil while the relay is off.
Leakage current causes coil release failure or adversely affects the vibration resistance and shock resistance. Design a circuit as shown in the correct example.

Correct

Incorrect

2-5. Surge suppression for transistor driving circuits:
When the relay coil is turned off, a high-voltage pulse is generated. Be sure to connect a diode to suppress the counter electromotive force. Then, the coil release time becomes slightly longer. To shorten the coil release time, connect a Zener diode between the collector and emitter of the controlling transistor. Select a Zener diode with a Zener voltage slightly higher than the power voltage.

$2-6$. The coil terminal of the relay has polarity. Connect terminals according to the internal connection diagram. Incorrect wiring may cause malfunction.

Operating Instructions

3. Protection for Relay Contacts

$3-1$. The contact ratings show maximum values. Make sure that these values are not exceeded. When an inrush current flows through the load, the contact may become welded. If this is the case, connect a contact protection circuit, such as a current limiting resistor. 3-2. Contact protection circuit:
When switching an inductive load, arcing causes carbides to form on the contacts, resulting in an increased contact resistance. In consideration of contact reliability, contact life, and noise suppression, use of a surge absorbing circuit is recommended. Note that the release time of the load becomes slightly longer. Check the operation using an actual load. Incorrect use of a contact protection circuit will adversely affect switching characteristics. Four typical examples of contact protection circuits are shown in the following table:

O	$\stackrel{T_{0}}{\circ}$	This protection circuit can be used for both AC and DC load power circuits. R: Resistor of approximately the same resistance value as the load. C: 0.1 to $1 \mu \mathrm{~F}$
응		This protection circuit can be used for DC load power circuits. Use a diode with the following ratings. Reverse withstand voltage: Power voltage of the load circuit $\times 10$ Forward current: More than the load current
-		This protection circuit can be used for both AC and DC load powercircuits. For the best result, when using on a power voltage of 24 to 48 V AC/DC, connect a varistor across the load. When using on a power voltage of 100 to 240 V AC/DC, connect a varistor across the contacts.

3-3. Do not use a contact protection circuit as shown below:

This protection circuit is very effective in arc suppression when opening the contacts. But, when the contacts are closed, a current flows to charge the capacitor, causing contact welding.

Generally, switching a DC inductive load is more difficult than switching a DC resistive load. Using an appropriate arc suppressor will improve the switching characteristics of a DC inductive load.

4. Usage, transport, and storage conditions

4-1. Condensation

Condensation occurs when there is a sudden change in temperature under high temperature and high humidity conditions. The relay insulation may deteriorate due to condensation.
$4-2$. Freezing
Condensation or other moisture may freeze on the relay when the temperatures is lower than $0^{\circ} \mathrm{C}$. This causes problems such as sticking of movable parts or delay in operation.
$4-3$. Low temperature, low humidity environments Plastic parts may become brittle when used in low temperature and low humidity environments.

5. Other Notices

5-1. General notice:
(1) To maintain the initial characteristics, do not drop or shock the relay.
(2) The relay cover cannot be removed from the base during normal operation. To maintain the initial characteristics, do not remove the relay cover.
(3) Use the relay in environments free from condensation, dust, sulfur dioxide (SO2), and hydrogen sulfide (H2S).
(4) RTII model cannot be washed as it is not a sealed type. Also make sure that flux does not leak to the PC board and enter the relay.
(5) Make sure that the voltage applied to the coil cotinuously does not exceed the maximum allowable voltage.

5-2. Connecting outputs to electronic circuits:

When the output is connected to a load which responds very quickly, such as an electronic circuit, contact bouncing causes incorrect operation of the load. Take the following measures into consideration.
(1) Connect an integration circuit.
(2) Suppress the pulse voltage due to bouncing within the noise margin of the load.
$5-3$. Do not use relays in the vicinity of strong magnetic fields, as this may affect relay operation.
$5-4$. UL and CSA ratings may differ from product rated values determined by IDEC.
$5-5$. Others

- Shock Resistance

For the best shock resistance, it is ideal to install the RF2 relay so that the armature movent is perpendicular to the direction of vibration/ shock.

- Life

Large loads that causes arcs may result in the contact material scattered off, accumulating around the contact. This will degrade insulation resistance between the circuits. Make sure that the relay is mounted in the correct direction.

- Counter-electromotive force model (diode)

Counter-electromotive force diode model has polarity. The diode absorbs counter-electromotive force of relay coil. When excessive external surge voltage is anticipated, take additional counterelectromotive force measures. Otherwise the diode may be damaged. When using general purpose relays and force guided relays closely, use of a marking plate (optional) on the release lever or socket is recommended, so that force guided relay can be recognized easily.

6. Notes on PC Board Mounting

- When mounting two or more relays on a PC board, keep a minimum spacing of 5 mm in each direction. If used without spacing of 10 mm , rated current and operating temperature differs. Consult IDEC.
- Manual soldering: Solder the terminals at $350^{\circ} \mathrm{C}$ within 3 sec .
- Auto-soldering: Preliminary heating at $120^{\circ} \mathrm{C}$ within 60 sec . Solder at $250^{\circ} \mathrm{C}$ within 4 to 5 sec .
- Because the terminal part is filled with epoxy resin, do not excessively solder or bend the terminal. Otherwise, air tightness will degrade.
- Avoid the soldering iron from touching the relay cover or the epoxy filled terminal part. Use a non-corrosive resin flux.
- Do not install the relay on the PC board in the way the PC board is bent, otherwise copper foil may be cut or solder may be displaced after operating for a long time or due to vibration, degrading the relay's performance.
- When multiple PC boards with relays are mounted to a rack, the temperature may rise excessively. When mounting relays, leave enough space so that heat will not build up, and so that the relays' ambient temperature remains within the specified operating temperature range.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for General Purpose Relays category:
Click to view products by Idec manufacturer:
Other Similar products are found below :
PCN-105D3MH,000 59641F200 5JO-1000CD-SIL LY1SAC110120 5X827E 5X837F 5X840F 5X842F 5X848E LY2N-AC120 LY2SAC220/240 LY2-US-AC120 LY3-US-AC120 LY4F-UA-DC12 LY4F-UA-DC24 LY4F-US-AC120 LY4F-US-AC240 LY4F-US-DC24 LY4F-VD-AC110 LYQ20DC12 M115C60 M115N010 M115N0150 6031007G 603-12D 61211T0B4 61212T400 61222Q400 61243B600 $\underline{61243 \mathrm{C} 500}$ 61243Q400 61311BOA2 61311BOA6 61311BOA8 61311C0A2 61311COA1 61311COA6 61311F0A2 61311QOA1 $\underline{61311 \mathrm{QOA} 4} \underline{61311 \mathrm{~T} 0 \mathrm{D} 6} \underline{61311 \mathrm{TOA} 6}$ 61311TOA7 $61311 \mathrm{TOB} 3 \underline{61311 \mathrm{TOB} 4} \underline{61311 \mathrm{U} 0 \mathrm{~A} 6} \underline{61312 \mathrm{Q} 600} \underline{61312 \mathrm{~T} 400} \underline{61312 \mathrm{~T} 600} \underline{61313 \mathrm{U} 200}$

[^0]: Note 1: For relays with LED indicator, the rated current increases by approx. 2 mA .
 Note 2: Maximum allowable voltage is the maximum voltage that can be applied to relay coils.

