RSS Series Panel Mount Solid State Relays

Key features:

- Input status LED Indicator
- Dual SCR output with epoxy free design
- Direct bond copper substrate with direct output lead frame termination
- Internal transient protection - built-in snubber
- EMC compliant (level 3)
- 1200 Volt blocking voltage
- 4000 Volt optical isolation
- Zero crossing voltage turn-on
- High surge capability

- Optional fingersafe cover (RSS-CVR)

Part Number Selection

Input	Continuous Output Current	Part Number
AC Input 90-280V AC	10 A	RSSAN-10A
	$25 A$	RSSAN-25A
	50 A	RSSAN-50A
	75 A	RSSAN-75A
	90 A	RSSAN-90A
DC Input	10 A	RSSDN-10A
3-32V DC	$25 A$	RSSDN-25A
	50 A	RSSDN-50A
	$75 A$	RSSDN-75A

Wiring Diagram

Specifications

	Series	RSSDN			RSSAN	
	Voltage Range	3 to 32 V DC 9			90 to 280V AC	
	Input Current	current regulated (10 mA)				
	Pick Up Voltage	3 V DC			90 VAC	
	Drop Out Voltage	1V DC			10 V AC	
	Dielectric Strength (Input-Output-Base)	4000 RMS (min)			4000 RMS (min)	
	Capacitance (Input to Output)	8pF		8pF		
	Rev. Voltage Protection	Yes (-32V DC)		N/A		
	Current (continuous)	10A	25A	50A	75A	90A
	1-Cycle Surge Current	150A	300A	750A	1000A	1200A
	1 -Second Surge Current at $25^{\circ} \mathrm{C}$	50 A	85A	150A	225A	300A
	Minimum Holding Current	50 mA	50 mA	100mA	100 mA	100 mA
	Voltage Drop at Rated Current	1.35V (maximum)				
	Voltage Range	48-660V AC				
	Output	Dual SCR (N.O.)				
	Over Voltage Rating	1200 PIV				
	Frequency Range	47 to 440 Hz				
	Off-State Leakage at Rated Voltage	25 mA (maximum)				
	Turn-On Time	$1 / 2$ cycle @ 60 Hz for zero-cross versions, 20ms for other versions				
	Turn-Off Time	$1 / 2$ cycle @ 60 Hz for zero-cross versions, 30ms for other versions				
	Zero Voltage Switching	Yes				
	Static DV/DT	200V/ $\mu \mathrm{sec}$				
	Commutating DV/DT	Snubbed for 0.5 power factor at rated load				
	Ambient operating temperature range	-20 to $80^{\circ} \mathrm{C}$				
	Weight	82g				

Recommended Loads

Transformer Loads

Transformer loads sometimes result in severe inrush current when the transformer saturates during the first cycle. Use a relay rated for this surge, which has a $1 / 2$ cycle surge current greater than the maximum applied line voltage; the transformer's primary resistance (approximately $10 x$ rated current).

Recommended Loads

	SSR Rating	at 120V AC	at 240V AC
	10 A	500 VA	1 KVA
0	25 A	1 KVA	2 KVA
\vdots	50 A	2 KVA	4 KVA
\square			

Heater Loads

When using solid state relays for driving heaters where the load is switched on and off rapidly and continuously, severe thermal stress will result. In such cases, use an SSR relay at no more than 75% of the rating.

Recommended Loads

SSR Rating	at 120V AC	at 240V AC
10 A	1 KW	2 KW
25 A	2 KW	4 KW
50 A	3 KW	6 KW

Solenoid Valves and Contactors

RSS relays use high-noise immunity circuitry with a built-in snubber to handle the electrical noise generated by inductive loads.

Recommended Loads

SSR Rating	at 120V AC	at 240V AC
10 A	900 W	$1,800 \mathrm{~W}$
25 A	$2,100 \mathrm{~W}$	$4,200 \mathrm{~W}$
50 A	$3,800 \mathrm{~W}$	$7,500 \mathrm{~W}$

RSS series relays provide a highly reliable means of switching AC loads when applied properly. Read the technical notes on the following page prior to installing solid state relays.

UL Motor Load Ratings (HP Ratings)

Part Number	120 V	240 V	480 V
10 A	$1 / 2$	$3 / 4$	$3 / 4$
25 A	$1 / 2$	$3 / 4$	$3 / 4$
50 A	$3 / 4$	$11 / 2$	$11 / 2$
75 A	$3 / 4$	5	5
90 A	$3 / 4$	5	5

Lamp Loads

Zero voltage switching is ideal for driving incandescent lamps, since the cold filament will not be subjected to a large inrush current. Using a zero-switched SSR will reduce inrush current and prolong lamp life.

Recommended Loads

SSR Rating	at 120V AC	at 240V AC
10 A	1 KW	2 KW
25 A	2 KW	4 KW
50 A	3 KW	6 KW

Recommended Wire Sizes

Terminals	Wire Size (Solid/ Stranded)	Wire Pull-Out Strength (lbs) (N)
Input	$24 \text { AWG }\left(0.2 \mathrm{~mm}^{2}\right) / 0.2$	10 (44.5)
	$\begin{gathered} 2 \times 12 \text { AWG }\left(3.3 \mathrm{~mm}^{2}\right) / \\ 3.3 \text { (max) } \end{gathered}$	90 (400)
Output	$20 \text { AWG } \underset{(\mathrm{min})}{\left(0.5 \mathrm{~mm}^{2}\right)} \text { / } 0.518$	3 (133)
	2×10 AWG (5.4 mm²) / 5.4	110 (490)
	$\begin{gathered} 2 \times 8 \text { AWG (8.4 mm²) / } 8.4 \\ (\max) \end{gathered}$	90 (400)

Internal Circuit Block Diagram

Technical Notes

Environment

Do not install SSRs near sources of excessive heat. Make sure applications are dry and well ventilated.
If SSRs must be installed in an environment subject to high temperatures or poor ventilation, or if SSRs are mounted collectively, reduce the load current so that it does not approach the ambient temperature-load current recommendation. (See the Temperature Derating Curves on the following page.)
When SSRs are used with inductive loads, suppress the inrush current to half of the peak surge current.

Heat Sinks

Heat sinks are recommend
rial are shown in the table:

Output Rating	Dimensions	Material
10 A	$12^{\prime \prime} \times 12^{\prime \prime} \times 1 / 8^{\prime \prime}$	Aluminum (black anodized)
25 A	$12^{\prime \prime} \times 12^{\prime \prime} \times 1 / 8^{\prime \prime}$ (DC/AC)	Aluminum (black anodized)
25 A	$15^{\prime \prime} \times 15^{\prime \prime} \times 1 / 8^{\prime \prime}(\mathrm{AC} / \mathrm{AC})$	Aluminum (black anodized)
50 A	$15^{\prime \prime} \times 15^{\prime \prime} \times 1 / 8^{\prime \prime}$	Aluminum (black anodized)
75 A	$17^{\prime \prime} \times 17^{\prime \prime} \times 1 / 8^{\prime \prime}$	Aluminum (black anodized)
90 A	$17^{\prime \prime} \times 17^{\prime \prime} \times 1 / 8^{\prime \prime}$	Aluminum (black anodized)

Using a thermal compound between the base of the SSR and the heat sink for heat dissipation is recommended.

Wiring

Locate SSRs as far from motor leads as possible to prevent malfunction from induced current.
Use shielded wires for input leads when they are exposed to a source of induced current.

Mounting

Provide sufficient ventilation.
Use \#6 - 32 screws, flat washers, and lock washers to secure mounting on heat sinks.
Vertical mounting is recommended to allow air to flow unimpeded. Horizontal or inverted mounting is possible, but the SSR must be derated according to the derating curves on the following page.

Additional Information

Do not exceed the load voltage and current specifications.
A small-capacity load may not turn off due to the leakage current present after the SSR has turned off. If this is the case, use a resistor in parallel with the load to shunt the leakage current.
Observe the polarity of input terminals. Failure to do so may cause damage to the SSR.
When the SSR output is subjected to a higher than rated voltage, a varistor or other element should be connected to the output terminals to absorb the over-voltage.
When the input signal contains a ripple voltage, the lowest ripple amplitude should exceed the minimum pick-up voltage of 4 V .

Over 4V
OV

Temperature Derating Curves: RSS Series - Dependent upon heat-sink heat dissipation

10 AMP SCR OUTPUT

50 AMP SCR OUTPUT
$\ldots 0.5^{\circ} \mathrm{C} / \mathrm{W}-0.7^{\circ} \mathrm{C} / \mathrm{W}=1^{\circ} \mathrm{C} / \mathrm{W}-1.5^{\circ} \mathrm{C} / \mathrm{W} \cdots-2^{\circ} \mathrm{C} / \mathrm{W}$

90 AMP SCR OUTPUT

25 AMP SCR OUTPUT

75 AMP SCR OUTPUT

Tolerances: ± 0.02 in / 0.5 mm
All dimensions are in: inches [millimeters]

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Idec manufacturer:
Other Similar products are found below :
LT7A-XE-G LT7A-XE-R LT7B-A250 LT7B-A250FB LW6L-M1C24MG FB1T-000Z FB1W-HW1B-V411R-EMO-2 FB1W-XW1EBV411MR FB1W-XW1E-BV413MR FB3W-413Z FC2A-KP1C FC4A-J8AT1 FC4A-T16S3 FC5A-C16R2C MM-SMART-24 MM-
SMART-40 FT1A-C12RA-S FT1A-C12RA-W FT1A-C14SA-B PF3S-BP12 PS3X-D24AFG PS3X-Q12AFG GT3A-3AD24 GT3F2EAD24 GT3S-2AF20 GT3W-A16AD24 GT3W-A33AF20N ABD302N-R ABD410N-R ABFD411N-G ABN4F11-G HE2B-M211PB HE2G-21SH HE9Z-D3B HG9Z-2A1 HG9Z-XC300 ACSNO-6123-FB-C6002 RH3V2-UAC240V DFAN-031-B AL6M-LK1-G AL6M-P3R AL6Q-M13-W AL6Q-M23P-QG ALFD29901DN-G-24V ALFN22211DNG-U ALFW224611D-W ALNE8811-G ALQW2B24611D-G $\underline{\text { ALW212611-G ALW22211DG }}$

