## GT5P Series - ON Delay Timers

는 Key features of the GT5P series include:

- SPDT, 5A contacts
- 8 -pin, octal base
- 9 time ranges
- Repeat error $\pm 0.2 \%$ maximum
- Control settings by hand or screwdriver
- Power ON and timing out LED indicators
- Uses the same sockets and hold down clips as IDEC's RR2P 8-pin relays




## Part Numbering List

| Mode of <br> Operation | Contact | Output | Rated <br> Voltage | Time <br> Range | Complete Part No. |
| :---: | :---: | :---: | :---: | :---: | :---: |

Timing Diagram/Schematic/Electrical Life Curves



Accessories
Mounting


## Installation of Hold-Down Springs DIN Rail Mount Socket



Panel Mount Socket


## GT5P Timer, 8-Pin with SR2P-05



GT5P Timer, 8-Pin with SR2P-06


## GT5Y Series - ON Delay Timers

## Key features of the GT5Y series include:

- 4PDT, 3A or DPDT, 5A contacts
- 4 time ranges
- Repeat error $\pm 0.2 \%$ maximum
- Control settings by hand or screwdriver
- Power ON and timing out LED indicators
- Uses the same sockets and hold-down clips as IDEC's RY4S and RU series relays

c US
UL, c-UL Listed File No. E55996

Specifications

|  |  | GT5Y-2 |  |
| :---: | :---: | :---: | :---: |
|  |  | GT5Y-4 |
| Rated Operating Voltage |  |  | $\begin{gathered} 100 \text { to } 120 \mathrm{~V} \text { AC }(50 / 60 \mathrm{~Hz}) \\ 200 \text { to } 240 \mathrm{~V} \text { AC ( } 50 / 60 \mathrm{~Hz}) \\ 24 \mathrm{~V} \text { DC } \\ 24 \mathrm{VAC} \\ 12 \mathrm{~V} \mathrm{DC} \end{gathered}$ |  |
| Contact Form |  | DPDT | 4PDT |
| Rated Load | Resistive Load | 220 V AC, 5A <br> $30 \mathrm{VC}, 5 \mathrm{~A}$ | 220 V AC, 3A <br> 30V DC, 3A |
|  | Inductive Load | $\begin{aligned} & 220 \mathrm{~V} \text { AC, } 2 \mathrm{~A} \\ & 30 \mathrm{VC}, 2.5 \mathrm{~A} \end{aligned}$ | $\begin{gathered} 220 \mathrm{~V} \mathrm{AC}, 0.8 \mathrm{~A} \\ 30 \mathrm{VC}, 1.5 \mathrm{~A} \end{gathered}$ |
| Allowable Contact Power | Resistive Load | 1100VA AC 150W DC | 660VA AC 90W DC |
|  | Inductive Load $\operatorname{Cos} \emptyset=0.3$ $\mathrm{L} / \mathrm{R}=7 \mathrm{msec}$ | 440VA AC <br> 75W DC | 176VA AC 45W DC |
| Allowable Voltage |  | 250 V AC, 125V DC |  |
| Allowable Current |  | 5A | 3 A |
| Temperature Error |  | $\pm 3 \%$ maximum (over -10 to $50^{\circ} \mathrm{C}$, reference temperature $20^{\circ} \mathrm{C}$ ) |  |
| Setting Error |  | $\pm 10 \%$ maximum |  |
| Reset Time |  | When turning power off after time up: 0.1 second maximum When turning power off before time up: 1 second maximum |  |
| Insulation Resistance |  | $100 \mathrm{M} \Omega$ minimum |  |
| Dielectric Strength |  | $2,000 \mathrm{~V} \mathrm{AC}$,1 minute (except between contacts of the same pole) |  |
| Vibration Resistance |  | 100N (approximate 10G) |  |
| Shock Resistance |  | Operating extremes: 100N (approximate 10G) Damage limits: 500N (approximate 50G) |  |
| Power Consumption |  | 100V AC type: 1.5VA (at 50 Hz ) 200V AC type: 1.6VA (at 50Hz) 24V DC type: 0.9 W |  |
| Electrical Life |  | 500,000 operations minimum (220V AC, 5A) | 200,000 operations minimum (110V AC, 3A) |
| Mechanical Life |  | 50,000,000 operations minimum |  |
| Operating Temperature |  | -10 to $+50^{\circ} \mathrm{C}$ |  |
| Operating Humidity |  | 45 to 85\% RH |  |

1. Minimum applicable load: GT5Y-2: $5 \mathrm{~V} D \mathrm{CC}, 20 \mathrm{~mA}$ (reference value); GT5Y-4: $5 \mathrm{~V} D C, 10 \mathrm{~mA}$ (reference value).
2. Inductive load: $\cos \varnothing=0.3, L / R=7 \mathrm{msec}$.

## Part Numbering List



For sockets and accessories, see page 856.


Timing Diagram/Schematics/Electrical Life Curves


## Electrical Life Curves




## Accessories



## Dimensions

## GT5Y Timer, Blade with SY4S-05




## General Instructions for AllTimer Series

## Load Current

With inductive, capacitive, and incandescent lamp loads, inrush current more than 10 times the rated current may cause welded contacts and other undesired effects. The inrush current and steady-state current must be taken into consideration when specifying a timer.

## Contact Protection

Switching an inductive load generates a counter-electromotive force (back EMF) in the coil. The back EMF will cause arcing, which may shorten the contact life and cause imperfect contact. Application of a protection circuit is recommended to safeguard the contacts.

## Temperature and Humidity

Use the timer within the operating temperature and operating humidity ranges and prevent freezing or condensation. After the timer has been stored below its operating temperature, leave the timer at room temperature for a sufficient period of time to allow it to return to operating temperatures before use.

## Environment

Avoid contact between the timer and sulfurous or ammonia gases, organic solvents (alcohol, benzine, thinner, etc.), strong alkaline substances, or strong acids. Do not use the timer in an environment where such substances are prevalent. Do not allow water to run or splash on the timer.

## Vibration and Shock

Excessive vibration or shocks can cause the output contacts to bounce, the timer should be used only within the operating extremes for vibration and shock resistance. In applications with significant vibration or shock, use of hold down springs or clips is recommended to secure a timer to its socket.

## Time Setting

The time range is calibrated at its maximum time scale; so it is desirable to use the timer at a setting as close to its maximum time scale as possible. For a more accurate time delay, adjust the control knob by measuring the operating time with a watch before application.

## Input Contacts

Use mechanical contact switch or relay to supply power to the timer. When driving the timer with a solid-state output device (such as a two-wire proximity switch, photoelectric switch, or solid-state relay), malfunction may be caused by leakage current from the solid-state device. Since AC types comprise a capacitive load, the SSR dielectric strength should be two or more times the power voltage when switching the timer power using an SSR.

Generally, it is desirable to use mechanical contacts whenever possible to apply power to a timer or its signal inputs. When using solid state devices, be cautious of inrushes and back-EMF that may exceed the ratings on such devices. Some timers are specially designed so that signal inputs switch at a lower voltage than is used to power the timer (models designated as "B" type).

## Timing Accuracy Formulas

Timing accuracies are calculated from the following formulas:
Repeat Error $\quad= \pm \frac{1 \times \text { Maximum Measured Value }- \text { Minimum Measured Value } \times 100 \%}{2 \text { Maximum Scale Value }}$
Voltage Error $\quad= \pm \frac{\mathrm{TV}-\operatorname{Tr} \times 100 \%}{\operatorname{Tr}}$

Tv: Average of measured values at voltage V
Tr: Average of measured values at the rated voltage
Temperature Error $\quad= \pm \frac{\mathrm{Tt}-\mathrm{T} 20 \times 100 \%}{\mathrm{~T} 20}$
Tt: Average of measured values at ${ }^{\circ} \mathrm{C}$
T20: Average of measured values at $20^{\circ} \mathrm{C}$
Setting Error $\quad= \pm \frac{\text { Average of Measured Values - Set Value } \times 100 \%}{\text { Maximum Scale Value }}$

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Relay Sockets \& Fixings category:
Click to view products by Idec manufacturer:

Other Similar products are found below :
$00008258500 \underline{00111976502} \underline{0000-825-81-00} \underline{60 S Y 4 S 05} \underline{M 41 G} \underline{670-0125} \underline{670-0127} \underline{6700152} \underline{670-0153} \underline{6700156} \underline{\text { D258-2TS00 70-309 7- }}$ 1393143-3 7-1616360-5 8000-DG2-5 911361 9-1616339-5 PJF11N GDA12HA GDA12HD GDA12SA GDA12SD GDA16HD GDA22HA GDA95A GDA95D GFX20 PT08QN PT 1/8 D=3.2 GUA1 GUA2-11 GUA4-31 GUM5R GUR-120 GUR-24 GUR-240 GUR-277 GURX-277 GUW12 GUW95 GUZ63L R99-11 FOR MY(NAMEPLATE) D52PR2T RES100K 1310H-HDC 1390H-1ST 1393824-3 1390H-2PC 1410-2SM 1410-3SM

