Universal Relays

RU Series

Full featured universal miniature relays. Designed with environment taken into consideration.

제 자 C

- See website for details on approvals and standards.
- Lloyd Register type approved.

Safety

The contact position can be confirmed through the five small windows.
Using the latching lever, operation can be checked without energizing the coil. The latching lever is color coded for AC and DC coils.(AC coil: Orange DC coil: Green)
Non-polarized LED indicator available on plug-in relays.

Environment

RoHS compliant models available. Complies with EU directive 2002/95/EC (Restricted substances: lead, Cadmium,Mercury, Hexavalent Chromium, PBB, PBDE)

Reliable

No internal wires. Simple construction.

Easy-to-Use

Marking plate for easy identification of relays
(Optional marking plates available in four other colors)
Applicable for small loads to maximum contact currents.
(See table below)

	RU2	RU4	RU42
Max. continuous current	10 A	6 A	3 A
Min. applicable load	24 V DC	1 V DC	1 V DC
(Note)	5 mA	1 mA	0.1 mA

Note: Reference value.

RU saiies Universal Relays

Single Contact

shape			Plug-in Terminal With Latching Lever Standard (DPDT)		PCB Terminal Without Latching Lever Standard (4PDT)
Termination	Latching Lever	Style			
			DPDT	4PDT	Coil Voltage Code *
Plug-in Terminal (*1)	With Latching Lever	Standard	RU2S-*	RU4S-*	A24, A100, A110, A200, A220 D6, D12, D24, D48, D100, D110
		With RC (AC coil only)	RU2S-R-*	RU4S-R-*	A100, A110, A200, A220
		With diode (DC coil only)	RU2S-D-*	RU4S-D-*	D6, D12, D24, D48, D110
		With diode (DC coil only) Reverse polarity coil	RU2S-D1-*	RU4S-D1*	D24
	Without Latching Lever	Standard	RU2S-C-*	RU4S-C-*	A24, A100, A110, A200, A220 D6, D12, D24, D48, D100, D110
		With RC (AC coil only)	RU2S-CR-*	RU4S-CR-*	A100, A110, A200, A220
		With diode (DC coil only)	RU2S-CD-*	RU4S-CD-*	D6, D12, D24, D48, D110
		With diode (DC coil only) Reverse polarity coil	RU2S-CD1-*	RU4S-CD1-*	D24
PCB Terminal	Without Latching Lever	Simple (*2)	RU2V-NF-*	RU4V-NF-*	$\begin{aligned} & \text { A24, A100, A110, A200, A220 } \\ & \text { D6, D12, D24, D48, D100, D110 } \end{aligned}$

Bifurcated Contact

shape			Plug-in Terminal With Latching Lever Standard	
Termination	Latching Lever	Style	Part No. 4PDT	Coil Voltage Code *
Plug-in Terminal (*1)	With Latching Lever	Standard	RU42S-*	A24, A100, A110, A200, A220 D6, D12, D24, D48, D100, D110
		With RC (AC coil only)	RU42S-R-*	A100, A110, A200, A220
		With diode (DC coil only)	RU42S-D-*	D6, D12, D24, D48, D100, D110
		With diode (DC coil only) Reverse polarity coil	RU42S-D1-*	D24
	Without Latching Lever	Standard	RU42S-C-*	A24, A100, A110, A200, A220 D6, D12, D24, D48, D100, D110
		With RC (AC coil only)	RU42S-CR-*	A100, A110, A200, A220
		With diode (DC coil only)	RU42S-CD-*	D6, D12, D24, D48, D100, D110
		With diode (DC coil only) Reverse polarity coil	RU42S-CD1-*	D24
PCB Terminal	Without Latching Lever	Simple (*2)	RU42V-NF-*	A24, A100, A110, A200, A220 D6, D12, D24, D48, D100, D110

*1) Plug-in terminal, except for simple types, have an LED indicator and a mechanical indicator as standard.
*2) Simple types do not have an LED indicator, a mechanical indicator, and a latching lever.

Part No. Development
Specify a coil voltage code in place of * in the Part No.

Coil Voltage Code $*$	Coil Rating
24 V AC	White
$100-110 \mathrm{~V}$ AC	Clear
$110-120 \mathrm{~V}$ AC	Blue
$200-220 \mathrm{~V}$ AC	Black
$220-240 \mathrm{~V}$ AC	Red
24 V DC	Green
6 V DC	Voltage marking 12V DC
48 V DC	
100 V DC	
110 V DC	

Accessory

Name	Part No.	Ordering No.	Color Code $*$	Package Quantity
Marking Plate	RU9Z-P $*$	RU9Z-P*PN10	A (orange), G (green), S (blue), W (white), Y (yellow)	10

Note: Specify a color code in place of the Part No. When ordering, specify the Ordering No.
The marking plate can be removed from the relay by inserting a flat screwdriver under the marking plate.

Coil Ratings

- The rated current includes the current draw by the LED indicator.

Contact Ratings

Contact	Continuous Current	Allowable Contact Power		Voltage (V)	Rated Load		
				Res. Load	Ind. Load	Electrical Life (operations)	
		Resistive Load	Inductive Load				
$\begin{aligned} & \text { DPDT } \\ & \text { (RU2) } \end{aligned}$	10A	$\begin{array}{\|c} 2500 \mathrm{VA} \mathrm{AC} \\ 300 \mathrm{~W} D C \end{array}$	$\begin{aligned} & \text { 1250VA AC } \\ & 150 \mathrm{~W} D C \end{aligned}$	250 AC	10A	5A	100,000 min.
					5A	-	$500,000 \mathrm{~min}$.
					-	2.5A	$300,000 \mathrm{~min}$.
				30 DC	10A	5A	100,000 min.
					5A	-	$500,000 \mathrm{~min}$.
					-	2.5A	$300,000 \mathrm{~min}$.
				110 DC	0.6A	0.4A	100,000 min.
$\begin{aligned} & \text { 4PDT } \\ & \text { (RU4) } \end{aligned}$	6A	1500VA AC 180W DC	600VA AC 90W DC	250 AC	6A	2.6 A	$50,000 \mathrm{~min}$.
					3A	0.8A	200,000 min.
				30 DC	6A	2.7A	50,000 min.
					3A	1.5A	200,000 min.
				110 DC	0.65A	0.33A	$50,000 \mathrm{~min}$.
					0.33A	0.18A	200,000 min.
4PDT (RU42) bifurcated	3A	750VA AC 90W DC	200VA AC 45W DC	250 AC	3A	0.8A	100,000 min.
				30 DC	3A	1.5A	100,000 min.
				110 DC	0.44A	0.22A	100,000 min.

- On 4PDT relays, the maximum allowable total current of neighboring two poles is 6A. At the rated load, make sure that the total current of neighboring two poles does not exceed $6 A(3 A+3 A=6 A)$.

UL and c-UL Ratings

CSA Ratings

Voltage	Resistive								
	RU2	RU4	RU42	RU2	RU4	RU42	RU2	RU4	RU42
250V AC	10 A	-	-	-	$6 A$	$3 A$	-	$1 / 10 \mathrm{HP}$	-
30V DC	10 A	6 A	3 A	-	-	-	-	-	-

TÜV Ratings

Voltage	Resistive			Inductive		
	RU2	RU4	RU42	RU2	RU4	RU42
250 V AC	10 A	6 A	3 A	5 A	0.8 A	0.8 A
30 V DC	10 A	6 A	3 A	5 A	1.5 A	1.5 A

Specifications

Model	RU2 (DPDT)	RU4 (4PDT)	RU42 (4PDT)
Contact Material	Silver alloy	Silver (gold clad)	Silver-nickel (gold clad)
Contact Resistance (*1)	$50 \mathrm{~m} \Omega$ maximum		
Minimum Applicable Load (*2)	(reference value)		
Operate Time (*3)	20 ms maximum		
Release Time (*3)	20 ms maximum		
Power Consumption	AC: 1.1 to $1.4 \mathrm{VA}(50 \mathrm{~Hz}), 0.9$ to $1.2 \mathrm{VA}(60 \mathrm{~Hz})$ DC: 0.9 to 1.0 W		
Insulation Resistance	$100 \mathrm{M} \Omega$ minimum (500 V DC megger)		
	Between contact and coil: 2500 V AC, 1 minute		
Dielectric Strength	Between contac 2500 V AC, 1 minute	2000 V AC, 1 minute	
	Between contacts of the same pole: 1000 V AC, 1 minute		
Operating Frequency	Electrical: 1800 operations/h maximum Mechanical: 18,000 operations/h maximum		
Vibration Resistance	Damage limits: 10 to 55 Hz , amplitude 0.5 mm Operating extremes: 10 to 55 Hz , amplitude 0.5 mm		
Shock Resistance	Damage limits: $\quad 1000 \mathrm{~m} / \mathrm{s}^{2}$Operating extremes: $150 \mathrm{~m} / \mathrm{s}^{2}$		
Mechanical Life	AC: $50,000,000$ operations DC: 100,000,000 operations		50,000,000 operations
Electrical Life	See H-019 and H-021.		
Operating Temperature	PCB terminal: -55 to $+70^{\circ} \mathrm{C}$ (no freezing) Others: $\quad-55$ to $+60^{\circ} \mathrm{C}$ (no freezing)		
Operating Humidity	5 to 85\% RH (no condensation)		
Storage Temperature	-55 to $+70^{\circ} \mathrm{C} \mathrm{RH}$ (no freezing)		
Storage Humidity	5 to 85\% RH (no condensation)		
Weight (Approx.)	35 g		

Note: Above values are initial values.
*1) Measured using 5V DC, 1 A voltage drop method
*2) Measured at operating frequency of 120 operations/min (failure rate level P, reference value)
*3) Measured at the rated voltage (at $20^{\circ} \mathrm{C}$), excluding contact bouncing Release time of AC relays with $\mathrm{RC}: 25 \mathrm{~ms}$ maximum
Release time of DC relays with diode: 40 ms maximum
*4) Measured at the rated voltage.

Surge Suppressor Ratings

Type		Ratings
AC Coil	With RC	RC series circuit R: $20 \mathrm{k} \Omega, \mathrm{C}: 0.033 \mu \mathrm{~F}$
DC Coil	With Diode	Diode reverse voltage: 1000 V Diode forward current: 1 A

RU2 (DPDT Contact)

Dimensions

Plug-in Terminal

RU2S

RU2S-C/RU2S-NF

Marking plate removal slot is provided only on one side. Insert a flat screwdriver into the slot to remove the marking plate.

PCB Terminal

Photo: RU2V-NF-A100

Mounting Hole Layout

APEM

Switches \& Pilot Lights

Control Boxes
Emergency Stop Switches
Enabling
Switches
Safety Products
Explosion Proof

Terminal Blocks
Relays \& Sockets
Circuit
Protectors
Power Supplies
LED Illumination

Controllers
Operator
Interfaces
Sensors
AUTO-ID

Relays
Sockets
DIN Rail
Products

RJ
RJ
RU

RL

RU2S-*D1 With Diode Reverse Polarity Coil

RU2S-NF-*/RU2V-NF-*

Reverse Polarity Coil

Blank or C comes in place of $*$ to represent types with or without a latching lever.

RU Series Universal Relays

Electrical Life Curves

RU2 (Resistive Load)

RU2 (Inductive Load)

Maximum Switching Current
RU2

Ambient Temperature vs. Temperature Rise Curves

RL

RU2 (AC Coil, 60 Hz)

RU2 (DC Coil)

The above temperature rise curves show the characteristics when 100% the rated coil voltage is applied.
The heat resistance of the coil is $120^{\circ} \mathrm{C}$. The slant dashed line indicates the allowable temperature rise for the coil at different ambient temperatures.

RU4 (4PDT Contact)

Dimensions

Plug-in Terminal
PCB Terminal

Photo: RU42S-A100

RU4S/RU42S

RU4S-C/RU4S-NF RU42S-C/RU42S-NF

Marking plate removal slot is provided only on one side. Insert a flat screwdriver into the slot to remove the marking plate.

Internal Connection (Bottom View)

RU4S-*/RU42S-*
 Standard

Over 24V AC/DC

RU4S-*R/RU42S-*R
With RC

Blank or C comes in place of * to represent types with or without a latching lever.

RU4S-*D/RU42S-*D With Diode

Photo: RU4V-NF-D24

APEM

Switches \& Pilot Lights

Control Boxes
Emergency
Stop Switches
Enabling
Switches
Safety Products
Explosion Proof

Terminal Blocks
Relays \& Sockets
Circuit
Protectors
Power Supplies
LED Illumination

Controllers
Operator
Interfaces
Sensors

AUTO-ID

Mounting Hole Layout

All dimensions in mm.

RU4S-*D1/RU42S-*D1 With Diode Reverse Polarity Coil

RU4S-NF-*/RU4V-NF-* RU42S-NF-*/RU42V-NF-*

Ambient Temperature vs. Temperature Rise Curves

RU4/RU42 (AC Coil, 50 Hz)

RU4/RU42 (AC Coil, 60 Hz)

RU4/RU42 (DC Coil)

The above temperature rise curves show the characteristics when 100% the rated coil voltage is applied.
Load current 6A $\times 2$ poles is for the RU4 only.
The heat resistance of the coil is $120^{\circ} \mathrm{C}$. The slant dashed line indicates the allowable temperature rise for the coil at different ambient temperatures.

Applicable Socket

APEM

Switches \& Pilot Lights

Control Boxes
Emergency
Stop Switches
Enabling

Safety Products
Explosion Proof
Terminal Blocks
Relays \& Sockets
Circuit
Protectors
Power Supplies
LED Illumination
Controllers
Operator
Operator
Interfaces
Sensors
AUTO-ID

Sockets
DIN Rail
Products

RL
*1) Finger-safe cannot be used with ring terminal.
*2) SU2S-11L and SU4S-11L are spring-clamp socket which does not require tightening screws. Stranded wire, solid wire, and ferrule can be attached using a screwdriver.
*3) When using SU2S-11L and SU4S-11L at rated current 8 A and above, maintain at least 10 mm distance from the adjacent SU socket.
*4) Front wiring socket can be mounted directly on DIN rail and mounting panel (some sockets need spacers for the ends).

Hold-down Springs

- A relay needs a pair of leaf springs, except for SFA-504 (one spring per relay).
- When the wire spring SY4S-51F1 or leaf spring SFA-504 is used on a relay with latcing lever, lever cannot be opened or closed.
- Leaf springs (except for the leaf spring SFA-504) cannot be removed after being installed on a socket (except for SM2S-05D and SY4S-05D)

Accessories for Sockets

APEM
 Pilot Lights
Control Boxes
Emergency
Stop Switches
Enabling
Switches
Safety Products
Explosion Proof
Terminal Blocks
Relays \& Sockets
Circuit
Protectors
Power Supplies
LED Illumination
Controllers
Operator
Interfaces
Sensors
AUT0-ID
Sockets
Prod Rail Relays

*1) Ensure that the total current to the jumper does not exceed the rated current.

RJ
RU
RV8H
RL

RU Series Universal Relays

Safety Precautions

- Turn off the power to the relay before starting installation, removal, wiring, maintenance, and inspection of the relays. Failure to turn power off may cause electrical shock or fire hazard.
- Observe specifications and rated values, otherwise electrical shock or fire hazard may be caused.
- Use wires of the proper size to meet the voltage and current requirements. Tighten the terminal screws on the relay socket to the proper tightening torque.
- Before operating the latching lever, turn off the power to the RU relay. After checking the circuit, return the latching lever to the original position.
- Do not use the latching lever as a switch.
- The durability of the latching lever is a minimum of 100 operations.
- When using DC loads on 4PDT relays, apply a positive voltage to terminals of neighboring poles and a negative voltage to the other terminals of neighboring poles to prevent the possibility of short circuits.
- DC relays with a diode have a polarity in the coil terminals.
- The surge absorbing element on AC relays with RC or DC relays. with diode is provided to absorb the counter electromotive force generated by the coil. When the relay is subject to an excessive external surge voltage, the surge absorbing element may be damaged. Add another surge absorbing provision to the relay to prevent damage.

Instructions

Driving Circuit for Relays

1. To make sure of correct relay operation, apply rated voltage to the relay coil.
2. Input voltage for the DC coil:

A complete DC voltage is best for the coil power to make sure of stable relay operation. When using a power supply containing a ripple voltage, suppress the ripple factor within 5%. When power is supplied through a rectification circuit, the relay operating characteristics, such as pickup voltage and dropout voltage, depend on the ripple factor. Connect a smoothing capacitor for better operating characteristics as shown below.

Ripple factor $(\%)=\frac{\text { Emax }- \text { Emin }}{\text { Emean }} \times 100 \%$
Emax = Maximum of pulsating current
Emin = Minimum of pulsating current
Emean $=$ DC mean value
3. Operating the relay in synchronism with AC load: If the relay operates in synchronism with the AC power voltage of the load, the relay life may be reduced. If this is the case, select a relay in consideration of the required reliability for the load. Or, make the relay turn on and off irrespective of the AC power phase or near the point where the AC phase crosses zero voltage.

4. Leakage current while relay is off:

When driving an element at the same time as the relay operation, a special consideration is needed for the circuit design. As shown in the incorrect circuit below, Leakage current (lo) flows through the relay coil while the relay is off. Leakage current causes the coil release failure or adversely affects the vibration resistance and shock resistance. Design a circuit as shown in the correct example.

Incorrect

Correct

5. Surge suppression for transistor driving circuits: When the relay coil is turned off, a high-voltage pulse is generated, causing the transistor to deteriorate and sometimes to break. Be sure to connect a diode to suppress the counter electromotive force. Then, the coil release time becomes slightly longer. To shorten the coil release time, connect a Zener diode between the collector and emitter of the transistor. Select a Zener diode with a Zener voltage slightly higher than the power voltage.

Instructions

Protection for Relay Contacts

1. The contact ratings show maximum values. Make sure that these values are not exceeded. When an inrush current flows through the load, the contact may become welded. If this is the case, connect a contact protection circuit, such as a current limiting resistor.
2. Contact protection circuit:

When switching an inductive load, arcing causes carbides to form on the contacts, resulting in an increased contact resistance. In consideration of contact reliability, contact life, and noise suppression, use of a surge absorbing circuit is recommended. Note that the release time of the load becomes slightly longer. Check the operation using the actual load. Incorrect use of a contact protection circuit will adversely affect switching characteristics. Four typical examples of contact protection circuits are shown in the following table:

		This protection circuit can be used when the load impedance is smaller than the RC impedance in an AC load power circuit. R: Resistor of approximately the same resistance value as the load C: 0.1 to $1 \mu \mathrm{~F}$
		This protection circuit can be used for both AC and DC load power circuits. R: Resistor of approximately the same resistance value as the load C: 0.1 to $1 \mu \mathrm{~F}$
응		This protection circuit can be used for DC load power circuits. Use a diode with the following ratings. Reverse withstand voltage: Power voltage of the load circuit $\times 10$ Forward current: More than the load current
-		This protection circuit can be used for both AC and DC load power circuits. For a best result, when using on a power voltage of 24 to 48 V AC/DC, connect a varistor across the load. When using on a power voltage of 100 to 240 V AC/DC, connect a varistor across the contacts.

3. Do not use a contact protection circuit as shown below:
This protection circuit is very effective in arc suppression
when opening the contacts. But, the capacitor is charged
while the contacts are opened. When the contacts are
closed, the capacitor is discharged through the contacts,
increasing the possibility of contact welding.

Generally, switching a DC inductive load is more difficult than switching a DC resistive load. Using an appropriate arc suppressor, however, will improve the switching characteristics of a DC inductive load.

Other Precautions

1. General notice:

To maintain the initial characteristics, do not drop the relay or shock the relay.
The relay cover cannot be removed from the base during normal operation. To maintain the initial characteristics, do not remove the relay cover.
Use the relay in environments free from condensation of dust, sulfur
dioxide $\left(\mathrm{SO}_{2}\right)$, and hydrogen sulfide $\left(\mathrm{H}_{2} \mathrm{~S}\right)$.
Make sure that the coil voltage does not exceed the applicable coil voltage range.
2. Connecting outputs to electronic circuits:

When the output is connected to a load which responds very
quickly, such as an electronic circuit, contact bouncing causes incorrect operation of the load. Take the following measures into consideration.
Connect an integral circuit.
Suppress the pulse voltage due to bouncing within the noise margin of the load.
3. UL- and CSA-approved ratings may differ from product rated values determined by IDEC.
4. Do not use relays in the vicinity of strong magnetic field as this may affect relay operation.
DC diode type has polarity.
The surge absorbing element on AC relays with RC or DC relays with diode is provided to absorb the counter electromotive force generated by the coil. When the relay is subject to an excessive external surge voltage, the surge absorbing element may be damaged. Add another surge absorbing provision to the relay to prevent damage.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Relay Sockets \& Fixings category:
Click to view products by Idec manufacturer:

Other Similar products are found below :
$00008258500 \underline{00111976502} \underline{0000-825-81-00} \underline{60 S Y 4 S 05} \underline{M 41 G} \underline{670-0125} \underline{670-0127} \underline{6700152} \underline{670-0153} \underline{6700156} \underline{\text { D258-2TS00 70-309 7- }}$ 1393143-3 7-1616360-5 8000-DG2-5 911361 9-1616339-5 PJF11N GDA12HA GDA12HD GDA12SA GDA12SD GDA16HD GDA22HA GDA95A GDA95D GFX20 PT08QN PT 1/8 D=3.2 GUA1 GUA2-11 GUA4-31 GUM5R GUR-120 GUR-24 GUR-240 GUR-277 GURX-277 GUW12 GUW95 GUZ63L R99-11 FOR MY(NAMEPLATE) D52PR2T RES100K 1310H-HDC 1390H-1ST 1393824-3 1390H-2PC 1410-2SM 1410-3SM

