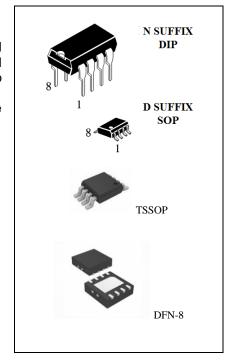
Ground Fault Interrupter Earth Leakage Current Detector

IL7101

DESCRIPTION


The IL7101 is designed for use in earth leakage circuit interrupters for operation directly off the AC Line in breakers.

It contains pre regulator, main regulator, after regulator, differential amplifier, level comparator, latch circuit. The input in the differential amp latch circuit. The input in the differential amplifier is connecting to the secondary node of zero current transformer.

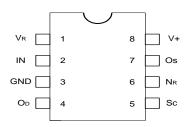
The level comparator generates high level when earth leakage current is greater than some level.

FEATURE

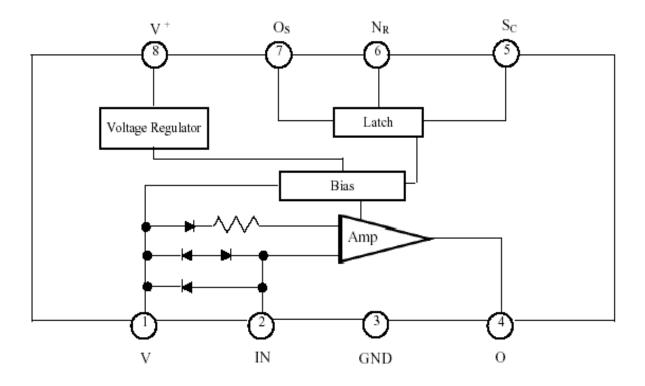
- Low Power Consumption (P_D=5mW) 100V/200V
- 100V/200V Common Built-in Voltage Regulator
- · High Gain Differential Amplifier
- High Input Sensitivity
- Minimum External Parts
- Large Surge Margin
- Wide Operating Temperature Range (T_A= -30 to 85°C)
- High Noise Immunity
- Meet U. L. 943 standards

ORDERING INFORMATION

Device	Trip Voltage Operating		Package	Shipping	
Device	(rms)	Temperature Range	rackage	Shipping	
IL7101SN	11.5mV to 13.86mV		DIP-8	Tube	
IL7101AN	13.86mV to 15.6mV		DIP-0	rube	
IL7101SDT	11.5mV to 13.86mV		SOP-8	Tanali Daal	
IL7101ADT	13.86mV to 15.6mV	$T_A = -30^{\circ} \text{ to } 85^{\circ} \text{ C}$	3UP-0	Tape& Reel	
IL7101STSDT	11.5mV to 13.86mV	for all packages	TSSOP-8	Tana Qu Daal	
IL7102ATSDT	13.86mV to 15.6mV		133UP-0	Tape& Reel	
IL7101SDNT	TBD		DFN-8	Tana & Daal	
IL7101ADNT	TBD		DEIN-8	Tape & Reel	


ABSOLUTE MAXIMUM RATINGS

Supply Voltage 20V
 Supply Current 8mA
 Power Dissipation 200mW
 Operating Temperature - 30 to 85°C
 Storage Temperature - 55 to 125°C


Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

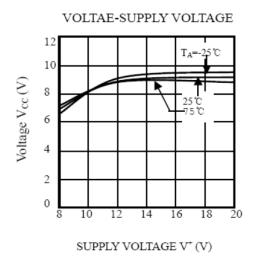
Pin Configuration

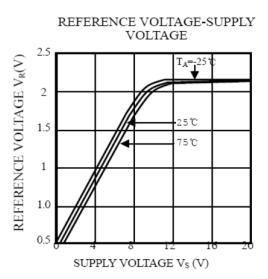
(Top View)

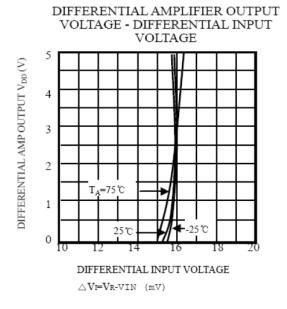
Block Diagram

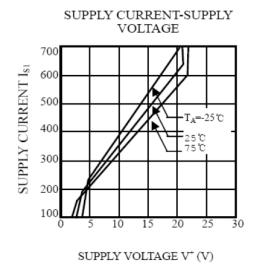
^{*} Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.

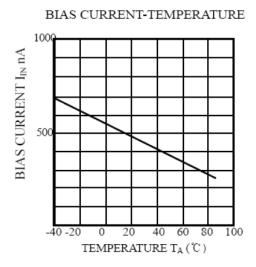
Recommended Operating Condition: T_A =-30°C to 80°C

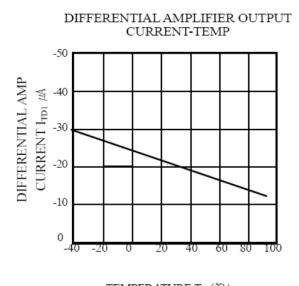

PARAMETER	SYMBOL	MIN.	TYP.	MAX	UNIT
Supply Voltage	V ⁺	12			V
Vs-GND Capacitor	Cvs	1			μF
O _S -GND Capacitor	Cos			1	μF

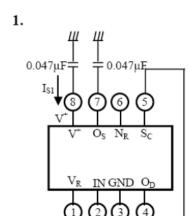

Electrical Characteristics

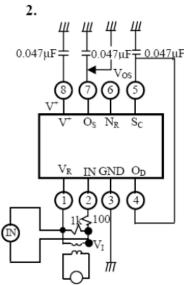

PARAMETER	SYMBOL	CONDTIONS		TEMP. (°C)	MIN.	TYP.	MAX.	UNIT	Test Circuit
		\/ ⁺ 40\/		-30	-	-	580		1
Supply Current 1	I_{S1}	$V^{+}=12V$, $V_{R} - V_{I} = 30 \text{ mV}$		25	-	400	530	μΑ	
		$V_{R} - V_{I} = 30$	mv	85	-	-	480		
Trip Voltage	V _T	$V^{+} = 16V$	IL7101S	-30	11.5		13.86	_mV	2
D''' '' '		$V_R - V_I = X$	IL7101A	85	13.86		15.6	(rms)	
Differential Amplifier Output Current 1	I _{TD1}	$V^{+} = 16 \text{ V},$ $V_{R} - V_{I} = 30$ $V_{OD} = 1.2 \text{ V}$		25	-12	-	-30	μА	3
Differential Amplifier Output current 2	I _{TD2}	$V^{+} = 16 \text{ V},$ $V_{R} - V_{I} = \text{sho}$ $V_{OD} = 0.8 \text{ V}$		25	17	-	37	μΑ	4
			$I_{SI} = 580 \mu A$	-30	-200	-			5
Output Current	Ιο	$V_{SC} = 1.4 \text{ V}$ $V_{OS} = 0.8 \text{ V}$	$I_{SI} = 530 \mu A$	25	-100	-		μΑ	
	Ö	$V_{OS} = 0.8 \text{ V}$	$I_{SI} = 480 \mu A$	85	-75	-		1	
S _C On Voltage	V _{SC} ON	V ⁺ = 16 V	, 0.	25	0.7	-	1.4	V	6
S _C Input Current	I _{SC} ON	V ⁺ = I2V		25	-	-	5	μА	7
Output "L" Current	I _{OSL}	$V^{+} = 12 V,$ $V_{OSL} = 0.2 V$	/	-30 85	200	-	-	μА	8
Input Clamp Voltage	V _{IC}	$V^{+} = 12 V,$ $I_{IC} = 20 \text{ mA}$		-30 85	4.3	ı	6.7	V	9
Differential Input Clamp Voltage	V_{IDC}	$I_{IDC} = 100 \text{m}$	А	-30 85	0.4	-	2	V	10
Max. Current Voltage	V_{SM}	$I_{SM} = 7 \text{ mA}$		25	20	-	28	V	11
Supply Current 2	I _{S2}	$V_{OS} = 0.5 \text{ V}, V_{R} - V_{I} = X$,	-30 85	-	-	1200	μА	12
Latch Circuit Off Supply Voltage	V+ OFF			25	0.5			V	13
Response Time	T _{ON}	$V^{+} = 16 V,$ $V_{R} - V_{I} = 0.3$	V	25	1	-	4	ms	14

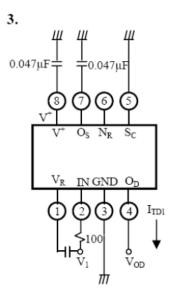


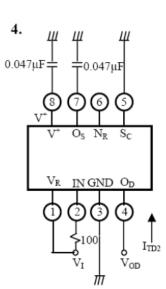

Typical Performance Curves

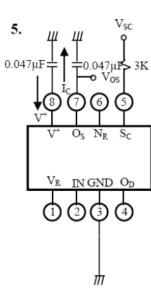


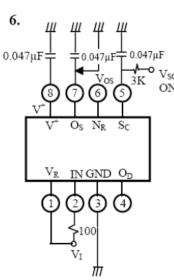


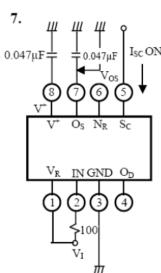


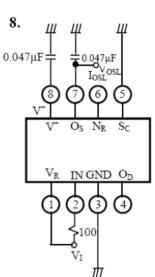


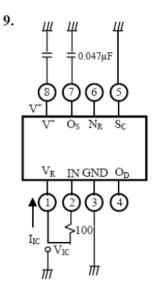


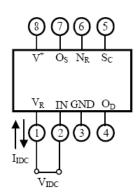

Test Circuit

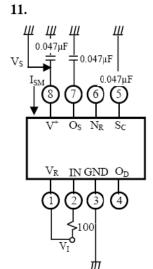


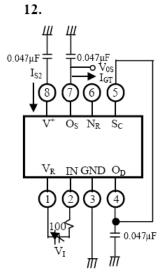


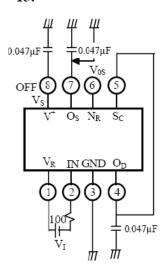


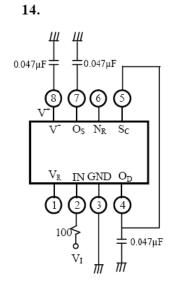


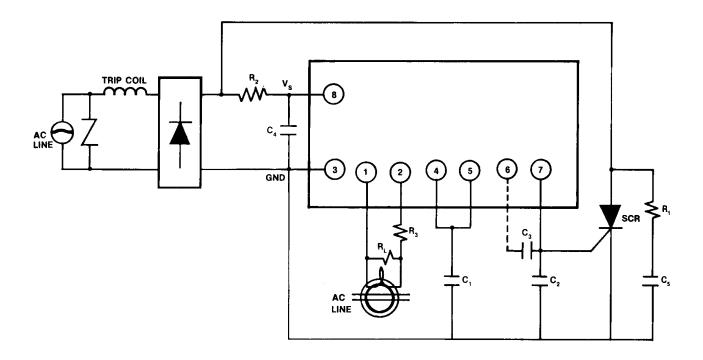







10.





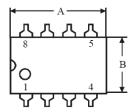
13.

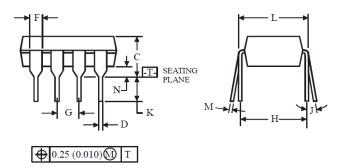
Typical Application

Supply voltage circuit is connected as a previous diagram. Please decide constants R1, R2, C4, and C5 of a filter in order to keep at least 12V in Vs, when normal supply current flows.

In this case, please connect C4 (more than 1 μ F) and C2 (less than 1 μ F). ZCT and load resistance RL of ZCT are connected between input pin① and ②. In this case protective resistance (R3=100 Ω) must be insulted. Sensitivity current is regulated by RL, and output of amplifier shows in pin④. External capacitor C1 between pin④ and GND is used for noise removal.

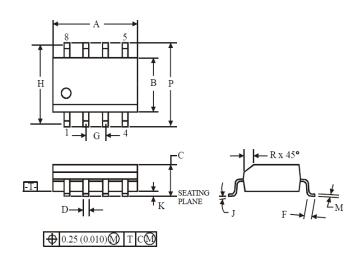
When large current is grounded in the primary side (AC line) of ZCT, the wave form in the secondary side of ZCT is distorted and some signals doesn't appear in the output of amplifier. So please connect a varistor or a diode (2pcs.) to ZCT in parallel.


Latch circuit is used to inspect the output level of amplifier and to supply gate current on the external SCR. When input pin becomes more than 1.1V (Typ.) latch circuit operates and supply gate current in the gate of SCR connected to the output pin?.


Pin6 can be used in the open state, but please connect capacitor (about 0.047 μ F) between pin6 and 7.

Capacitor C6 between pin \bigcirc and GND is used to remove noise and is about 0.047 μ F.

N SUFFIX DIP (MS – 001BA)

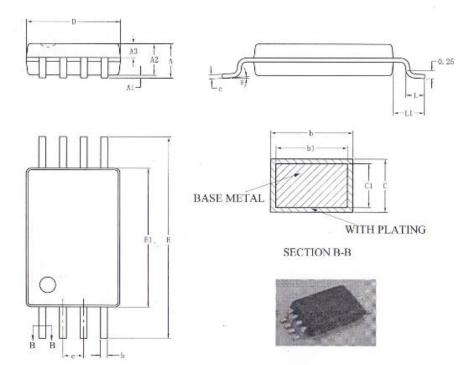

NOTES:

Dimensions "A", "B" do not include mold flash or protrusions.
 Maximum mold flash or protrusions 0.25 mm (0.010) per side.

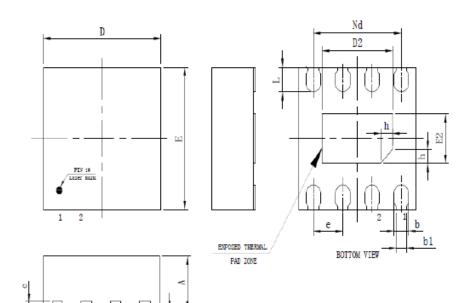
	Dimension, mm		
Symbol	MIN MAX		
A	8.51 10.16		
В	6.10	7.11	
C		5.33	
D	0.36	0.56	
F	1.14	1.78	
G	2.54		
Н	7.	62	
J	0°	10°	
K	2.92	3.81	
L	7.62	8.26	
M	0.20 0.36		
N	0.38		

D SUFFIX SOP (MS - 012AA)

NOTES:


- 1. Dimensions A and B do not include mold flash or protrusion.
- 2. Maximum mold flash or protrusion 0.15 mm (0.006) per side for A; for B 0.25 mm (0.010) per side.

	Dimension, mm			
Symbol	MIN MAX			
A	4.80	5.00		
В	3.80	4.00		
C	1.35	1.75		
D	0.33	0.51		
F	0.40	1.27		
G	1.27			
Н	5.	72		
J	0°	8°		
K	0.10	0.25		
M	0.19	0.25		
P	5.80 6.20			
R	0.25 0.50			


TSSOP – 8 Package Dimension

SYMBOL.	MILLIMETER				
51 MBOL	MIN	NOM	MAX		
Α			1.20		
A1	0.05	68 <u>-</u> 80	0.15		
A2	0.90	1.00	1.05		
A3	0.39	0.44	0.49		
b	0.20		0.28		
ы	0.19	0.22	0.25		
c	0.13		0.17		
c1	0.12	0.13	0.14		
D	2.90	3.00	3.10		
EI	4.30	4.40	4.50		
E	6.20	6.40	6.60		
e	0.65BSC				
L	0.45	62	0.75		
L1	1.00REF				
θ	0	1220	8"		

DFN – 8 Package Dimension

SYMBOL	MILLIMETER				
SIMBOL	MIN	NOM	MAX		
A	0.70	0.75	0.80		
A1	1	0.02	0.05		
ь	0.18	0.30			
61		0.18 RE F			
с	0.18	0.20	0.25		
D	1. 90	2.00	2.10		
D 2	1.10	1.20	1.30		
e	0. 50BSC				
Nd	1. 50BSC				
E	1.90	2.00	2.10		
E2	0.60	0.70	0.80		
L	0.30	0.35	0.40		
h	0.15	0. 20	0.25		

Specification revisions history

Date	Rev	Changes	Remark
2018, Jun	05	Change the Trip voltage range	
2018, Oct	06	Added the TSSOP – 8 PKG	
2019. Apr	07	Added the DFN8 PKG	

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Management Specialised - PMIC category:

Click to view products by IKSEMICON manufacturer:

Other Similar products are found below:

P9145-I0NQGI SLG7NT4192VTR AS3729B-BWLM LNBH25SPQR ADP5080ACBZ-1-RL MC32PF3000A6EP MB39C831QN-G-EFE2

MAX9959DCCQ+D MAX1932ETC+T MAX1856EUB+T STNRG011TR IRPS5401MXI03TRP S6AE102A0DGN1B200

MMPF0100FDAEP MCZ33903DS5EK S6AE101A0DGNAB200 MCZ33903DS3EK NCP6924CFCHT1G MAX17117ETJ+ L9916 L9915
CB MCZ33904D5EK MCZ33905DS3EK MMPF0100FCANES MCZ33905DD3EK MMPF0100FBANES WM8325GEFL/V

MCZ33903DP5EK MCZ33905DS5EK MCZ33903D3EK MCZ33903DD5EK ADN8835ACPZ-R7 MCZ33903DP5EKR2 MCZ33903D5EK

MCZ33903DD3EK MMPF0100FAAZES SLG7NT4198V MIC5164YMM P9180-00NHGI NCP6914AFCAT1G TLE9261QX

TEA1998TS/1H MAX881REUB+T TLE9262QX TLE8880TN MAX8520ETP+T SLG7NT4083V ADP1031ACPZ-1-R7 ADP1031ACPZ-2
R7 ADP1031ACPZ-3-R7